第五章 机械振动习题

合集下载

大学物理第五章机械振动习题解答和分析要点

大学物理第五章机械振动习题解答和分析要点

5-1 有一弹簧振子,振幅A=2.0⨯10-2m,周期T=1.0s,初相ϕ=3π/4.试写出它的振动位移、速度和加速度方程。

分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。

解:振动方程为:x=Acos[ωt+ϕ]=Acos[3π42πTt+ϕ] 代入有关数据得:x=0.02cos[2πt+振子的速度和加速度分别是:v=dx/dt=-0.04πsin[2πt+3π43π4](SI) ](SI) a=dx/dt=-0.08πcos[2πt+222](SI)5-2若简谐振动方程为x=0.1cos[20πt+π/4]m,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s时的位移、速度和加速度.分析通过与简谐振动标准方程对比,得出特征参量。

解:(1)可用比较法求解.根据x=Acos[ωt+ϕ]=0.1cos[20πt+π/4] 得:振幅A=0.1m,角频率ω=20πrad/s,频率ν=ω/2π=10s 周期T=1/ν=0.1s,ϕ=π/4rad(2)t=2s时,振动相位为:ϕ=20πt+π/4=(40π+π/4)rad22 由x=Acosϕ,ν=-Aωsi nϕ,a=-Aωcosϕ=-ωx得 -1,x=0.0707m,ν=-4.44m/s,a=-279m/s5-3质量为2kg的质点,按方程x=0.2sin[5t-(π/6)](SI)沿着x轴振动.求:(1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。

2解:(1)跟据f=ma=-mωx,x=0.2sin[5t-(π/6)] 2将t=0代入上式中,得:f=5.0N2 (2)由f=-mωx可知,当x=-A=-0.2m时,质点受力最大,为f=10.0N5-4为了测得一物体的质量m,将其挂到一弹簧上并让其自由振动,测得振动频率ν1=1.0Hz;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为ν2=2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析根据简谐振动频率公式比较即可。

机械振动习题集

机械振动习题集

第一章 概论1-1概念1. 机械振动系统由哪几部分组成?其典型元件有哪些?2. 机械振动研究哪三类基本问题?3. 对机械振动进行分析的一般步骤是什么?4. 在振动分析中,什么叫力学模型,什么叫数学模型?5. 惯性元件、弹性元件、阻尼元件的基本特性各是什么?6. 什么叫离散元件或集中参数元件?7. 什么叫连续体或分布参数元件?8. 建立机械振动系统力学模型的基本原则有哪些?9.建立机械振动系统力学模型需要考虑的基本问题?并分析建立下图中的系统的力学模型。

一台机器(看为一个整体)平置于一块板上,板通过两个垂直的支撑块放置在地面上,试建立其力学模型。

10. 如果一个振动系统是线性的,它必须满足什么条件?11. 如果一个振动系统的运动微分方程是常系数的,它必须满足什么条件? 12. 试讨论:若从车内乘客的舒适度考虑,该如何建立小轿车的振动模型?1-2简谐运动及其运算1求下列简谐函数的单边复振幅和双边复振幅 (1))3sin(2πω+=t x (2))410cos(4ππ+=t x (3))452cos(3︒+=t x π答案:(1)111,,2222S B B X j X j X j +-==-=+ (2),,S B B X X X +-== (3),,224444S B B X j X j X j +-=+=+=-2通过简谐函数的复数表示,求下列简谐函数之和,并用“振动计算实用工具”对(2)(3)进行校核(1))3sin(21πω+=t x )32s i n (32πω+=t x (2)t x π10sin 51=)410cos(42ππ+=t x(3))302sin(41︒+=t x π )602sin(52︒+=t x π)452cos(33︒+=t x π)382cos(74︒+=t x π )722cos(25︒+=t x π答案:(1))6.6cos(359.412︒+=t x ω (2))52.4710cos(566.312︒-=t x π (3))22.92cos(776.1412345︒+=t x π3试计算题1中)(t x 的一阶导数和二阶导数对应的复振幅,并给出它们的时间历程4设)(t x 、)(t f 为同频简谐函数,并且满足)(t f cx x b x a =++ 。

(完整版)机械振动试题(参考答案)

(完整版)机械振动试题(参考答案)

机械振动基础试卷一、填空题(本题15分,每空1分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。

2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析( )系统的基础。

5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。

6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。

7、机械振动是指机械或结构在平衡位置附近的( )运动。

二、简答题(本题40分,每小题10分)1、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)2、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程? (10分)3、 简述刚度矩阵[K]中元素k ij 的意义。

(10分)4、 简述随机振动问题的求解方法,以及与周期振动问题求解的区别。

(10分)三、计算题(45分) 3.1、(14分)如图所示中,两个摩擦轮可分别绕水平轴O 1,转动,无相对滑动;摩擦轮的半径、质量、转动惯量分别为r 1、m I 1和r 2、m 2、I 2。

轮2的轮缘上连接一刚度为k 的弹簧,轮1上有软绳悬挂质量为m 的物体,求: 1)系统微振的固有频率;(10分)2)系统微振的周期;(4分)。

3.2、(16分)如图所示扭转系统。

设转动惯量I 1=I 2,扭转刚度K r1=K r2。

1)写出系统的动能函数和势能函数; (4分) 2)求出系统的刚度矩阵和质量矩阵; (4分)3)求出系统的固有频率; (4分)4)求出系统振型矩阵,画出振型图。

(4分)3.3、(15分)根据如图所示微振系统, 1)求系统的质量矩阵和刚度矩阵和频率方程; (5分)2)求出固有频率; (5分)3)求系统的振型,并做图。

(5分)参考答案及评分细则:填空题(本题15分,每空1分)1、线性振动;随机振动;自由振动;2、势能;动能;阻尼图2图33、简谐运动;正弦;余弦4、线性5、刚度;质量6、频响函数;传递函数7、往复弹性简答题(本题40分,每小题10分)5、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

机械振动习题及答案完整版.docx

机械振动习题及答案完整版.docx

1.1试举出振动设计'系统识别和环境预测的实例。

1.2如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3设有两个刚度分别为心,心的线性弹簧如图T-1.3所示,试证明:1)它们并联时的总刚度k eq为:k eq = k x+ k22)它们串联时的总刚度匕满足:丿-畔+ 土keq & k2解:1)对系统施加力P,则两个弹簧的变形相同为X,但受力不同,分别为: P x = k x x<由力的平衡有:P = ^ + P,=(k1+k2)xp故等效刚度为:k eq^- = k1+k2x2)对系统施加力P,则两个弹簧的变形为:P%i=r 111,弹簧的总变形为:x = x}+x2= P(——I ---- )故等效刚度为:k =—Xk x k2k,2+ k、1 1=—l-------k、k21.4求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为心, 解:对系统施加扭矩T,则两轴的转角为:VTrx系统的总转角为:0 = G + g = Hy- + T-)褊k,i故等效刚度为:犒=二+二1.5两只减振器的粘性阻尼系数分别为q, C2,试计算总粘性阻尼系数"在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P,则两个减振器的速度同为厂受力分别为:P{ - c x x<P2=C2X由力的平衡有:P=£ + E =(q+C2)Xp故等效刚度为:c eq=- = c]+c2X2)对系统施加力P,则两个减振器的速度为:p 1 1故等效刚度为:c eq=- = - + -1.6 一简谐运动,振幅为0. 5cm,周期为0.15s,求最大速度和加速度。

解:简谐运动的a>n= — = /5),振幅为5x10 3m ;= 5x10-cos(^_ 2/r即:—5x10'丽fsin(丽血/s)*610=(話讥。

机械振动_机械波课后习题

机械振动_机械波课后习题

习题5 •机械振动5.1选择题(1) 一物体作简谐振动,振动方程为x=Acos(,t ),则该物体在t=0时刻2的动能与t二T/8(T为振动周期)时刻的动能之比为:(A) 1: 4 ( B) 1:2 (C) 1:1 (D) 2:1(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA2(B) kA2/2(C) kA2//4(D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A),4(C) 一3A2(B)冷(D) - 2A5.2填空题(1) 一质点在X轴上作简谐振动,振幅A = 4cm,周期T = 2s,其平衡位置取作坐标原点。

若t= 0时质点第一次通过x = —2cm处且向X轴负方向运动,则质点第二次通过x= —2cm处的时刻为___ So(2) —水平弹簧简谐振子的振动曲线如题 5.2(2图所示。

振子在位移为零,速度为—呱、加速度为零和弹性力为零的状态,对应于曲线上的______________ 点。

振子处在位移的绝对值为A、速度为零、加速度为--2A和弹性力为-KA的状态,则对应曲线上的_____________ 点。

题5.2(2)图(3) —质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。

(a) 若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x= __________________ 。

(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x= ________________ 。

5.3符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:⑴拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10:kg的小球与轻弹簧组成的系统,按x = 0.1cos(8t,空)(SI)的规律3作谐振动,求:(1) 振动的周期、振幅和初位相及速度与加速度的最大值;(2) 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?⑶t2 =5S与t1 =1s两个时刻的位相差;5.8 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示•如果t =0时质点的状态分别是:(1) x o = -A ;(2) 过平衡位置向正向运动;A(3) 过x二一处向负向运动;2A(4) 过x A处向正向运动.V2试求出相应的初位相,并写出振动方程.5.9 —质量为10 10^kg的物体作谐振动,振幅为24cm,周期为4.0s,当t =0时位移为24cm .求:(1) t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2) 由起始位置运动到x = 12cm处所需的最短时间;(3) 在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm后,给予向上的初速度V。

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案一、选择题1. 质点作简谐振动,距平衡位置 2。

0cm 时, ,则该质点从一端运动到 C )C:2.2s --- 加速度 a=4.0cm /s 另一端的时间为( A:1.2s B: 2.4sD:4.4sX ,22.2s.2上 2 42 •—个弹簧振子振幅为2 10 2m 当t 0时振子在x 1.0 10 2m 处,且向 正方向运动,则振子的振动方 程是:[A ]A : 1.2题图22 10 cos( t )m ;3’6)m; 3)m;2 10 2 cos( t2 10 2 cos( tD :2x 2 10 cos( t —)m;解:由旋转矢量可 以得出振动的出现初相为:?3 •用余弦函数描述一简谐振动,若其速度与时间 -1v (m.s )1.3题图t (s )—►o 1 —v 2 m vm如图示,则振动的初相位为: (v —t )关系曲线[A ]A: e ; B : 3 ; C : 2 ;D : 2- ;E :「3丁6解:振动速度为:V V max Si n( t 0)t 0时,sin 01,所以。

-或。

2 6由知1.3图,t 0时,速度的大小是在增加,由旋转矢量图知,旋转矢量在 第一象限内,对应质点的运动是由正最大 位移向平衡位置运动,速度是逐渐增加的, 旋转矢量在第二象限内,对应质点的运动 是由平衡位置向负最大位移运动,速度是 逐渐减小的,所以只有。

-是符合条件的。

64 •某人欲测钟摆摆长,将钟摆摆锤上移 1毫 米,测得此钟每分快0。

1秒,则此钟摆的 ) B:30cm C:45cm丄理丁 160mm 30cm2 dT 2 ( 0.1):、填空题1 •有一放置在水平 面上的弹簧振子。

振幅A = 2.0 X 0_2m 周期摆长为( A:15cm D:60cm 解:单摆周期 有: 他2 . g,两侧分别对「和l 求导,j*T = 0.50s ,根据所给初始条件,作出简谐振动的矢量图,并写出振动方程式或初位相。

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。

求物体的振动方程。

根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。

根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。

2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。

求质点的角频率和振动周期。

根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。

在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。

如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。

根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。

3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。

当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。

根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。

机械振动试题及答案

机械振动试题及答案

机械振动试题及答案⼀、填空题1、机械振动按不同情况进⾏分类⼤致可分成(线性振动)和⾮线性振动;确定性振动和(随机振动);(⾃由振动)和强迫振动,连续振动和离散系统。

2、(弹性元件)元件、(惯性元件)元件、(阻尼元件)元件是离散振动系统的三个最基本元素。

3、在振动系统中,弹性元件存储(势能)、惯性元件存储(动能)、(阻尼元件)元件耗散能量。

4、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励⽆关。

5、研究随机振动的⽅法是(数理统计),⼯程上常见的随机过程的数字特征有:(均值)(⽅差)(⾃相关函数)和(互相关函数)。

6、周期运动的最简单形式是(简谐运动),它是时间的单⼀(正弦)或(余弦)函数。

7、单⾃由度系统⽆阻尼⾃由振动的频率只与(质量)和(刚度)有关,与系统受到的激励⽆关。

8、简谐激励下单⾃由度系统的响应由(瞬态响应)和(稳态响应)组成。

9、⼯程上分析随机振动⽤(数学统计)⽅法,描述随机过程的最基本的数字特征包括均值、⽅差、(⾃相关函数)和(互相关函数)。

10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。

11、单位脉冲⼒激励下,系统的脉冲响应函数和系统的(频响函数)函数是⼀对傅⾥叶变换对,和系统的(传递函数)函数是⼀对拉普拉斯变换对。

12、叠加原理是分析(线性振动系统)和(振动性质)的基础。

⼆、简答题1、什么是机械振动?振动发⽣的内在原因是什么?外在原因是什么?答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。

振动发⽣的内在原因是机械或结构具有在振动时储存动能和势能,⽽且释放动能和势能并能使动能和势能相互转换的能⼒。

外在原因是由于外界对系统的激励或者作⽤。

2、机械振动系统的固有频率与哪些因素有关?关系如何?答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。

质量越⼤,固有频率越低;刚度越⼤,固有频率越⾼;阻尼越⼤,固有频率越低。

3、从能量、运动、共振等⾓度简述阻尼对单⾃由度系统振动的影响。

机械振动试题

机械振动试题

机械振动试题一、选择题1. 下列关于机械振动的说法中,正确的是:A. 机械振动只存在于弹簧系统中B. 机械振动只存在于质点系统中C. 机械振动既存在于弹簧系统中,也存在于质点系统中D. 机械振动只存在于液体中2. 以下哪个现象不属于机械振动的特征:A. 周期性B. 振动幅度相等C. 能量交换D. 机械振动的振幅随时间变化3. 关于自由振动和受迫振动的说法,正确的是:A. 自由振动需要外力驱动B. 受迫振动不需要外力驱动C. 自由振动和受迫振动都需要外力驱动D. 自由振动和受迫振动都不需要外力驱动4. 振动系统的自然频率与以下哪个因素无关:A. 系统的刚度B. 系统的阻尼C. 系统的质量D. 系统所受的外力5. 下面哪种振动现象是产生共振的原因:A. 外力频率与振动系统自然频率相同B. 外力频率与振动系统自然频率不同C. 外力频率与振动系统自然频率较大差异D. 外力频率与振动系统自然频率较小差异二、简答题1. 什么是机械振动?机械振动是物体围绕平衡位置做周期性的往复运动。

它有着特定的振动频率和振幅,是一种具有周期性和能量交换的运动形式。

2. 机械振动有哪些特征?机械振动具有周期性、振幅相等、能量交换和振幅随时间变化等特征。

周期性表示机械振动运动形式的重复性;振幅相等表示振动系统在每个周期内的振动幅度相等;能量交换表示振动系统的能量在正、反向振动过程中的转化与交换;振幅随时间变化表示振动幅度随着时间的推移而发生变化。

3. 什么是自由振动和受迫振动?自由振动是指机械振动系统受到初位移或初速度激发后,在无外力驱动的情况下进行的振动。

受迫振动是指机械振动系统受到外力周期性激励后产生的振动。

4. 什么是共振现象?共振现象是指当外力的频率与振动系统的自然频率相同时,产生的振幅迅速增大的现象。

在共振状态下,系统振幅可能会无限增大,从而引起系统的损坏甚至破坏。

5. 如何减小机械振动的共振现象?减小机械振动的共振现象可以通过以下几种方法来实现:- 调整外力的频率,使其与振动系统的自然频率有所偏离,避免共振;- 增加阻尼,通过增加振动系统的阻尼来消耗振动能量,减小共振现象;- 改变振动系统的刚度和质量,使其自然频率与外力频率有所偏离,从而减少共振。

大学物理学第二(马文蔚)练习册答案5第五章 机械振动答辩

大学物理学第二(马文蔚)练习册答案5第五章 机械振动答辩
0.10cos(20t )(SI )

1 T
10(Hz) t 2s 时
4
5-5 v dx 2 sin(20t 4 )(SI )
x 7.07102 m
dt
4
v 4.44m/ s
a dv 40 2 cos(20t )(SI ) a 279m / s2
5-17
x2

Байду номын сангаас
2Ep
m 2
0.5104 m2
x 7.1103 m
(4)x A 2
Ep

1 2
kx2

1 8
kA2
1 4
Ep max

1 4
E
Ek

3 4
E
14
5-19 已知两同方向同频率的简谐运动的运动方程分别
为 x1 0.05cos(10t 0.75 )(SI ),
v0

m1 m1 m2
v
1(m
/
s)
x0 0
k 40(s1)
A
m1 m2
A
x02


v0

2

2.5102 (m)

2
x/m
11
5-15 如图所示,质量为 1.00102 kg 的子弹,以500m/s
的速度射入并嵌在木块中,同时使弹簧压缩从而作简
(4) 2 / 3 x 2.0102 cos(4 t 32 )m
3
2
5-9 有一弹簧,当其下端挂一质量为m的物体的时,其
伸长量为9.8cm,若使物体上下振动,且规定向下为正

《大学物理学》(网工)简谐振动部分练习题(解答)

《大学物理学》(网工)简谐振动部分练习题(解答)

2
2
拓展题:一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的
(D)
1
1
3
3
(A) ;(B) ;(C) ;(D) 。
2
2
2
4
【考虑到动能为 Ek

1 m 2 2

1 2
kA2
sin2 ( t
) ,位移为振幅的一半时,有 t



3
,
2 3
,那么,
Ek 1 kA2 ( 3 )2 】
2
3
4
A
3
5
(4)当 x
且正向时,由旋转矢量知4 2
4
(或4
4
)。
A
A
2
1
2
2
2
2
由周期 T 知 ,有: x1 A cos( t ) ;( x1 A cos( t ) 也行)
T
T
T
2
2
2 3
x2 A cos( t ) ; x3 A cos( t ) ; x4 A cos( t ) 。
6
3
3
2
2 【可用旋转矢量考虑,两矢量的夹角应为 】
3
第九章机械振动-2
合肥学院《大学物理 B》自主学习材料
二、填空题 1.一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置取作坐标原点。若
t=0 时质点第一次通过 x=-2cm 处且向 X 轴负方向运动,则质点第二次通过 x=-2cm 处


(A)落后 ; (B)超前 ;
2
2
o t

大学物理 第五章机械振动习题集答案

大学物理 第五章机械振动习题集答案

一、选择题B C D A B B B B B A 二、填空题22121221. cos() , cos() ;232 2. 100; 3. A -A , (A -A )cos()2x A t x A t T T t T πππππππ=-=++ 三、计算题 1、解:3223220.09(-)0.0100,, 0.01cos()33gl gl b b m gl b x gl gl x A m t x A v k gl x t ρρρρρϕπρωπ'=⇒=''-=-⇒===-=⇒='=⇒==⇒=+设物体在平衡位置时被浸没深度为b ,则物体受合外力F=物体作简谐振动当物体全被浸没时可知时,令简谐振动方程2、解:222222221d sin sin 2d 1sin 3d 1d 300d 2d 22πM Mgl kl J tJ Ml l Mg kl Mg kl t J t Ml T θθθθθθθθθθθθ=--=≈=⎡⎤+=⇒+=⎢⎥⎣⎦⇒=当杆向右摆动角时,重力矩与弹力矩均与相反,有很小,,,(+2)(+)3、解:设物体平衡时两弹簧分别伸长X 1, X 2由物体受力平衡得:1122121222211122111212121212sin (1)x sin sin (2)(1)(2) (3), mg k x k x x x x x x x F mg k x x mg k x x F k x k x FFx x x x x k k k k F x kx k k θθθω==''''=+''=-+=-+''=-=-''''=-=-=+⋅=-=-⇒=+物体沿轴移动位移时,两弹簧又分别被拉长,即则()() 将代入得:2v πω==4、解:04140000.05,02340,02-54245π0.1cos()243-0, 1.6P P A t x m t x st x t t sπϕπϕϕϕφπωπϕϕφϕωω-===>⇒=-==<⇒=∆===∆⇒=-∆=∆===由振动方程为,0v v5、解:222,22 0-0.05-,0232π0.1cos()237(1)1,0.1cos,620(2),8000==2s, =2s24(4)==s33TAt x mx tt s x mF kx m x Nt t tt tππωπϕππωφωππφω=====<⇒=⇒=+===-=-=-=∆∆=⇒∆∆∆=⇒∆振动方程为,(3)由,即由,v6、解:21-211221122313323π3ππ(1)-44210m sin sin tan 11 =1.48radcos cos 3π(2)2, =2+ (0 1, )45π2+1, =2+ (0 1, )4A A A A A k k k k k k ϕϕϕϕϕϕϕϕϕϕϕϕπϕπϕϕϕπϕπ∆=-=-==⨯+==⇒+∆=-=⇒=±∆=-=⇒=± ,,,,(),,。

大学物理学教程第二(马文蔚)练习册答案5第五章 机械振动

大学物理学教程第二(马文蔚)练习册答案5第五章 机械振动
习 解: 子弹射入的过程动量守恒 题 分 设子弹的初速度为v,碰撞后与木块的共同速度为v 0 析
v m1 m2 k
m1v (m1 m2 )v0
x0 0
2 0
5-15
k 40( s 1 ) m1 m2
2
m1 v0 v 1(m / s) m1 m2
A
x/m
11
v0 A x 2.5 102 (m)
3
5-9 有一弹簧,当其下端挂一质量为m的物体的时,其 伸长量为9.8cm,若使物体上下振动,且规定向下为正 第 方。(1)当t=0时物体在平衡位置上方8cm处,由静止 五 开始向下运动,求运动方程;(2)当t=0时物体在平 章 衡位置并以0.6m/s的速度向上运动,求运动方程。
习 解:(2) 题 分 析
t 0时,x0 0, v0 0.6m/s
2 2 0
v0 A x 0.06 m
振动方程为:
5-9

x

2
x 0.06cos 10t m 2
4
第 五 章 习 题 分 析
5-10 某振动质点的 x t 曲线如图所示,试求: (1)运动方程;(2)点 P 对应的相位;(3)到达 x/m 点 P 相位所需的时间。 解:(1)A 0.10m 0.10 P 3 0.05 4.0 秒后质点运动到平衡位置 t/s 0 4.0 5 5 1 s


(2)x 0.10 cos(20 t

T
5-5
4 2 x 7.07 10 m dx v 2 sin(20 t )( SI ) dt 4 v 4.44m / s dv 2 2 a 279 m / s a 40 cos(20 t )( SI ) dt 4

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动 选择题1.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是A .物体系统的固有频率为f 0B .当驱动力频率为f 0时,物体系统会发生共振现象C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D .驱动力频率越大,物体系统的振幅越大2.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 3.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。

以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。

已知钢球振动过程中弹簧始终处于拉伸状态,则( )A .1t 时刻钢球处于超重状态B .2t 时刻钢球的速度方向向上C .12~t t 时间内钢球的动能逐渐增大D .12~t t 时间内钢球的机械能逐渐减小4.在“用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F随时间t变化的图象如图所示,已知单摆的摆长为l,则重力加速度g为( )A.224ltπB.22ltπC.2249ltπD.224ltπ5.如图所示的弹簧振子在A、B之间做简谐运动,O为平衡位置,则下列说法不正确的是()A.振子的位移增大的过程中,弹力做负功B.振子的速度增大的过程中,弹力做正功C.振子的加速度增大的过程中,弹力做正功D.振子从O点出发到再次回到O点的过程中,弹力做的总功为零6.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T.取竖直向上为正方向,以t=0时刻作为计时起点,其振动图像如图所示,则A.t=14T时,货物对车厢底板的压力最大B.t=12T时,货物对车厢底板的压力最小C.t=34T时,货物对车厢底板的压力最大D.t=34T时,货物对车厢底板的压力最小7.如图所示,固定的光滑圆弧形轨道半径R=0.2m,B是轨道的最低点,在轨道上的A点(弧AB所对的圆心角小于10°)和轨道的圆心O处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则()A.两小球同时到达B点B.A点释放的小球先到达B点C.O点释放的小球先到达B点D.不能确定8.一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动.可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm,周期为3.0 s.当船上升到最高点时,甲板刚好与码头地面平齐.地面与甲板的高度差不超过10 cm时,游客能舒服地登船.在一个周期内,游客能舒服登船的时间是( )A.0.5 s B.0.75 s C.1.0 s D.1.5 s9.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为()A.T=2πr GMlB.T=2πrlGMC.T=2πGMr lD.T=2πlrGM10.如图(甲)所示,小球在内壁光滑的固定半圆形轨道最低点附近做小角度振动,其振动图象如图(乙)所示,以下说法正确的是()A.t1时刻小球速度为零,轨道对它的支持力最小B.t2时刻小球速度最大,轨道对它的支持力最小C.t3时刻小球速度为零,轨道对它的支持力最大D.t4时刻小球速度为零,轨道对它的支持力最大11.如图所示,在水平地面上,有两个用轻质弹簧相连的物块A和B,它们的质量均为m,弹簧的劲度系数为k,现将一个质量也为m的物体C从A的正上方一定高度处由静止释放,C和A相碰后立即粘在一起,之后在竖直方向做简谐运动。

3-4机械振动第五节 外力作用下的振动 习题(有答案)

3-4机械振动第五节  外力作用下的振动  习题(有答案)

1.5 外力作用下的振动例题1.两个弹簧振子,甲的固有频率是100Hz,乙的固有频率是400Hz,若它们均在频率是300Hz的驱动力作用下做受迫振动,则()A.甲的振幅较大,振动频率是100HzB.乙的振幅较大,振动频率是300HzC.甲的振幅较大,振动频率是300HzD.乙的振幅较大,振动频率是400Hz例题2(多选).研究单摆受迫振动规律时得到如图所示图象,说法正确的是()A.其纵坐标为位移B.其纵坐标为振幅C.单摆的固有周期为2 sD.图象的峰值表示共振时的振幅课堂练习1.在______________的外力(驱动力)作用下的振动叫做______________,受迫振动的频率不是由自身结构所决定,而是由______________决定。

2.做受迫振动的物体,当外界驱动力的频率与物体的______________相等时,受迫振动的振幅最大,这种现象叫做______________。

3.给出下列四种振动:A、阻尼振动;B、无阻尼振动;C、受迫振动;D、共振荡秋千时,秋千的振动属于_________;受迫振动中,驱动力的频率等于固有频率的现象称为__________;音叉在长时间内振动应看作是_________;忽略阻力时,浮在水面上的木头上下振动属于__________。

(填序号)4.铁轨上每根钢轨长12m,若支持车厢的弹簧固有频率是2Hz,那么列车以多大速度行驶时,车厢振动最厉害()A.6m/s B.12m/s C.24m/s D.48m/s5.(多选)一单摆做阻尼振动,则在振动过程中()A.振幅越来越小,周期也越来越小B.振幅越来越小,周期不变C.在振动过程中,通过某一位置时,机械能始终不变D.振动过程中,机械能不守恒,周期不变6.如图2所示是物体受迫振动的共振曲线,其纵坐标表示了物体()A.在不同时刻的振幅B.在不同时刻的位移C.在不同驱动力下的振幅D.在不同驱动力下的位移【课后作业】1.一列队伍过桥时,不能齐步走,这是为了( )A.减小对桥的压力B.使桥受力均匀C.减小对桥的冲力D.避免使桥发生共振2.(多选)如图所示是单摆做阻尼振动的振动图线,下列说法正确的是( ) A.摆球A时刻的动能等于B时刻的动能B.摆球A时刻的势能等于B时刻的势能C.摆球A时刻的机械能等于B时刻的机械能D.摆球A时刻的机械能大于B时刻的机械能3.(多选)弹簧振子在振动过程中振幅逐渐减小,这是由于( )A.振子开始振动时振幅太小B.在振动过程中要不断克服外界阻力做功,消耗能量C.动能和势能相互转化D.振子的机械能逐渐转化为内能4.(多选)如图所示,五个摆悬挂于同一根绷紧的水平绳上,A是摆球质量较大的摆,让它摆动后带动其他摆运动,下列结论正确的是( )A.其他各摆的振动周期与A摆的相同B.其他各摆的振幅都相等C.其他各摆的振幅不同,E摆的振幅最大D.其他各摆的振动周期不同,D摆周期最大5.如图所示装置中,已知弹簧振子的固有频率f固=2 Hz,电动机皮带轮的直径d1是曲轴皮带轮d2的。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、选择题1. 简谐振动的频率与振幅无关,这是由什么决定的?A. 振子的质量B. 振子的弹性系数C. 振子的阻尼D. 振子的初始条件答案:B2. 在阻尼振动中,振幅随时间如何变化?A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小答案:B3. 以下哪个不是简谐振动的特点?A. 周期性B. 振幅不变C. 频率恒定D. 振子质量不变答案:D4. 什么是共振现象?A. 振子的振动频率等于系统固有频率时的现象B. 振子的振幅达到最大时的现象C. 振子的振动频率等于外部驱动频率时的现象D. 振子的振动频率等于外部阻尼频率时的现象答案:A5. 以下哪个公式描述了简谐振动的位移?A. \( x = A \sin(\omega t + \phi) \)B. \( x = A \cos(\omega t + \phi) \)C. \( x = A \tan(\omega t + \phi) \)D. \( x = A \sec(\omega t + \phi) \)答案:B二、填空题6. 一个物体在水平面上做简谐振动,其振动周期 \( T \) 与振动频率 \( f \) 的关系是 \[ T = \frac{1}{f} \]。

7. 阻尼振动中,振幅随时间的衰减速度与振子的________成正比。

8. 共振现象中,振子的振动频率等于系统的________频率。

9. 简谐振动的位移公式中,\( \omega \) 表示________,\( \phi \) 表示________。

10. 阻尼振动的振幅随时间的衰减可以表示为 \( A(t) = A_0 e^{-\alpha t} \),其中 \( \alpha \) 表示________。

三、简答题11. 简述什么是阻尼振动,并说明其振幅随时间的变化趋势。

答案:阻尼振动是指在振动过程中,由于存在阻力(如空气阻力、摩擦力等),振子的振动能量逐渐减小,导致振幅逐渐减小的振动。

大学物理机械振动习题附答案要点

大学物理机械振动习题附答案要点

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]v v 217.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∆t
∆ϕ 0.10 -0.10 -0.05 0.05 x/m
(3) ∆ϕ ' = )
π
3
A
0.10 -0.10 -0.05 0.05 A x/m∆t =ຫໍສະໝຸດ ∆ϕ 'ω
= 1.6 s
习题选解
5-13
第五章 机械振动
13-12 有一单摆,长为 有一单摆,长为1.0 m ,最大摆角为 0,如图所 最大摆角为5 。(1)求摆的角频率和周期;( ;(2) 示。( )求摆的角频率和周期;( )设开始时摆角 最大,使写出此单摆的运动方程;( ;(3)当摆角为3 最大,使写出此单摆的运动方程;( )当摆角为 0时 的角速度和摆球的线速度各为多少? 的角速度和摆球的线速度各为多少? θ 2π g −1 :(1) 解:( ) ω = = 2.01s = 3.13s T = ω l (2) ϕ = 0 )
习题选解
5-15
第五章 机械振动
5-15 如图所示,质量为 1.00 ×10−2 kg的子弹,以 500m / s 如图所示, 的子弹, 的速度射入并嵌在木块中,同时使弹簧压缩从而作简谐 的速度射入并嵌在木块中, 运动。 运动。设木块的质量为 4.99kg ,弹簧的劲度系数为 8.00 × 103 N / m 。若以弹簧原长时物体所在处为坐标原点, 若以弹簧原长时物体所在处为坐标原点, 轴正向,求简谐运动方程。 向左为 x 轴正向,求简谐运动方程。 m2 k 解: 子弹射入的过程动量守恒 设子弹的初速度为v,碰撞后与木块的共同速度为v 设子弹的初速度为 ,碰撞后与木块的共同速度为 0
dt 4
求:(1)振幅、频率、角频率、周期和初相 )振幅、频率、角频率、 时的位移、 (2)t = 2 s 时的位移、速度和加速度 ) :(1) −1 解:( )
4
)( SI )
π
习题选解
5--8 --8
第五章 机械振动
5--8 一放置在水平桌面上的弹簧振子,振幅 一放置在水平桌面上的弹簧振子, −2 A = 2.0 ×10 m. 周期 T = 0.50 s. 当 t = 0 时, ;(2)物体在平衡位置, (1)物体在正方向端点;( )物体在平衡位置,向 )物体在正方向端点;( 负方向运动;( ;(3) 负方向运动;( )物体在 x = 1.0 ×10−2 m 处,向负方 向运动;( ;(4) 向运动;( )物体在 x = −1.0 ×10−2 m 处,向正方向 运动。求以上各种情况的运动方程。 运动。求以上各种情况的运动方程。 AA 解: ω = 2π / T = 4π ( s ) (1)ϕ = 0 )
0
θ
dt 36 = 30 时 30 = 50 cos 3.13t
θ = 5 cos 3.13t 或 θ = cos 3.13t 36 dθ π (3) ω j = ) = − ⋅ 3.13sin 3.13t
π
x/m
sin 3.13t = 0.8
cos 3.13t = 0.6 ω j = −0.218s −1 v = lω = −0.218m / s
x = 2.0 ×10 cos(4π t )
−2
−2
-2.0
2.0 A
x = 2.0 ×10 cos(4π t + ) A 2 π −2 (3)ϕ = π / 3 x = 2.0 × 10 cos(4π t + ) ) 3 2π −2 ϕ ) (4) = −2π / 3 x = 2.0 ×10 cos(4π t − ) 3
ϕ3 = 2kπ + ϕ1 = 2kπ + 0.75π (k = 0, ±1, ±2,⋯)
+ x3 的振幅最小 ϕ3 = (2k + 1)π + ϕ2 = (2k + 1)π + 0.75π x 当 ϕ3 − ϕ 2 = (2k + 1)π 时, 2
(k = 0, ±1, ±2,⋯)
习题选解

第五章 机械振动
amax = Aω
(2) )
2
amax 2π −1 = 20s T = ω= = 0.314s ω A
物体在平衡位置时的总能量等于动能
1 2 1 E = Ek = mvmax = mω 2 A2 = 2.0 ×10 −3 J 2 2
习题选解
5-17
第五章 机械振动
5-17 质量为 0.10kg 的物体, 的物体,以振幅 1.0 ×10−2 m 作简谐运 动,其最大加速度为 4.0m /。求:( )振动的周期; s2 :(1)振动的周期; ;(3) (2)物体通过平衡位置时的总能量与动能;( )物体 )物体通过平衡位置时的总能量与动能;( 在何处其动能和势能相等?( ?(4) 在何处其动能和势能相等?( )当物体的位移为振幅 的一半时动能、势能各占总能量的多少? 的一半时动能、势能各占总能量的多少? −3 :(3) 解:( ) E = 2.0 ×10 J
= 0.1(m)
2 A = A + A2 + 2 A1 A2 cos ∆ϕ 2 2 1
2 A12 + A2 − A2 =0 cos ∆ϕ = 2 A1 A2 π ∆ϕ = 2
∆ϕ
x A1
O
ϕ (2) = π / 2 )
π
-1.0
1.0
x/cm
5--10 某振动质点的 x − t 曲线如图所示,试求: 曲线如图所示,试求: ;(2) 对应的相位;( ;(3) (1)运动方程;( )点 P 对应的相位;( )到达 )运动方程;( 相位所需的时间。 点 P 相位所需的时间。 x/m 解:(1)A = 0.10m :( )
习题选解
5--5 --5
第五章 机械振动
5--5 若简谐运动方程为 x = 0.10 cos(20π t +
π
A = 0.10(m) ω = 20π ( s ) ϕ= 4 1 2π ν = = 10(hz ) T= = 0.1( s ) T ω π t = 2s 时 (2)x = 0.10 cos(20π t + )( SI ) ) 4 x = 7.07 × 10−2 m dx π v= = −2π sin(20π t + )( SI ) dt 4 v = −4.44m / s dv π 2 a = −279m / s 2 a= = −40π cos(20π t + )( SI )
v m1
m1v = (m1 + m2 ) v0
x0 = 0
2 0
k ω= = 40( s −1 ) m1 + m2
2
m1 v0 = v = 1(m / s ) m1 + m2 A
x/m
v0 A = x + = 2.5 ×10−2 (m) ω
ϕ=
π
2
习题选解
5-15
第五章 机械振动
x=
2
1 2 1 2 1 1 E p = kx = kA = E p max = E 2 8 4 4 3 Ek = E 4
习题选解
5-19
第五章 机械振动
5-19 已知两同方向同频率的简谐运动的运动方程分别 为 x1 = 0.05cos(10t + 0.75π )( SI ), x2 = 0.06 cos(10t + 0.25π )( SI ) 求:( )合振动的振幅 :(1) 及初相;( ;(2) 及初相;( )若有另一同方向同频率的简谐运动 x3 = 0.05cos(10t + ϕ3 )( SI ), 则 ϕ3 为多少时, x1 + x3 的 为多少时, 振幅最大? 为多少时, 的振幅最小。 振幅最大?又 ϕ3 为多少时,x2 + x3 的振幅最小。 :(1) 解:( )A = A2 + A2 + 2 A A cos(ϕ − ϕ )
ϕ=
π
A = 2.5 ×10 (m)
−2
v m1
2
A
−2
振动方程: 振动方程:
x = 2.5 ×10 cos(40t + )( SI ) 2
π
x/m
习题选解
5-17
第五章 机械振动
5-17 质量为 0.10kg 的物体, 的物体,以振幅 1.0 ×10−2 m 作简谐运 动,其最大加速度为 4.0m /。求:( )振动的周期; s2 :(1)振动的周期; ;(3) (2)物体通过平衡位置时的总能量与动能;( )物体 )物体通过平衡位置时的总能量与动能;( 在何处其动能和势能相等?( ?(4) 在何处其动能和势能相等?( )当物体的位移为振幅 的一半时动能、势能各占总能量的多少? 的一半时动能、势能各占总能量的多少? :(1) 解:( ) = − Aω 2 cos(ωt + ϕ ) v = − Aω sin(ωt + ϕ ) a
习题选解
5--10 --10
第五章 机械振动
24 5 π 运动方程: 运动方程: x = 0.10 cos( π t − )( SI ) 24 3 (2) ϕ P = 0 )
6
3 4.0 秒后质点运动到平衡位置 ∆ϕ 5π 5π ω= = ∆ϕ =
ϕ =−
π
0.10 0.05 0
P t/s A
4.0
5-15 如图所示,质量为 1.00 ×10−2 kg的子弹,以 500m / s 如图所示, 的子弹, 的速度射入并嵌在木块中,同时使弹簧压缩从而作简谐 的速度射入并嵌在木块中, 运动。 运动。设木块的质量为 4.99kg ,弹簧的劲度系数为 8.00 × 103 N / m 。若以弹簧原长时物体所在处为坐标原点, 若以弹簧原长时物体所在处为坐标原点, 轴正向,求简谐运动方程。 向左为 x 轴正向,求简谐运动方程。 m2 k 解: ω = 40( s −1 )
相关文档
最新文档