紫外可见吸收光谱基本原理

合集下载

紫外-可见吸收光谱的产生及基本原理

紫外-可见吸收光谱的产生及基本原理
汞灯用于波长检定。
用积分球的检测器波长<2500nm。
单色器
将光源发射的复合光分解成单色光并可从中选出一任波 长单色光的光学系统。 ①入射狭缝:光源的光由此进入单色器; ②准光装置:透镜或返射镜使入射光成为平行光束; ③色散元件:将复合光分解成单色光;棱镜或光栅; ④聚焦装置:透镜或凹面反射镜,将分光后所得单色光聚焦 至出射狭缝; ⑤出射狭缝。
(4 )250-350nm内显示中、低强度的吸收, 说明羰基或共轭羰基的存在。 (5)300nm以上的高强度的吸收,说明该化 合物具有较大的的共轭体系。若高强度吸收 具有明显的精细结构,说明稠环芳烃、稠环 杂芳烃或其衍生物的存在。
溶剂对紫外吸收光谱有较大的影响,且 影响较为复杂。改变溶剂极性,会引起吸收 带形状的变化。当溶剂极性变大,大多数化 合物的振动精细结构消失,吸收带变得更为 平滑,且使λmax发生位移,因此在研究化合 物的紫外吸收光谱时,需注意选择所使用的 溶剂。
仪器介绍
紫外可见近红外吸收光谱仪 生产厂家:Varian Company, USA 仪器型号:Cary 5000 性能指标 波长范围:175-3300 nm 吸光度线性范围:0-8.0 Abs 波长精度:±0.08 nm(UV/Vis);±0.4 nm(NIR) 应用范围(Application area): 化学、生物、材料、医学和环境样品中无机有机成分 的定性、定量分析
紫外-可见吸收光谱的产生及基本原理
分子吸收光谱
振动能级与 转动能级跃迁 电子能 级跃迁
红外光谱 (λ: 0.75-1000 µ m) 紫外、可见吸收光谱 (λ: 200-750 nm)
10-200 nm:远紫外;200-400 nm:近紫外;400-750 nm:可见光

紫外可见吸收光谱法原理_概述解释说明

紫外可见吸收光谱法原理_概述解释说明

紫外可见吸收光谱法原理概述解释说明1. 引言1.1 概述紫外可见吸收光谱法是一种广泛应用于化学分析、生物医药和材料科学等领域的分析技术。

它通过检测样品吸收紫外或可见光的能力,可以确定样品中存在的化合物或物质的浓度。

紫外可见吸收光谱法基于原子、离子或分子在特定波长范围内对电磁辐射的选择性吸收现象,利用这种吸收现象可以获得样品所具有的信息。

本文将对紫外可见吸收光谱法的原理进行详细介绍,并探讨其在化学分析、生物医药和材料科学中的应用。

1.2 文章结构本文共分为五个部分:引言、紫外可见吸收光谱法原理、紫外可见吸收光谱应用领域、实验方法与操作步骤以及结论和展望。

1.3 目的本文旨在向读者介绍紫外可见吸收光谱法的基本原理以及其在不同领域中的应用。

通过阐述紫外可见吸收光谱法的操作方法和实验步骤,希望能为初学者提供一份清晰的指南,使其能够准确、有效地应用该技术进行分析。

同时,我们将对紫外可见吸收光谱法的局限性进行讨论,并展望其未来在科学研究和实际应用中的发展方向。

2. 紫外可见吸收光谱法原理:2.1 光谱的基本概念:光谱是指将某物质在不同波长范围内对电磁辐射的吸收、发射或散射进行分析和测量的方法。

根据电磁辐射的能量不同,可将光谱分为紫外光谱、可见光谱和红外光谱等。

其中,紫外可见吸收光谱法利用物质对紫外及可见光区域(200-800 nm)的吸收特性进行定量和定性分析。

2.2 紫外可见吸收光谱的原理:紫外可见吸收光谱法是通过物质吸收特定波长范围内电磁辐射而产生的能级跃迁来进行分析。

当样品受到入射光线照射后,样品中的某些化学成分会吸收特定波长范围内的能量,并转为高能态。

这些化学成分在高能态时可能会跃迁至更高能级或离子化状态,从而使入射光线中特定波长的能量被吸收,形成明显的吸收峰。

根据琴斯定律(Lambert-Beer定律),光的吸收与样品中物质浓度成正比。

因此,通过测量入射光和透射光之间的吸收差异,可以推算出样品中特定化合物的浓度。

波谱分析第6章 紫外可见光谱(1)

波谱分析第6章 紫外可见光谱(1)

图 分子轨道的能级和电子跃迁类型
s*
*
E
n

s
跃迁能量大小:
σ→σ* > n →σ* > π→π* > n→π*
仅在远紫外区可能观察到它们的吸收峰。
杂原子非键轨道中的电子向σ*轨道的跃迁,一般在 200 nm左右。
电子由成键轨道向*轨道的跃迁。如具有一个孤 立键的乙烯,跃迁的吸收光谱约在165 nm。分子中 如有两个或多个键处于共轭的关系,则这种谱带将 随共轭体系的增大而向长波方向移动。
max
254nm
270nm
红移和蓝移 增色效应与减色效应
最大吸收波长(λmax);在峰旁边一个小 的曲折称为肩峰;在吸收曲线的波长最 短一端,吸收相当大但不成峰形的部分 称为末端吸收。整个吸收光谱的形状是
鉴定化合物的标志。
吸收带分类
根据电子和轨道的种类,可以把吸收谱带分为四 类: K 吸收带、R 吸收带、B 吸收带和 E 吸收带。
图 (a) Frank-Condon原理示意图
(b) 紫外光谱的精细结构
6.1.2 电子跃迁选择定则(Selection rule)
跃迁必须遵守选择定则
理论上,允许的跃迁,跃迁几率大,吸收强度高( max大);禁阻的跃迁,
跃迁几率小,吸收强度低或者观察不到。 实际上禁阻的跃迁也可以观察到,只是其强度要比允许跃迁要小得多。
紫外-可见光谱分析
6.1.1紫外-可见光谱的基本原理
紫外-可见吸收光谱(UV-VIS) 分子吸收10~800nm光谱区的电磁波而产生的吸收光谱。该数 量级能量的吸收,可导致分子的价电子由基态(S0)跃迁至高能 级的激发态(S1, S2, S3, …) 紫外-可见光区分为三个区域:

紫外可见吸收光谱法基本原理和解析

紫外可见吸收光谱法基本原理和解析
★用不同波长的单色光照射,测吸光度-- 吸
收曲线(最大吸收波长 max)。
2020/5/24
蓝 ➢黄 450~480nm 580~600nm
10
★吸收曲线的讨论
(1)同一种物质对不同波 长光的吸光度不同。 吸光度最大处
对应的波长称为最大吸收波长λmax。
(2)不同浓度的同一种物质,其吸收曲线 形状相似、λmax不变。而对于不同物 质,它们的吸收曲线形状和λmax则不 同。
物质可能达到的最大灵敏度。
2020/5/24
19
3.偏离朗白—比耳定律的原因 标准曲线法测定未知溶液的浓度时,发现: 标准曲线常发生弯曲(尤其当溶液浓度较高 时),这种现象称为对朗伯-比耳定律的偏离。
引起这种偏离的原因: (1)入射光非单色光。
仪器的非理想引起的 (2)溶液不均匀。 (3)溶液中发生了化学变化
布格(Bouguer)和朗白(Lambert)先后于1729年
和1760年阐明了光的吸收程度和吸收层厚度
的关系。A∝b
1852年比耳(Beer)又提出了光的吸收程度和吸
收物浓度之间也具有类似的关系
A∝ c
二者的结合称为朗白—比耳定律,其数学表达
式为: A=lg(I0 / It)= εb c
T It
AlgT
特征常数。 (2)不随浓度c和光程长度b的改变而改
变。在温度和波长等条件一定时,ε 仅与吸收物质本身的性质有关,与待 测物浓度无关。 (3)可作为定性鉴定的参数。
2020/5/24
18
(4)同一吸收物质在不同波长下的ε值 是不同的。在最大吸收波长λmax 处的摩尔吸光系数以εmax表示。
εmax表明了该吸收物质最大限度的 吸光能力,也反映了光度法测定该

紫外可见吸收光谱法

紫外可见吸收光谱法
例:
-C-C- 如:乙烷: max=135nm C-H 如: 甲烷: max= 125nm
2) n * 跃迁
分子中未共用n电子跃迁到* 轨道
化合物种类:凡含有n电子的杂原子的饱和化合物
特点:跃迁所需要的能量较高
位置:远紫外光区和近紫外光区

150-250nm

ε=100 ~ 1000 L·cm-1 ·mol-1
Mn+-Lb- M(n+1)+-L(b+1)- (hν) [Fe3+-SCN-]2+ [Fe2+-SCN]2+ (这就是配合物λmax=490nm为血红色原因)
金属配合物的电荷转移吸收光谱,有三种类型:
1. 电子从配体到金属离子: 相当于金属的还原; 2. 电子从金属离子到配体; 产生这种跃迁的必要条件是金属离子容易被氧化
白炽光源: 热辐射光源:可见光区,340-2 500nm,影响因素:灯电压
如 钨丝灯和卤钨灯; 气体放电光源: 气体放电发光光源:紫外光
否相同。 在进行紫外光谱法分析时,必须正确选择溶剂。
三、紫外-可见分光光度计
光源 λ1、 λ2、 λ3、 …、 λn
分光系统
λmax
调制放大 记录系统→显示A
检测系统 光→电
I0→样品池→ It
紫外-可见分光光度计主要组成部件
光源
分光系统
样品池
检测系统
记录系统
1、光源
1.光源:提供入射光的元件。
3.电子从金属到金属
配合物中含有两种不同氧化态的金属时,电子可在其间转移,
这类配合物有很深的颜色,如普鲁士蓝 (磷、砷)钼蓝 H8 [SiMo2O5(Mo2O7)5 ]

紫外可见吸收光谱基本原理

紫外可见吸收光谱基本原理

紫外可见吸收光谱基本原理紫外可见吸收光谱的基本原理是物质吸收紫外可见光时,电子从低能级跃迁到高能级,吸收的光子能量与吸收带的能带宽度相符合,形成吸收峰。

在可见光区域的吸收通常是由于电子跃迁引起的。

在紫外区域,主要发生的是电子的径向跃迁或电子对的激发,而在可见光区域主要发生的是π-π*跃迁或n-π*跃迁。

紫外光谱仪一般由光源、刺激器、样品室和检测器组成。

光源产生能量较高的紫外光,刺激器通过选择合适的波长、宽度和形状的光束,将光束转化成单色光;样品室用于放置待测样品,并调节光束的强度和位置;检测器可以将吸收光转化成电信号并输出。

在紫外可见吸收光谱实验中,一般使用的溶液法测定。

首先,将待测样品溶解在适当的溶剂中,通过稀释制备一系列不同浓度的溶液。

然后,将样品溶液放入光谱仪样品室中,设置好波长范围和扫描速度等参数。

通过扫描整个波长范围,记录吸收光谱曲线。

根据光谱曲线中的吸收峰,可以确定化合物的电子能级跃迁情况以及其浓度。

紫外可见吸收光谱的分析应用非常广泛。

其中一个重要的应用是定量分析。

根据光谱测得的吸光度和已知浓度的标准溶液数据,可以建立吸光度与浓度之间的标准曲线,通过测量待测样品的吸光度,即可根据标准曲线计算出待测样品的浓度。

这种方法可用于药物和环境分析中。

另一个重要的应用是结构分析。

不同的化合物因为其分子结构的不同,会吸收不同波长的光,形成各自独特的吸收光谱曲线。

通过比对待测样品的光谱特征与已知化合物的光谱特征,可以确定待测样品的结构和成分。

这种方法在有机化学和材料科学领域具有重要意义。

总之,紫外可见吸收光谱是一种广泛应用的分析技术,可以从电子能级跃迁角度解释物质的吸收特性。

它具有快速、灵敏、经济以及非破坏性等优点,在化学研究、药物分析、环境监测等领域发挥着重要作用。

紫外吸收光谱基本原理

紫外吸收光谱基本原理

07:18:51
光的互补:蓝 黄
07:18:51
2.物质对光的选择性吸收及吸收曲线
M + h 基态 → M* 激发态 M + 热
M + 荧光或磷光
E1
(△E)
E2
• E = E2 - E1 = h
• 量子化 ;选择性吸收 • 吸收曲线与最大吸收 波长 max • 用不同波长的单色光 照射,测吸光度;
也提供分子结构的信息。通常将在最大吸收波长处测得的摩
尔吸光系数ε max也作为定性的依据。不同物质的λ max有时
可能相同,但ε max不一定相同;
(6)吸收谱带强度与该物质分子吸收的光子数成正比,定 量分析的依据。
07:18:51
二、有机物吸收光谱与电子跃迁
ultraviolet spectrometry of organic compounds
07:18:51
苯环上助色基团对吸收带的影响
07:18:51
苯环上发色基团对吸收带的影响
07:18:51
2. 立体结构和互变结构的影响
H C C H
顺反异构: 顺式:λmax=280nm;
εm;εmax=29000
H C C H
O H 3C C OH H 3C C H C H2 C
极性
非极性
n → p*跃迁:兰移; ;e
max(正己烷) max(氯仿)
p → p*跃迁:红移; ;e
max(甲醇) max(水)
pp np
230 329
07:18:51
238 315
237 309
243 305
溶剂的影响
苯 酰 丙 酮 1 1:乙醚 2:水

紫外-可见吸收光谱

紫外-可见吸收光谱

6.生化反应动力学的研究
如果某生化反应中一种反应物的浓度发生变化, 则可以利用紫外-可见吸收光谱研究反应进行的快慢 即反应的动力学。例如在酶反应中,底物的减少会使 其吸收幅度下降,产物的吸收峰幅度增加,因此可以 利用底物或产物吸收峰的变化来研究反应的进行情况 及其反应速度。
乳酸脱氢酶
乳酸盐 + NHD+
2. 纯度的检验
如果有机物在紫外可见光区没有明 显的吸收峰,而杂质在紫外区区有较强 的吸收,则可利用紫外光谱检验化合物 的纯度。
3. 样品浓度的测定
根据吸收定律: A=εcl
同一物质的消光系数ε是一定的,因 此在光径相同的样品池中,A与样品浓度c 成正比。
• 比较法
• 标准曲线
配置一系列不同浓度的标准溶液,在波 长最佳处分别测定标准溶液的吸光度A,然后 一浓度为横坐标,以相应的A为纵坐标绘制出 标准曲线。
1. 化合物的鉴定
利用紫外光谱可以推导有机化合物的分子骨架 中是否含有共轭体系,如CH2=CH-CH=CH2 , CH2=CH-CH=O ,CH2=CH-C≡N ,苯环等,利用 紫外光谱鉴定有机化合物远不如利用红外有效,因 为紫外光谱特征性不强。
苯丙氨酸 酪氨酸 色氨酸
具有环状共轭双键
鉴定的方法
时,测量到的透射光的强度与入射光强度之差即为样品 对入射光的吸收。
Io
It
A=lg(Io/It)
二.紫外光谱的特点
1. 紫外吸收光谱所对应的电磁波波长短,能量大, 反映分子中价电子能级跃迁的情况,主要用于
共轭体系及芳香族化合物的分析。
2. 但是由于谱峰宽,重叠多,而不是像红外吸收 光谱或核磁共振谱那样得到的是各个特定化学 键的峰。
丙酮酸盐 + NADH + H+

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法紫外可见吸收光谱分析法是一种广泛应用于化学、生物、环境科学等领域的检测方法,通过测定物质对紫外可见光的吸收特性来获得有关物质的结构和浓度等信息。

本文将详细介绍紫外可见光谱分析法的原理、仪器和应用等方面,以及其在药物、环境、食品等领域的具体应用。

首先,紫外可见光谱的基本原理是根据物质对不同波长的紫外或可见光的吸收特性来确定其浓度或进行定性分析。

在紫外可见光谱中,紫外光波长范围为200-400nm,可见光波长范围为400-800nm。

当物质吸收光线时,其分子内的电子从基态跃迁到激发态,吸收能量取决于分子内电子的能级跃迁,这将导致光谱吸收峰的出现。

物质的吸收光谱图形反映了不同波长的光线对物质的吸收能力,吸收峰的强度与物质的浓度成正比。

为了进行紫外可见光谱分析,需要使用紫外可见分光光度计。

该仪器由光源、样品室、单色器、检测器和计算机等组成。

光源发出广谱连续光,在单色器中,只有特定波长的光通过,其他波长的光被滤除。

样品放在样品室中,光线穿过样品后到达检测器。

检测器将光强度转换为电信号,并将信号输出到计算机进行分析。

紫外可见光谱分析法在各个领域有广泛的应用。

在药物领域,紫外可见光谱可用于药物成分的定量分析。

例如,可以通过对药物溶液的吸光度测定得到药物的浓度,从而判断药物的纯度和含量。

在环境领域,紫外可见光谱可以用于水质和大气污染物的监测。

通过检测水样中有机物和无机物的紫外可见吸收光谱,可以对水质进行评估和监测。

同时,还可以使用紫外可见光谱分析法来检测大气中的有害气体,如二氧化硫和氮氧化物等。

此外,紫外可见光谱分析法还在食品行业中得到了应用。

例如,可以利用该方法检测食品中的添加剂,如防腐剂和色素等,以确保食品的安全性和质量。

紫外可见光谱分析法还可用于检测食品中的重金属和农药残留物,以保障消费者的健康和权益。

综上所述,紫外可见吸收光谱分析法是一种快速、准确、灵敏的分析方法,可以广泛应用于化学、生物、环境科学等领域。

紫外可见吸收光谱法基本原理

紫外可见吸收光谱法基本原理
⑵n →σ*跃迁
所需能量较大。吸收波长为150~250nm,大部分在远紫 外区,近紫外区仍不易观察到。含非键电子旳饱和烃衍生物(
含N、O、S和卤素等杂原子)均呈现n →σ*跃迁。如一氯甲烷 、甲醇、三甲基胺n →σ*跃迁旳λ分别为173nm、183nm和
227nm。
⑶π→π*跃迁
所需能量较小,吸收波优点于远紫外区旳近紫外端或近
(1)物理性原因
朗白-比尔定律旳前提条件之一是入射光为单色光。
难以取得真正旳纯单色光。
分光光度计只能取得近似于单色旳狭窄光带。复合光可造 成对朗伯-比尔定律旳正或负偏离。
非单色光、杂散光、非平行入射光都 会引起对朗白-比尔定律旳偏离,最主要旳 是非单色光作为入射光引起旳偏离。
非单色光作为入射光引起旳偏离
溶液旳程度:
T = It /I0 吸光度A与透光度T旳关系:
A = -lgT
朗伯-比尔定律是吸光光度法旳理论基础和定量测定旳根据。应
用于多种光度法旳吸收测量。
应用举例
某有色物质溶液旳浓度为4.5×10-3g·L-1,在530nm 波长下用2.0cm旳吸收池所测得旳吸光度为0.300,试 计算
(a)吸收系数;
长之间旳关系。
吸收曲线旳讨论:
(1)同一种物质对不同波长旳光 旳吸光度不同。吸光度最大处相应旳
波长称为最大吸收波长λmax
(2)不同浓度旳同一种物质,其
吸收曲线形状相同,λmax不变。而
对于不同物质,它们旳吸收曲线形状
和λmax则不同。
(3)吸收曲线能够提供物质旳构造信息,并作为物质定性分析旳根据之一.
讨论如下:
讨论:
A总 =A1 + lg2 - lg(1+10-εbc )

材料表征方法第六章紫外可见光光谱

材料表征方法第六章紫外可见光光谱

b. 助色基(团):
有一些含有n电子的基团(如-OH、-OR、-NH2 等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共 轭作用,增强生色团的生色能力(吸收波长向长波 方向移动,且吸收强度增加),这样的基团称为助 色团。
C.红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶
D + A hυ D+A-
D+、A-为络合物或一个分子中的两个体系,D是 给电子体,A是受电子体。
例如:黄色的四氯苯醌与无色的六甲基苯形成的 深红色络合物。
O
CL
CL
CL
+ CL
O
O
CL
CL
=
CL
CL
O
(黄色) (无色) (深红色)
f、配位体场微扰的d →d*跃迁
过渡元素的 d 或 f 轨道为简并轨道(Degeneration orbit),当与配位体配合时,轨道简并解除,d 或f 轨 道发生能级分裂,如果轨道未充满,则低能量轨道 上的电子吸收外来能量时,将会跃迁到高能量的 d 或 f 轨道,从而产生吸收光谱。
3、电荷转移跃迁;
4、配位体场的d →d*跃迁 产生。
3.常用光谱术语及谱带分类
常用光谱术语:
a、生色基也称发色基(团):
是指分子中某一基团或体系,由于存在能使分子 产生吸收而出现谱带,这一基团或体系即为生色基。
最有用的紫外-可见光谱是由π→π*和n→π*跃迁产 生的。这两种跃迁均要求有机物分子中含有不饱和基 团。这类含有π键的不饱和基团称为生色团。简单的生 色团由双键或叁键体系组成,如乙烯基、羰基、乙炔 基、亚硝基、偶氮基—N=N—等

紫外可见吸收光谱

紫外可见吸收光谱

2. 电荷迁移跃迁
——指配合物中配位体与金属离子之间,一个电子
由一方的一个轨道跃迁到另一方相关的轨道上。 ——产生电荷迁移跃迁的必要条件:一组分是电子
给予体,另一组分是电子接收体。
例: [Fe3+ (SCN-)]2+ h [Fe2+(SCN)]2+
电子接受体 电子给予体
——电荷迁移跃迁光谱的很大,一般在104以上,
——当苯环上有羟基、氨基等取代基时,吸收峰红移, 吸收强度增大.像羟基、氨基等一些助色团,至少 有一对非键n电子,这样才能与苯环上的电子相互 作用,产生助色作用.
——取代基不同,变化程度不同,可由此鉴定各种 取代基
例: 苯
λmax B带 254
λmax
E2
204
甲苯
262
208
苯酚
271
213
苯甲酸
(一)紫外可见吸收光谱 由紫外可见分光光度计获得
光源——单色器——吸收池——检测器——显示器
ΔE电 = h 光 (200—800 nm)
激发态 基态
吸收曲线
将不同波长的光透过某一固定浓度和 厚度的待测溶液,测量每一波长下待测溶 液对光的吸收程度(即吸光度),然后以 波长为横坐标,以吸光度为纵坐标作图, 可得一曲线。这曲线描述了物质对不同波 长的吸收能力,称吸收曲线或吸收光谱。
不同波长的光
L
图3-1紫外可见吸收光谱示意图
A
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
min

A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

紫外吸收光谱基本原理

紫外吸收光谱基本原理
15:36:00
图3.1 电子跃迁图
15:36:00
• 其中б→б* 跃迁所需能量最大,n→π*及 配位场跃迁所需能量最小,因此,它们 的吸收带分别落在远紫外和可见光区。
• 从图中纵坐标可知π→π*及电荷迁移跃迁 产生的谱带强度最大,n→π*、n→б*跃 迁产生的谱带强度次之,配位跃迁的谱 带强度最小。
15:36:00
一、有机化合物的紫外—可见吸收光谱 (一)电子跃迁类型
*
反键*轨道
*
反键*轨道
E
n→ * → * n→ * → *
n
N非键轨道
成键轨道
成键轨道
图3.2 分子的电子能级和跃迁
15:36:00
15:36:00
15:36:00
15:36:00
15:36:00
4. n→π*跃迁
15:36:
不同波长的光
L
图3-1 紫外可见吸收光谱示意图
A
末端吸收
最强峰
肩 峰
次强峰 峰谷
15:36:00
max
min
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min
2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应的 波长(最大吸收波长 λmax) 不变。并且曲线的形状也完 全相同。
含有杂原子的双键化合物中杂原子的n电子 跃迁到π*轨道。
所需能量小,εmax很小,一般在小于100
L·mol-1·cm-1以上,属于弱吸收。
例如:丙酮 n→π*跃迁的λmax为280nm, εmax为: 10~30 L·mol-1·cm-1。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n→π* < π→π* < n→σ* < σ→σ*
11:51:47
2
σ→σ*跃迁
所需能量最大;σ电子只有吸收远紫外光的能量
才能发生跃迁;
饱和烷烃的分子吸收光谱出现在远紫外区; 吸收波长λ <200 nm; 例:甲烷的λ max为125nm , 乙烷λ max为135nm 。 只能被真空紫外分光光度计检测到; 作为溶剂使用;
max(甲醇) max(水) max(氯仿)
n → p*跃迁:蓝移; ;
max(正己烷)
p → p* n → p*
230 329
11:51:47
238 315
237 309
243 305
溶剂的影响
苯 酰 丙 酮 1 1:乙醚 2:水
2
250
300
极性溶剂使精细结构 消失;
11:51:47
11:51:47
11:51:47
精品课件!
11:51:47
精品课件!
11:51:47
(三) 金属离子影响下的配位体内π→π*跃迁 金属离子的微扰,将引起配位体吸收波长和 强度的变化。变化与成键性质有关,若共价 键和配位键结合,则变化非常明显。 茜素磺酸钠: 弱酸性介质:黄色(λ max=420nm) 弱碱性介质:紫红色(λ max=560nm )
一、有机物吸收光谱与电子跃迁
(一)电子跃迁类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果: σ电子、π电子、n电子。 s*
E p 分子轨道理论:成键轨道—反键轨道。
s
H
C H
OnKR Nhomakorabeap*
E,B
n
p
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量ΔΕ大小顺序为:
(二) 电荷转移跃迁
电荷转移跃迁:辐射下,分子中原定域在金属M轨道上的电 荷转移到配位体L的轨道,或按相反方向转移,所产生的吸收 光谱称为荷移光谱。 Mn+—Lbh h M(n-1) +—L(b-1) [Fe2+CNS]2+
[Fe3+CNS-]2+
电子给予体 电子接受体
分子内氧化还原反应: > 104 Fe2+与邻菲罗啉配合物的紫外吸收光谱属于此。
非极性 → 极性 n → p*跃迁:蓝移; ; p → p*跃迁:红移; ;
二、无机化合物的吸收光谱
金属配合物的紫外光谱产生机理主要有三种类型:
(一) d-d 配位场跃迁和 f – f 配位场跃迁
在配体的作用下过渡金属离子的d 轨道和镧系、锕系的f 轨道裂分,吸收辐射后,产生d一d 、 f 一f 跃迁;
③不饱和醛酮 K带红移:165250nm R 带兰移:290310nm
11:51:47
p
165nm p
n
p p
c O
c
n p
O
c c
(4)芳香烃及其杂环化合物
苯:
E1 带 1 8 0 1 8 4 nm; =47000 E2 带 2 0 0 2 0 4 nm =7000 苯环上三个
217nm
p
11:51:47
(3)羰基化合物共轭烯烃中的 p → p*
R C Y O
① Y=H,R n → s* 180-190nm p → p* 150-160nm n → p* 275-295nm ②Y= -NH2,-OH,-OR 等助色基团
p K p p p p
p
R
K
R
n p
K 带红移,R 带兰移; R带max =205nm ;10-100
*配位体配位场强弱顺序(光谱系列): I-<Br-<Cl-<F-<OH-<C2O42-=H2O<SCN-<吡啶 =NH3<乙二胺<联吡啶<邻二氮菲<NO2-<CN-
必须在配体的配位场作用下才可能产生也称配位场跃迁; 摩尔吸收系数ε很小,对定量分析意义不大。
11:51:47
11:51:47
11:51:47
max 1480 150 200 365 600
4 π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近紫 外区,εmax一般在104L·mol-1·cm-1以上,属于强吸收。
(1) 不饱和烃π→π*跃迁 乙烯π→π*跃迁的λmax为162nm,εmax为:1×104 L·mol-1·cm -1。 K带——共轭非封闭体系的p → p* 跃迁
C=C
H c H c
发色基团, 但 p→p* 200nm。
H
max=162nm H 助色基团取代 p p(K带)发生红移。
-NR2 40(nm) -OR 30(nm) -Cl 5(nm) CH3 5(nm)
取代基
-SR
红移距离 45(nm)
11:51:47
(2)共轭烯烃中的 p → p*
p 165nm p₃ p p₂ p₁ p
11:51:47
n→σ*跃迁 所需能量较大。 吸收波长为150~250nm,大部分在远紫外区, 近紫外区仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素 等杂原子)均呈现n→σ* 跃迁。 3
化合物 H2O CH3OH CH3CL CH3I CH3NH2
11:51:47
max(nm) 167 184 173 258 215
共扼双键的 p → p * 跃迁 特征吸收带; B 带 230270 nm =200 p → p * 与苯环振动引起; 含取代基时, B 带简化 ,红移。
11:51:47
苯 甲苯 间二甲苯
max(nm) 254 261 263
max 200 300 300
1,3,5-三甲苯
六甲苯
266
272
与Al3+形成螯合物时(pH=4~5):
红色(λ max=475nm )
11:51:47
305
300
乙酰苯紫外光谱图
羰基双键与苯环共扼:
K带强;苯的E2带与K带合
并,红移; 取代基使B带简化;
氧上的孤对电子:
R带,跃迁禁阻,弱;
C H3 C O
n p ; R带
p p ; K带
11:51:47
(二)生色团与助色团
生色团: 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的 。这两种跃迁均要求有机物分子中含有不饱和基团。这类含 有π键的不饱和基团称为生色团。简单的生色团由双键或叁 键体系组成,如乙烯基、羰基、亚硝基、偶氮基—N=N— 、乙炔基、腈基—CN等。 助色团: 有一些含有n电子的基团(如—OH、—OR、—NH2、— NHR、—X等),它们本身没有生色功能(不能吸收 λ>200nm的光),但当它们与生色团相连时,就会发生n—π 共轭作用,增强生色团的生色能力(吸收波长向长波方向移动 ,且吸收强度增加),这样的基团称为助色团。
11:51:47
苯环上助色基团对吸收带的影响
11:51:47
苯环上发色基团对吸收带的影响
11:51:47
(三) 溶剂对吸收光谱的影响
C
n<p
O
C
C
p
n > p
p
n n
p p
p
n
p
p p
C
O
非极性 极性
C
C
非极性 极性 p → p*跃迁:红移; ;
相关文档
最新文档