2 抽象函数求值问题

合集下载

压轴题型03 抽象函数问题(解析版)-2023年高考数学压轴题专项训练

压轴题型03 抽象函数问题(解析版)-2023年高考数学压轴题专项训练

压轴题03抽象函数问题抽象函数是高中数学的一个难点,也是近几年来高考的热点。

考查方法往往基于一般函数,综合考查函数的各种性质。

本节给出抽象函数中的函数性质的处理策略,供内同学们参考。

抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。

由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。

○热○点○题○型1定义域问题解决抽象函数的定义域问题——明确定义、等价转换。

函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围)。

○热○点○题○型2求值问题通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。

○热○点○题○型3值域问题○热○点○题○型4解析式问题通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。

○热○点○题○型5单调性与奇偶性问题○热○点○题○型6周期性与对称性问题○热○点○题○型7几类抽象函数解法(1)求解方法:1.借鉴函数模型进行类比探究(化抽象为具体)2.赋值法(令0=x 或1,求出)0(f 或)1(f 、令x y =或x y -=等等)(2)几种抽象函数模型:1.正比例函数:)0()(≠=k kx x f ——————————)()()(y f x f y x f ±=±;2.幂函数:2)(x x f =——————————————)()()(y f x f xy f =,)()()(y f x f y x f =;注:反比例函数:1)(-=x x f 一类的抽象函数也是如此,有部分资料将幂函数模型写成反比例函数模型。

3.指数函数:x a x f =)(———————————)()()(y f x f y x f =+,)()()(y f x f y x f =-4.对数函数:x x f a log )(=————————)()()(y f x f xy f +=,)()()(y f x f yxf -=5.三角函数:x x f tan )(=————————————)()(1)()()(y f x f y f x f y x f -+=+6.余弦函数:x x f cos )(=———————)()(2)()(y f x f y x f y x f =-++一、单选题1.已知定义在()0,∞+上的函数()f x 满足()()()102f xy f x f y +--=,若一组平行线()1,2,...,i x x i n ==分别与()y f x =图象的交点为()11,x y ,()22,x y ,...,(),n n x y ,且()2121n i i x x f -+=⎡⎤⎣⎦,其中1,2,...,i n =,则1nii y n==∑A .1B .12C .2nD .2n 【答案】B【分析】令1x y ==得到()112f =;令1,n i i x x y x -+==得到()()11n i i f x f x -++=,代入计算得(6)()6f x f x +-≥,则(2016)f =A .2015B .2016C .2017D .2018【答案】D【分析】根据递推式可得(6)()6f x f x +-=,再由(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+即可得答案.【详解】解:(2)()2,f x f x +-≤ (4)(2)2,f x f x ∴+-+≤(6)(4)2f x f x ∴+-+≤三是相加得:(6)()6f x f x +-≤,又(6)()6f x f x +-≥,则(6)()6f x f x +-=,当且仅当(2)()2f x f x +-=时等号成立,(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+633622018=⨯+=,故选:D.3.已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x -是偶函数,则下列结论错误的是()A .()f x 的图象关于直线=1x -对称B .()f x 的图象关于点(1,0)对称C .()31f -=D .()f x 的一个周期为8【答案】C【分析】根据()31f x +是奇函数,可得()()20f x f x +-+=,判断B;根据()21f x -是偶函数,推出()()2f x f x --=,判断A;继而可得()()4f x f x +=-,可判断D ;利用赋值法求得(1)0f =,根据对称性可判断C.【详解】由题意知()31f x +是奇函数,即()()()()3131,11f x f x f x f x -+=-+∴-+=-+,即()()2f x f x -+=-,即()()20f x f x +-+=,故()f x 的图象关于点(1,0)对称,B 结论正确;又()21f x -是偶函数,故()()()()2121,11f x f x f x f x --=-∴--=-,即()()2f x f x --=,故()f x 的图象关于直线=1x -对称,A 结论正确;由以上可知()()()22f x f x f x =--=--+,即()()22f x f x -=-+,所以()()4f x f x +=-,则()()4()8x x f f f x =-=++,故()f x 的一个周期为8,D 结论正确;由于()()3131f x f x -+=-+,令0x =,可得(1)(1),(1)0f f f =-∴=,而()f x 的图象关于直线=1x -对称,故()30f -=,C 结论错误,故选:C【点睛】方法点睛:此类抽象函数的性质的判断问题,解答时一般要注意根据函数的相关性质的定义去解答,比如奇偶性,采用整体代换的方法,往往还要结合赋值法求得特殊值,进行解决.4.已知定义在R 上的函数()f x 在(),4-∞-上是减函数,若()()4g x f x =-是奇函数,且()40g =,则不等式()0f x ≤的解集是A .(](],84,0-∞-⋃-B .[)[)8,40,--⋃+∞C .[][)8,40,--⋃+∞D .[]8,0-【答案】C【详解】∵()()4g x f x =-是奇函数,∴函数()()4g x f x =-图象的对称中心为(0,0),∴函数()f x 图象的对称中心为()4,0-.又函数()f x 在(),4-∞-上是减函数,∴函数()f x 在()4,-+∞上为减函数,且()()400f g -==.∵()()400g f ==,∴()80f -=.画出函数()f x 图象的草图(如图).结合图象可得()0f x ≤的解集是[][)8,40,--⋃+∞.选C .点睛:本题考查抽象函数的性质及利用数形结合求不等式的解集.解题时要从函数()f x 的性质入手,同时也要把函数()()4g x f x =-的性质转化为函数()f x 的性质,进一步得到函数()f x 的单调性和对称性,进而画出其图象的草图,根据图象写出不等式的解集.其中在解题中不要忘了()f x 是定义在R 上的函数,故应该有()()400f g -==这一结论,即函数()f x 的图象中要有()4,0-这一个点.5.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时()()()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()20f x af x b ⎡⎤++=⎣⎦有6个根,则实数a 的取值范围是()A .59,24⎛⎫-- ⎪⎝⎭B .9,14⎛⎫-- ⎪⎝⎭C .59,24⎛⎫-- ⎪⎝⎭9,14⎛⎫⋃-- ⎪⎝⎭D .5,12⎛⎫-- ⎪⎝⎭二、多选题(共0分)6.下列说法中错误的为()A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,1B .若(121f x =+,则()[)2243,1,f x x x x ∞=++∈+C .函数的421x x y =++值域为:1,4⎡⎫-+∞⎪⎢⎣⎭D .已知()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[]3,2--7.若定义在R 上的函数()f x 满足:(ⅰ)存在R a +∈,使得()0f a =;(ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=.则下列关于函数()f x 的叙述中正确的是()A .任意x ∈R 恒有()()4f x a f x +=B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-18.已知的定义域为R ,且对任意,有1f x f y f x y ⋅=+-,且当1x >时,()1f x >,则()A .()11f =B .()f x 的图象关于点()()1,1f 中心对称C .()f x 在R 上不单调D .当1x <时,()01f x <<故选:AD9.已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A .105f ⎛⎫= ⎪⎝⎭B .m Z ∀∈,()30mf =C .函数()f x 的值域为[)0,∞+D .n Z ∃∈,()512019nf +=10.已知()f x 为非常值函数,若对任意实数x ,y 均有()()()1f x y f x f y +=+⋅,且当0x >时,()0f x >,则下列说法正确的有()A .()f x 为奇函数B .()f x 是()0,∞+上的增函数C .()1f x <D .()f x 是周期函数对于D:因为()f x 是()0,∞+上的增函数,又因为()f x 为奇函数且()00f =,所以()f x 是(),-∞+∞上的增函数,故()f x 不是周期函数,故D 错误.故选:ABC.11.定义在R 上的函数()f x 满足()()()312f x f x f +++=,()()24f x f x -=+,若1122f ⎛⎫= ⎪⎝⎭,则()A .()f x 是周期函数B .1(2022)2f =C .()f x 的图象关于1x =对称D .200111002k k f k =⎛⎫-=- ⎪⎝⎭∑可得())1(3f x f x +=-,从而可得()f x 是周期为4的周期函数,是解决本题的关键.12.已知函数()f x ,()g x 的定义域均为R ,其导函数分别为()f x ',()g x '.若()()32f x g x -+=,()()1f x g x ''=+,且()()20g x g x -+=,则()A .函数()2g x +为偶函数B .函数()f x 的图像关于点()2,2对称C .()202410i g n ==∑D .()202414048i f n ==-∑【答案】ACD【分析】由()()1f x g x ''=+,可设()()()1,R f x a g x b a b +=++∈,,由()()32f x g x -+=,得()()321g x a g x b --+=++,赋值1x =,则有2a b -=,即()()31g x g x -=+,函数()g x 的图像关于直线2x =对称,又()()20g x g x -+=得()()4g x g x =+,()f x 也是周期为4的函数,通过赋值可判断选项【详解】因为()()1f x g x ''=+,所以()()()1,R f x a g x b a b +=++∈.又因为()()32f x g x -+=,所以()()23f x g x +=-.于是可得()()321g x a g x b --+=++,令1x =,则()()31211g a g b --+=++,所以2a b -=.所以()()31g x g x -=+,即函数()g x 的图像关于直线2x =对称,即()()4g x g x -=+.因为()()20g x g x -+=,所以函数()g x 的图像关于点()1,0对称,即()()20g x g x ++-=,所以()()24g x g x +=-+,即()()2g x g x =-+,于是()()4g x g x =+,所以函数()g x 是周期为4的周期函数.因为函数()g x 的图像关于直线2x =对称,所以()2g x +的图像关于y 轴对称,所以()2g x +为偶函数,所以A 选项正确.将()g x 的图像作关于y 轴对称的图像可得到()y g x =-的图像,再向右平移3个单位长度,可得到()()33y g x g x =--=-⎡⎤⎣⎦的图像,再将所得图像向下平移2个单位长度,即可得到()()32g x f x --=的图像,因此函数()f x 也是周期为4的函数.又()g x 的图像关于点()1,0对称,所以()f x 的图像关于点()2,2-对称,所以B 选项不正确.因为()()20g x g x -+=,令1x =,得()()110g g +=,即()10g =,所以()()130g g ==;令0x =,得()()200g g +=,所以()()240g g +=,所以()()()()12340g g g g +++=,所以()202410i g n ==∑,所以C 选项正确.因为()()32f x g x =--,所以()()0322f g =-=-,()()2122f g =-=-,()()122f g =-,()()302f g =-,()()402f f ==-,则有()()()()()()()123422202f f f f g g +++=-+-+-()28+-=-,可得()202414048i f n ==-∑,所以D 选项正确.故选:ACD .【点睛】方法点睛:一般地,若函数的图像具有双重对称性,则一定可以得到函数具有周期性,且相邻的两条对称轴之间的距离为半个周期;相邻的两个对称中心之间的距离也是半个周期;相邻的一条对称轴和一个对称中心之间的距离为四分之一个周期.三、填空题13.下列命题中所有正确的序号是__________.①函数1()3x f x a -=+(1a >)在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4);③已知53()8f x x ax bx =++-,且(2)8f -=,则(2)8f =-;④11()122x f x =--为奇函数.⑤函数()f x =[]0,4(3)构造奇函数求对应的函数值;(4)定义法判断函数奇偶性;(5)直接法求具体函数的值域.14.给出下列四个命题:①函数与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数的图像可由的图像向上平移1个单位得到;④若函数的定义域为,则函数的定义域为;⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根;其中正确命题的序号是_____________.(填上所有正确命题的序号)【答案】③⑤【详解】试题分析:①因为函数的定义域为R ,函数的定义域为{}|>0x x ,所以函数与函数不表示同一个函数;②奇函数的图像一定通过直角坐标系的原点,此命题错误,若奇函数在x=0处没定义,则奇函数的图像就不过原点;③函数的图像可由的图像向上平移1个单位得到;,正确.④因为函数的定义域为,所以0<2<2,0<x<1x 即,所以函数的定义域为[0,1];⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根,正确.考点:函数的定义;奇函数的性质;图像的变换;抽象函数的定义域;函数零点存在性定理.点评:此题考查的知识点较多,较为综合,属于中档题.抽象函数的有关问题对同学们来说具有一定的难度,特别是求函数的定义域,很多同学解答起来总感棘手,鉴于此,我们在学习时要善于总结.①已知的定义域求的定义域,其解法是:若的定义域为,则在中,,从中解得x 的取值范围即为的定义域;②已知的定义域,求的定义域,其解法是:若的定义域为,则由确定的的范围即为的定义域.15.已知函数()241f x x -+-的定义域为[]0,m ,则可求得函数()21f x -的定义域为[]0,2,求实数m 的取值范围__________.【答案】[]24,【详解】 函数()21f x -的定义域为[]0,2,02,1213x x ∴≤≤∴-≤-≤,令241t x x =-+-,则13t -≤≤,由题意知,当[]0,x m ∈时,[]1,3t ∈-,作出函数241t x x =-+-的图象,如图所示,由图可得,当0x =或4x =时,1t =-,当2x =时,3,24t m =∴≤≤,时[]1,3t ∈-,∴实数m 的取值范围是24m ≤≤,故答案为24m ≤≤.16.给出下列说法:①集合{}1,2,3A =,则它的真子集有8个;②2(),((0,1))f x x x x=+∈的值域为(3,)+∞;③若函数()f x 的定义域为[0,2],则函数(2)()2f xg x x =-的定义域为[)0,2;④函数()f x 的定义在R 上的奇函数,当0x >时,()1f x x =-+,则当0x <时,()1f x x =-⑤设53()=5f x ax bx cx +++(其中,,a b c 为常数,x R ∈),若(2012)3f -=-,则(2012)13f =;其中正确的是_______(只写序号).【答案】②⑤【详解】试题分析:①集合{1,2,3}A =,则它的真子集有个;③由函数()f x 的定义域为[0,2]得:,解得;④设,则,所以,又因为()f x 是定义在R 上的奇函数,所以()f x =-;⑤设g(x)=,则g(x)是奇函数且()f x =g(x)+5,因为(2012)3f -=-,所以,所以.考点:本题考查真子集的性质、抽象函数的定义域、函数的奇偶性.点评:此题主要考查集合子集个数的计算公式、函数的奇偶性和抽象函数定义域的求法,是一道基础题,若一个集合的元素个数为n ,则其子集的个数为2n ,真子集的个数为2n -1个.17.函数()f x 满足()11f x f x ⎛⎫= ⎪+⎝⎭对任意[)0,x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有(){},0f y y f x x a A =≤≤=,则a 的取值范围为___________.18.对任意集合M ,定义()0,M f x x M⎧=⎨∉⎩,已知集合S 、T X ⊆,则对任意的x X ∈,下列命题中真命题的序号是________.(1)若S T ⊆,则()()S T f x f x ≤;(2)()1()X S S f x f x =-ð;(3)()()()S T S T f x f x f x =⋅ ;(4)()()1()[2S S T T f x f x f x ++= (其中符合[]a 表示不大于a 的最大正数)19.设()1f x -为()cos 488f x x x ππ=-+,[]0,x π∈的反函数,则()()1y f x f x -=+的最大值为_________.R ,对任意的都有且当0x ≥时,则不等式()0xf x <的解集为__________.【答案】(2,0)(0,2)- 【详解】当0x ≥时,由()220f x x x =->,得2x >;由()220f x x x =-<,得02x <<.∵()()f x f x -=-,∴函数()f x 为奇函数.∴当0x <时,由()220f x x x =->,得20x -<<;由()220f x x x =-<,得2x <-.不等式()0xf x <等价于()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,解得02x <<或20x -<<.∴不等式()0xf x <的解集为()()2,00,2-⋃.答案:()()2,00,2-⋃21.已知函数21,0()21,0,x x f x x x x +≤⎧=⎨-+>⎩若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则实数a 的取值范围是_____.【答案】01a <<【分析】采用数形结合的方法,由2()()0f x af x -=确定有两个解()0f x =或()f x a =,在通过图象确定a 的范围.【详解】由2()()0f x af x -=得()0f x =或()f x a =,如图,作出函数()f x 的图象,由函数图象,可知()0f x =的解有两个,故要使条件成立,则方程()f x a =的解必有三个,此时0<a <1.所以a 的取值范围是(0,1).故答案为:01a <<.22.已知函数()f x 满足1(1)()f x f x +=-,且()f x 是偶函数,当[1,0]x ∈-时,2()f x x =,若在区间[1,3]-内,函数()()log (2)a g x f x x =-+有个零点,则实数a 的取值范围是______________.【答案】所以可得132a log ≥+(),∴实数a 的取值范围是[5+∞,).故答案为[5+∞,).考点:函数的周期性的应用,函数的零点与方程的根的关系【名师点睛】本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.四、双空题23.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++-=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.五、解答题24.已知()f x 定义域为R 的函数,S ⊆R ,若对任意1212,,x x x x S ∈-∈R ,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断函数()()12112f x xg x x =-=-、是否是[)1,+∞关联,并说明理由:(2)若()f x 是{}2关联,当[)0,2x ∈时,()2f x x x =-,解不等式:()02f x ≤≤;(3)判断“()f x 是{}2关联”是“()f x 是[]1,2关联”的什么条件?试证明你的结论.25.设函数(),f x x x M=⎨-∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.【答案】(Ⅰ)[0,+∞);(Ⅱ)P=(﹣∞,0)∪(0,+∞),M={0};(Ⅲ)真命题,证明见解析【解析】(Ⅰ)求出f(P)=[0,3],f(M)=(1,+∞),由此能过求出f(P)∪f(M).(Ⅱ)由f(x)是定义在R上的增函数,且f(0)=0,得到当x<0时,f(x)<0,(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.由此能求出P,M.(Ⅲ)假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.证明0∈P∪M.推导出f(﹣x0)=﹣x0,且f(﹣x0)=﹣(﹣x0)=x0,由此能证明命题“若P∪M≠R,则f(P)∪f(M)≠R”是真命题.【详解】(Ⅰ)因为P=[0,3],M=(﹣∞,﹣1),所以f(P)=[0,3],f(M)=(1,+∞),所以f(P)∪f(M)=[0,+∞).(Ⅱ)因为f(x)是定义在R上的增函数,且f(0)=0,所以当x<0时,f(x)<0,所以(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.因为P∩M=∅,所以P=(﹣∞,0)∪(0,+∞),M={0}.(Ⅲ)该命题为真命题.证明如下:假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.首先证明0∈P∪M.否则,若0∉P∪M,则0∉P,且0∉M,则0∉f(P),且0∉f(M),即0∉f(P)∪f(M),这与f(P)∪f(M)=R矛盾.若∃x0∉P∪M,且x0≠0,则x0∉P,且x0∉M,所以x0∉f(P),且﹣x0∉f(M).因为f(P)∪f(M)=R,所以﹣x0∈f(P),且x0∈f(M).所以﹣x0∈P,且﹣x0∈M.所以f(-x0)=﹣x0,且f(-x0)=﹣(﹣x0)=x0,根据函数的定义,必有﹣x0=x0,即x0=0,这与x0≠0矛盾.综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等基础知识,考查运算求解能力,是中档题.26.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =.若对任意的[],1,1m n ∈-,0m n +≠都有()()0f m f n m n+>+.(1)用函数单调性的定义证明:()f x 在定义域上为增函数;(2)若()()214f a f a +>,求a 的取值范围;(3)若不等式()()122f x a t ≤-+对所有的[]1,1x ∈-和[]1,1a ∈-都恒成立,求实数t 的取值范围.于难题.根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥后再利用单调性和定义域列不等式组.27.已知函数()f x ,若存在非零实数a 、b ,使得对定义域内任意的x ,均有()f x a +=()f x b +成立,则称该函数()f x 为阶梯周期函数.(1)判断函数()[]|sin |()f x x x x π=+∈R 是否为阶梯周期函数,请说明理由.(其中[]x 表示不超过x 的最大整数,例如:[3,5]4-=-,[2,1]2=)(2)已知函数()g x ,x ∈R 的图像既关于点(1,0)对称,又关于点(3,2)对称.①求证:函数()g x 为阶梯周期函数;②当[0,4]x ∈时,()[,]g x p q ∈(p 、q 为实数),求函数()g x 的值域.【答案】(1)是,理由见解析;(2)①证明见解析;②[4,4]n p n q ++,n ∈Z .【解析】(1)根据阶梯周期函数的定义求解判断.(2)①根据函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,得到()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩求解.②根据①的结论,分[]()4,44,x n n n N ∈+∈和[]()4,44,x n n n N ∈--+∈两种情况讨论求解.【详解】(1)因为()()(1)[1]|sin 1|[]1|sin |1f x x x x x f x ππ+=+++=++=+,所以存在1,1a b ==,使得函数()f x 为阶梯周期函数(2)①因为函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,所以()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩,两式相减得:()()624g x g x +-+=,即()()44g x g x +=+所以函数()g x 为阶梯周期函数;②当[]()4,44,x n n n N ∈+∈时,[]40,4x n -∈,由()()44g x g x +=+,得()()()444242...g x g x g x =-+=-⨯+⨯=()[]()444,4g x n n n p n q n N =-+∈++∈,当[]()4,44,x n n n N ∈--+∈时,[]40,4x n +∈,由()()44g x g x +=+,得()()()444242...g x g x g x =+-=+⨯-⨯=()[]()444,4g x n n n p n q n N =+-∈-+-+∈,综上:函数()g x 的值域是[4,4]n p n q ++n ∈Z .【点睛】关键点点睛:本题关键是阶梯周期函数定义的理解以及()f x 若关于点(),a b 对称,则()()22f x f a x b -++=结合应用.28.已知函数()f x 对于任意的,x y ∈R ,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,(1)f -的值;(2)当34x -≤≤时,求函数()f x 的最大值和最小值;(3)设函数2()()3()g x f x m f x =--,判断函数g (x )最多有几个零点,并求出此时实数m的取值范围.29.已知函数,如果存在给定的实数对,使得恒成立,则称()f x 为“S -函数”.(1)判断函数()1f x x =,()23xf x =是否是“S -函数”;(2)若()3tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(),a b ;(3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对()0,1和()1,4,当[]0,1x ∈时,()f x 的值域为[]1,2,求当[]2018,2018x ∈-时函数()f x 的值域.1(1)3f =-.(1)求证()f x 是奇函数;(2)求()f x 在区间[3,3]-上的最大值和最小值.【答案】(1)详见解析;(2)最小值-1,最大值1.【分析】(1)利用赋值法,令0x =,0y =代入函数式,可求得(0)f ,再令y x =-代入函数式,即可31.已知函数的定义域为,且同时满足①13f =;②2f x ≥恒成立,③若12120,0,1x x x x ≥≥+≤,则有()()()12122f x x f x f x ++-≥.(1)试求函数()f x 的最大值和最小值;(2)试比较f (12n)与122n +(n ∈N )的大小.(3)某人发现:当12nx =(n ∈N )时,有()22f x x <+,由此他提出猜想:对一切x ∈(0,1],都有()22f x x <+,请你判断此猜想是否正确,并说明理由.32.已知,1,2,n 是定义在M 上的一系列函数,满足:()1f x x =,()()11i i x f x f i x ++-⎛⎫== ⎪⎝⎭N .(1)求()()()234,,f x f x f x 的解析式;(2)若()g x 为定义在M 上的函数,且()11x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()()()()222121318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.都有()()f x s f x s +-=,则称()y f x =是S -关联的.(1)判断函数2y x =和函数[]y x =是否是{1}-关联的,无需说明理由.([]x 表示不超过x 的最大整数)(2)若函数()y f x =是{2}-关联的,且在[0,2)上,()2x f x =,解不等式2()4f x <<.(3)已知正实数,a b 满足a b <,且函数()y f x =是[,]a b -关联的,求()f x 的解析式.【答案】(1)函数2y x =不是{1}-关联的,函数[]y x =是{1}-关联的;(2)(1,3)x ∈(3)()f x x C=+【分析】(1)根据()y f x =是S -关联的定义逐个判断可得结果;(2)根据函数()y f x =是{2}-关联的定义求出()f x 在[2,4)上的解析式,将()f x 代入2()4f x <<可解得结果;(3)根据()()f x t f x t +-=,得()()()f x t x t f x x +-+=-,令()()g x f x x =-,得()()g x t g x +=34.已知定义域为的函数y f x =满足:①对0,x ∈+∞,恒有22f x f x =;②当(]1,2x ∈时,()2f x x =-.(1)求18f ⎛⎫⎪⎝⎭的值;(2)求出当(12,2n n x +⎤∈⎦,Z n ∈时的函数解析式;(3)求出方程()12f x x =在(]0,100x ∈中所有解的和.【答案】(1)0;35.f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【详解】试题分析:(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x ﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I)f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.。

高一数学抽象函数常见题型解法综述

高一数学抽象函数常见题型解法综述

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。

例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求x 的取值范围。

例2和例1形式上正相反。

二、求值问题例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x ,得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。

重难点2-4-抽象函数及其性质8大题型(解析版) (1)

重难点2-4-抽象函数及其性质8大题型(解析版) (1)

重难点2-4 抽象函数及其性质8大题型抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。

抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。

一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f . 三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式. 四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法

例析抽象函数问题的求解策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。

抽象函数问题是高中数学函数部分的难点,也是高中与大学函数部分的衔接点。

由于这类试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识,因而备受高考命题者的青睐。

然而由于这类问题本身的抽象性及其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。

为使抽象函数问题解决有章可循,有法可依,本文主要介绍抽象函数问题的常见方法。

【方法荟萃】一、“赋值” 策略对于抽象函数,根据函数的概念和性质,通过观察与分析,将变量赋予特殊值,以简化函数,从而达到转化为要解决的问题的目的。

【例1】若奇函数()()f x x R ∈,满足(2)1,(2)()(2)f f x f x f =+=+,则(1)f 等于( )A .0B .1C .12-D .12解:对于)2()()2(f x f x f +=+,令1-=x ,得)2()1()1(f f f +-=即1)1()1(+-=f f , 从而1)1(2=f ,所以21)1(=f ,选D 。

【例2】设对任意实数1x 、2x ,函数)(x f y =)0,(≠∈x R x 满足)()()(211x x f x f x f ⋅=+。

(1)求证:0)1()1(=-=f f ;(2)求证:)(x f y =为偶函数。

解:(1)令121==x x ,得)1()11()1()1(f f f f =⨯=+,所以0)1(=f 。

令121-==x x ,得0)1()1()1(==-+-f f f ,所以0)1(=-f 。

(2)令x x x ==21,得)()(22x f x f =,令x x x -==21,得)()(22x f x f =-,从而我们有:)()(x f x f =-, 所以,)(x f y =为偶函数。

压轴题型03 抽象函数问题(原卷版)-2023年高考数学压轴题专项训练

压轴题型03 抽象函数问题(原卷版)-2023年高考数学压轴题专项训练

压轴题03抽象函数问题抽象函数是高中数学的一个难点,也是近几年来高考的热点。

考查方法往往基于一般函数,综合考查函数的各种性质。

本节给出抽象函数中的函数性质的处理策略,供内同学们参考。

抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。

由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。

○热○点○题○型1定义域问题解决抽象函数的定义域问题——明确定义、等价转换。

函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围)。

○热○点○题○型2求值问题通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。

○热○点○题○型3值域问题○热○点○题○型4解析式问题通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。

○热○点○题○型5单调性与奇偶性问题○热○点○题○型6周期性与对称性问题○热○点○题○型7几类抽象函数解法(1)求解方法:1.借鉴函数模型进行类比探究(化抽象为具体)2.赋值法(令0=x 或1,求出)0(f 或)1(f 、令x y =或x y -=等等)(2)几种抽象函数模型:1.正比例函数:)0()(≠=k kx x f ——————————)()()(y f x f y x f ±=±;2.幂函数:2)(x x f =——————————————)()()(y f x f xy f =,)()()(y f x f y x f =;注:反比例函数:1)(-=x x f 一类的抽象函数也是如此,有部分资料将幂函数模型写成反比例函数模型。

3.指数函数:x a x f =)(———————————)()()(y f x f y x f =+,)()()(y f x f y x f =-4.对数函数:x x f a log )(=————————)()()(y f x f xy f +=,)()()(y f x f yxf -=5.三角函数:x x f tan )(=————————————)()(1)()()(y f x f y f x f y x f -+=+6.余弦函数:x x f cos )(=———————)()(2)()(y f x f y x f y x f =-++一、单选题1.已知定义在()0,∞+上的函数()f x 满足()()()102f xy f x f y +--=,若一组平行线()1,2,...,i x x i n ==分别与()y f x =图象的交点为()11,x y ,()22,x y ,...,(),n n x y ,且()2121n i i x x f -+=⎡⎤⎣⎦,其中1,2,...,i n =,则1nii y n==∑A .1B .12C .2nD .2n 2.()f x 是定义在R 上的函数,(0)2f =,且对任意R x ∈,满足(2)()2f x f x +-≤,(6)()6f x f x +-≥,则(2016)f =A .2015B .2016C .2017D .20183.已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x -是偶函数,则下列结论错误的是()A .()f x 的图象关于直线=1x -对称B .()f x 的图象关于点(1,0)对称C .()31f -=D .()f x 的一个周期为84.已知定义在R 上的函数()f x 在(),4-∞-上是减函数,若()()4g x f x =-是奇函数,且()40g =,则不等式()0f x ≤的解集是A .(](],84,0-∞-⋃-B .[)[)8,40,--⋃+∞C .[][)8,40,--⋃+∞D .[]8,0-5.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时()()()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()20f x af x b ⎡⎤++=⎣⎦有6个根,则实数a 的取值范围是()A .59,24⎛⎫-- ⎪⎝⎭B .9,14⎛⎫-- ⎪⎝⎭C .59,24⎛⎫-- ⎪⎝⎭9,14⎛⎫⋃-- ⎪⎝⎭D .5,12⎛⎫-- ⎪⎝⎭二、多选题(共0分)6.下列说法中错误的为()A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,1B.若(121f x =+,则()[)2243,1,f x x x x ∞=++∈+C .函数的421x x y =++值域为:1,4⎡⎫-+∞⎪⎢⎣⎭D .已知()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[]3,2--7.若定义在R 上的函数()f x 满足:(ⅰ)存在R a +∈,使得()0f a =;(ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=.则下列关于函数()f x 的叙述中正确的是()A .任意x ∈R 恒有()()4f x a f x +=B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-18.已知()y f x =的定义域为R ,且对任意,x y ∈R ,有()()()1f x f y f x y ⋅=+-,且当1x >时,()1f x >,则()A .()11f =B .()f x 的图象关于点()()1,1f 中心对称C .()f x 在R 上不单调D .当1x <时,()01f x <<9.已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A .105f ⎛⎫= ⎪⎝⎭B .m Z ∀∈,()30mf =C .函数()f x 的值域为[)0,∞+D .n Z ∃∈,()512019nf +=10.已知()f x 为非常值函数,若对任意实数x ,y 均有()()()()()1f x f y f x y f x f y ++=+⋅,且当0x >时,()0f x >,则下列说法正确的有()A .()f x 为奇函数B .()f x 是()0,∞+上的增函数C .()1f x <D .()f x 是周期函数11.定义在R 上的函数()f x 满足()()()312f x f x f +++=,()()24f x f x -=+,若1122f ⎛⎫= ⎪⎝⎭,则()A .()f x 是周期函数B .1(2022)2f =C .()f x 的图象关于1x =对称D .200111002k k f k =⎛⎫-=- ⎪⎝⎭∑12.已知函数()f x ,()g x 的定义域均为R ,其导函数分别为()f x ',()g x '.若()()32f x g x -+=,()()1f x g x ''=+,且()()20g x g x -+=,则()A .函数()2g x +为偶函数B .函数()f x 的图像关于点()2,2对称C .()202410i g n ==∑D .()202414048i f n ==-∑三、填空题13.下列命题中所有正确的序号是__________.①函数1()3x f x a -=+(1a >)在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4);③已知53()8f x x ax bx =++-,且(2)8f -=,则(2)8f =-;④11()122x f x =--为奇函数.⑤函数()f x =[]0,414.给出下列四个命题:①函数与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数的图像可由的图像向上平移1个单位得到;④若函数的定义域为,则函数的定义域为;⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根;其中正确命题的序号是_____________.(填上所有正确命题的序号)15.已知函数()241f x x -+-的定义域为[]0,m ,则可求得函数()21f x -的定义域为[]0,2,求实数m 的取值范围__________.16.给出下列说法:①集合{}1,2,3A =,则它的真子集有8个;②2(),((0,1))f x x x x=+∈的值域为(3,)+∞;③若函数()f x 的定义域为[0,2],则函数(2)()2f xg x x =-的定义域为[)0,2;④函数()f x 的定义在R 上的奇函数,当0x >时,()1f x x =-+,则当0x <时,()1f x x =-⑤设53()=5f x ax bx cx +++(其中,,a b c 为常数,x R ∈),若(2012)3f -=-,则(2012)13f =;其中正确的是_______(只写序号).17.函数()f x 满足()11f x f x ⎛⎫= ⎪+⎝⎭对任意[)0,x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有(){},0f y y f x x a A =≤≤=,则a 的取值范围为___________.18.对任意集合M ,定义1,()0,M x M f x x M∈⎧=⎨∉⎩,已知集合S 、T X ⊆,则对任意的x X ∈,下列命题中真命题的序号是________.(1)若S T ⊆,则()()S T f x f x ≤;(2)()1()X S S f x f x =-ð;(3)()()()S T S T f x f x f x =⋅ ;(4)()()1()[]2S S T T f x f x f x ++= (其中符合[]a 表示不大于a 的最大正数)19.设()1f x -为()cos 488f x x x ππ=-+,[]0,x π∈的反函数,则()()1y f x f x -=+的最大值为_________.20.定义在R 上的函数()f x ,对任意的x R ∈都有()()f x f x -=-且当0x ≥时,2()2f x x x =-,则不等式()0xf x <的解集为__________.21.已知函数21,0()21,0,x x f x x x x +≤⎧=⎨-+>⎩若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则实数a 的取值范围是_____.22.已知函数()f x 满足1(1)()f x f x +=-,且()f x 是偶函数,当[1,0]x ∈-时,2()f x x =,若在区间[1,3]-内,函数()()log (2)a g x f x x =-+有个零点,则实数a 的取值范围是______________.四、双空题五、23.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++-=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.六、解答题七、24.已知()f x 定义域为R 的函数,S ⊆R ,若对任意1212,,x x x x S ∈-∈R ,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断函数()()12112f x xg x x =-=-、是否是[)1,+∞关联,并说明理由:(2)若()f x 是{}2关联,当[)0,2x ∈时,()2f x x x =-,解不等式:()02f x ≤≤;(3)判断“()f x 是{}2关联”是“()f x 是[]1,2关联”的什么条件?试证明你的结论.25.设函数(),,x x Pf x x x M ∈⎧=⎨-∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.(Ⅰ)若P =[0,3],M =(﹣∞,﹣1),求f (P )∪f (M );(Ⅱ)若P ∩M =∅,且f (x )是定义在R 上的增函数,求集合P ,M ;(Ⅲ)判断命题“若P ∪M ≠R ,则f (P )∪f (M )≠R ”的真假,并加以证明.26.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =.若对任意的[],1,1m n ∈-,0m n +≠都有()()0f m f n m n+>+.(1)用函数单调性的定义证明:()f x 在定义域上为增函数;(2)若()()214f a f a +>,求a 的取值范围;(3)若不等式()()122f x a t ≤-+对所有的[]1,1x ∈-和[]1,1a ∈-都恒成立,求实数t 的取值范围.27.已知函数()f x ,若存在非零实数a 、b ,使得对定义域内任意的x ,均有()f x a +=()f x b +成立,则称该函数()f x 为阶梯周期函数.(1)判断函数()[]|sin |()f x x x x π=+∈R 是否为阶梯周期函数,请说明理由.(其中[]x 表示不超过x 的最大整数,例如:[3,5]4-=-,[2,1]2=)(2)已知函数()g x ,x ∈R 的图像既关于点(1,0)对称,又关于点(3,2)对称.①求证:函数()g x 为阶梯周期函数;②当[0,4]x ∈时,()[,]g x p q ∈(p 、q 为实数),求函数()g x 的值域.28.已知函数()f x 对于任意的,x y ∈R ,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,(1)f -的值;(2)当34x -≤≤时,求函数()f x 的最大值和最小值;(3)设函数2()()3()g x f x m f x =--,判断函数g (x )最多有几个零点,并求出此时实数m的取值范围.29.已知函数()f x ,如果存在给定的实数对(),a b ,使得()()f a x f a x b +⋅-=恒成立,则称()f x 为“S -函数”.(1)判断函数()1f x x =,()23xf x =是否是“S -函数”;(2)若()3tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(),a b ;(3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对()0,1和()1,4,当[]0,1x ∈时,()f x 的值域为[]1,2,求当[]2018,2018x ∈-时函数()f x 的值域.30.设函数()f x 对任意实数x ,y 都有()()()f x y f x f y +=+,且0x <时,()0f x >,1(1)3f =-.(1)求证()f x 是奇函数;(2)求()f x 在区间[3,3]-上的最大值和最小值.31.已知函数()f x 的定义域为[]0,1,且同时满足①()13f =;②()2f x ≥恒成立,③若12120,0,1x x x x ≥≥+≤,则有()()()12122f x x f x f x ++-≥.(1)试求函数()f x 的最大值和最小值;(2)试比较f (12n)与122n +(n ∈N )的大小.(3)某人发现:当12n x =(n ∈N )时,有()22f x x <+,由此他提出猜想:对一切x ∈(0,1],都有()22f x x <+,请你判断此猜想是否正确,并说明理由.32.已知{}0,1M x x x =∈≠≠R ,()()1,2,n f x n =⋅⋅⋅是定义在M 上的一系列函数,满足:()1f x x =,()()11i i x f x f i x ++-⎛⎫== ⎪⎝⎭N .(1)求()()()234,,f x f x f x 的解析式;(2)若()g x 为定义在M 上的函数,且()11x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()()()()222121318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.33.设()y f x =是一个定义域为R 的函数.若S 是R 的一个非空子集,且对于任意的s S ∈,都有()()f x s f x s +-=,则称()y f x =是S -关联的.(1)判断函数2y x =和函数[]y x =是否是{1}-关联的,无需说明理由.([]x 表示不超过x 的最大整数)(2)若函数()y f x =是{2}-关联的,且在[0,2)上,()2x f x =,解不等式2()4f x <<.(3)已知正实数,a b 满足a b <,且函数()y f x =是[,]a b -关联的,求()f x 的解析式.34.已知定义域为()0,∞+的函数()y f x =满足:①对()0,x ∈+∞,恒有()()22f x f x =;②当(]1,2x ∈时,()2f x x =-.(1)求18f ⎛⎫⎪⎝⎭的值;(2)求出当(12,2n n x +⎤∈⎦,Z n ∈时的函数解析式;(3)求出方程()12f x x =在(]0,100x ∈中所有解的和.35.f (x )=x 3+2ax 2+bx+a ,g (x )=x 2﹣3x+2,其中x ∈R ,a 、b 为常数,已知曲线y=f (x )与y=g (x )在点(2,0)处有相同的切线l .(Ⅰ)求a 、b 的值,并写出切线l 的方程;(Ⅱ)若方程f (x )+g (x )=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x ﹣1)恒成立,求实数m 的取值范围.。

抽象函数的求值四条途径

抽象函数的求值四条途径

抽象函数的求值四条途径
途径一、从已知等式入手
例1 已知且,求
_________.
解析:从等式分析,,,由归纳法可知,∴本题结果为1995。

例2 已知,对于任意实数都成立,求并判断的奇偶性.
解析:从等式分析,令,,∴.
又令,∴,得,∴为奇函数.
途径二、从函数周期性入手
例3 是定义在R上的周期为3的奇函数,且,则的值是____________.
解析:由奇函数且定义域为(-∞,+∞)得,,,再从周期为3入手,得:=.
例4 是定义在R上的奇函数,且周期为4,若,则和的值是_____________.
解析:由已知得,抓住周期4,.
∴.
途径三、从函数的奇偶性和单调性入手解不等式
例5 若为偶函数,且在上为增函数,,那么不等式的解集是_____________.
解析:从函数为偶函数及其单调性知,的图象关于y轴对称,
在时,,
∴或,得或,解集是.途径四、从对称轴入手
例6、满足,且当x>1时,为增函数,则
的大小关系是______________.
解析:从知,的图象对称轴为x=1,

根据x>1时为增函数,∴.。

抽象函数_题型大全(例题_含答案)

抽象函数_题型大全(例题_含答案)

高考抽象函数技巧总结由于函数概念比较抽象.学生对解有关函数记号()f x 的问题感到困难.学好这部分知识.能加深学生对函数概念的理解.更好地掌握函数的性质.培养灵活性;提高解题能力.优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式.从而求出()f x .这也是证某些公式或等式常用的方法.此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下.把()h x 并凑成以()g u 表示的代数式.再利用代换即可求()f x .此解法简洁.还能进一步复习代换法。

例2:已知3311()f x x xx+=+.求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-.(|x |≥1)3.待定系数法:先确定函数类型.设定函数关系式.再由已知条件.定出关系式中的未知系数。

例3. 已知()f x 二次实函数.且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++.则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数.∴()f x 的定义域关于原点对称.故先求x <0时的表达式。

抽象函数的赋值计算与模型总结(学生版)

抽象函数的赋值计算与模型总结(学生版)

抽象函数的赋值计算与模型总结目录【题型1】抽象函数的赋值计算求值【题型2】抽象函数的奇偶性【题型3】抽象函数的单调性【题型4】抽象函数的最值与值域【题型5】抽象函数的对称性【题型6】抽象函数的周期性【题型7】一次函数的抽象表达式【题型8】对数型函数的抽象表达式【题型9】指数型函数的抽象表达式【题型10】幂函数的抽象表达式【题型11】正弦函数的抽象表达式【题型12】余弦函数的抽象表达式【题型13】正切函数的抽象表达式【题型14】二次函数的抽象表达式【题型15】其它函数的抽象表达式【题型1】抽象函数的赋值计算求值赋值法是求解抽象函数问题最基本的方法,一般有以下几种:1、⋯⋯-2,-1,0,1,2⋯⋯等特殊值代入求解1.(2024·长沙市第一中适应性训练)已知定义域为R的函数f x ,满足f x+y=f x f y -f2-x=0,则f2 =.,且f0 ≠0,f-2f2-y2.(2024·福建龙岩·一模)已知函数f x 的定义域为R,且f x+y=1,-f x f y =0,f-1+f x-y则f0 =【巩固练习】1.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(3)=,f(-3)=.2.已知对所有的非负整数x,y x≥y均有f x+y+f x-y-x+y-1=12f2x+f2y,若f1=3,则f5 =.3.(2024·安徽合肥·一模)已知函数f x 的定义域为0,+∞,且x+yf x+y=xyf x f y ,f1 =e,记a=f12,b=f2 ,c=f3 ,则()A.a<b<cB.b<a<cC.a<c<bD.c<b<a【题型2】抽象函数的奇偶性证明奇偶性:利用定义和赋值的方法找到f(-x)与f(x)的关系2024·福建莆田·二模1.已知定义在R上的函数f x 满足:f x+y=f x +f y -3xy x+y,证明:y=f x 是奇函数2024·长沙市第一中适应性训练2.已知定义域为R的函数f x ,满足f x+y=f x f y -f2-xf2-y,且f0 ≠0,f-2=0,证明:f x 是偶函数【巩固练习】1.(多选)定义在R上的函数f x 满足:对任意的x,y∈R,f x+y=f x +f y ,则下列结论一定正确的有()A.f0 =0B.f x-y=f x -f yC.f x 为R上的增函数D.f x 为奇函数2.(多选)已知定义在R上的函数f x 满足f xy=f x f y -f x -f y +2,f0 <2,f0 ≠f1 ,且f x >0,则()A.f0 =1B.f-1=2 C.f-x=2f x D.f-x=f x3.(2024·全国·模拟预测)(多选)已知函数f x 的定义域为R,满足f x f y -f x =xy-y,则()A.f0 =1B.f-1=1 C.f x+1为偶函数 D.f x+1为奇函数4.(2024届韶关市一模)已知f x 是定义在R上且不恒为零的函数,对于任意实数a,b满足f ab=af b +bf a ,若f e =e,则f-1+f-1 e=()A.1e B.-1eC.1-1eD.1+1e【题型3】抽象函数的单调性判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数,判断符号时要变形为:或;②若给出的是“积型”抽象函数,判断符号时要变形为:或.1.函数f(x)的定义域为(0,+∞),对于∀x,y∈(0,+∞),f(xy)=f(x)+f(y),且当x>1时,f(x)<0,证明:f(x)为减函数.2.已知函数f x 是定义在R 上的函数.对任意a ,b ∈R ,总有f a +b =f a +f b ,f -1 =23,且x <0时,f x >0恒成立.(1)求f 2(2)判断f x 的奇偶性并证明(3)证明f x 在0,+∞ 上单调递减【巩固练习】1.(多选)定义在(-∞,0)∪(0,+∞)上的函数f (x ),对于任意的x ,y 都有f xy =f x +f y -1;且f 2 =3;当x >1时,f x >1;则下列结论正确的是()A.f 1 =1B.f (x )是奇函数C.f (x )在(0,+∞)上单调递增D.f (x -1)>7的解集为{x ∣x <-7或x >9}2.若定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1.(1)求证:y =f (x )-1为奇函数;(2)求证:f (x )是R 上的增函数;(3)若f (4)=5,解不等式f (3m -2)<3.3.(2023·湖南师大附中校考)已知连续函数f(x)满足:①∀x,y∈R,则有f x+y=f x +f y -1,②当x>0时,f(x)<1,③f(1)=-2,则以下说法中正确的是()A.f0 =1B.f4x=4f x -4C.f(x)在-3,3上的最大值是10D.不等式f3x2-2f x >f3x+4的解集为x23<x<1【题型4】抽象函数的最值与值域结合奇偶性与单调性来判断最值或值域1.已知函数f x 对任意的x,y∈R,总有f x+y=f x +f y ,若x∈-∞,0时,f x >0,且f1 =-23,则当x∈-3,1时,f x 的最大值为()A.0B.23C.1D.2【巩固练习】1.已知连续函数f(x)满足:①∀x,y∈R,则有f x+y=f x +f y -1,②当x>0时,f(x)<1,③f(1)=-2,则f(x)在-3,3上的最大值是2.已知连续函数f(x)对任意实数x恒有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,f(1)=-2,则f(x)在[-3,3]上的最大值是【题型5】抽象函数的对称性抽象函数的对称性常有以下结论(1)f x+a=f b-x⇒f x 关于x=a+b2轴对称,(2)f x+a+f b-x=2c⇒f x 关于a+b2,c中心对称,2024·江苏南通·二模1.(多选)已知函数f x ,g x 的定义域均为R,f x 的图象关于点(2,0)对称,g(0)=g(2)=1,g(x+y)+g(x-y)=g(x)f(y),则()A.f x 为偶函数B.g x 为偶函数C.g(-1-x)=-g(-1+x)D.g(1-x)=g(1+x)【巩固练习】1.已知对任意实数x,y,函数f x 满足f xy+1=f x+1+f y+1,则f x ()A.有对称中心B.有对称轴C.是增函数D.是减函数2.(2024·重庆八中校考)(多选)已知函数f x 的定义域为R,且f x+y=f x +f y ,当x>0时,f x >0,且满足f2 =1,则下列说法正确的是()A.f x 为奇函数B.f-2=-1C.不等式f2x-f x-3>-2的解集为-5,+∞D.f-2023+f-2022+⋯+f0 +⋯f2022+f2023=20233.(多选)已知定义域为R的函数f x 对任意实数x,y都有f x+y+f x-y=2f x f y ,且f12 =0,则以下结论一定正确的有()A.f0 =-1B.f x 是偶函数C.f x 关于12,0中心对称 D.f1 +f2 +⋯+f2023=0【题型6】抽象函数的周期性抽象函数周期问题一般先求对称性2024山东青岛·统考三模1.设f x 为定义在整数集上的函数,f 1 =1,f 2 =0,f -1 <0,对任意的整数x ,y 均有f x +y =f x f 1-y +f 1-x f y .则f 55 =.2.函数f x 的定义域为R ,且f x +2 =-f x +1 -f x ,f x =f 2-x ,f 365 =-1,则2023k =1f k =.3.(2024届厦门一中校考)若定义域为R 的奇函数f (x )满足f (x )=f (x +1)+f (x -1),且f (1)=2,则f (2024)=.【巩固练习】1.(2024·山东青岛·一模)∀x ∈R ,f (x )+f (x +3)=1-f (x )f (x +3),f (-1)=0,则f (2024)的值为()A.2B.1C.0D.-12.(2024·福建龙岩·一模)已知函数f x 的定义域为R ,且f x +y +f x -y -f x f y =0,f -1 =1,则()A.f 0 =0B.f x 为奇函数C.f 8 =-1D.f x 的周期为33.(2024·福建厦门·一模)已知函数f (x )的定义域为R ,∀x ,y ∈R ,f (x +1)f (y +1)=f (x +y )-f (x -y ),若f (0)≠0,则f (2024)=()A.-2B.-4C.2D.44.函数f x 的定义域为R ,对任意x ,y ∈R ,恒有f x +f y =2f x +y 2 ⋅f x -y 2 ,若f 1 =12,则f -1 =,2022n =1f n =.5.(深圳市宝安区2024届高三上学期10月调研数学试题)(多选)已知函数f x 的定义域为R ,且f x +y f x -y =f 2x -f 2y ,f 1 =3,f 2x +32为偶函数,则()A.f x 为偶函数B.f 2 =3C.f 3+x =-f 3-xD.2023k =1f k =3【题型7】一次函数的抽象表达式一次函数的抽象表达式(1) 对于正比例函数f(x)=kx ,与其对应的抽象函数为f(x±y)=f(x)±f(y) .(2) 对于一次函数f(x)=kx+b ,与其对应的抽象函数为 f(x±y)=f(x)±f(y)∓b.(3) 对于一次函数f(x)=k x-b,与其对应的抽象函数为 f(x+y-b)=f(x)+f(y).1.已知函数f x 的定义域为R,且f x 的图像是一条连续不断的曲线,则同时满足下列三个条件的一个f x 的解析式为f x =.①∀m,n∈R,f m+n;②f x 为奇函数;③f x 在R上单调递减.=f m+f n2.(2023-2024学年重庆一中高一期中)(多选)已知定义在区间[-4,6]上的函数f(x)满足:对任意m,n∈R均有f m-n+1;当x>1时,f x >0.则下列说法正确的是+f n =f mA.f(1)=0B.f(x)在定义域上单调递减C.f(x+1)是奇函数D.若f(2)=1,则不等式f(2x)>f(x)+2的解集为(2,3]【巩固练习】1.(2024·安徽安庆·二模)(多选)已知定义在R上的函数f(x),满足对任意的实数x,y,均有,且当时,f(x)<1,则()A.f(0)=1B.f(1)+f(-1)=1C.函数f(x)为减函数D.函数的图象关于点0,1对称2.(2024·山东泰安·一模)(多选)已知函数f x 的定义域为R,且f1 =0,若f x+y=f x +f y +2,则下列说法正确的是()A.f-1=4046 D.函数f x +2是奇函数 =-4 B.f x 有最大值 C.f2024【题型8】对数型函数的抽象表达式对数函数的抽象表达式(重要)对数函数f (x )=log a x ,其对应的抽象函数为f (xy )=f (x )+f (y ) 或fxy=f (x )-f (y )补充:对于对数函数f (x )=log a x ,其抽象函数还可以是f (x n)=nf (x )奇偶性证明:只需构造f (x 2)-f (x 1)=fx 2x 1⋅x 1-f (x 1)=f x2x 1即可1.已知函数f (x )满足:①对∀m ,n >0,f (m )+f (n )=f (mn );②f 12=-1.请写出一个符合上述条件的函数f (x )=.2.(2024·安徽·二模)已知函数y =f x x ≠0 满足f xy =f x +f y -1,当x >1时,f x <1,则()A.f x 为奇函数B.若f 2x +1 >1,则-1<x <0C.若f 2 =12,则f 1024 =-4 D.若f 12=2,则f 11024=10【巩固练习】1.已知定义在0,+∞ 上的函数f x ,满足f xy +1=f x +f y ,且f 12 =0,则f 211 =()A.1B.11C.12D.-12.已知函数f x 的定义域是0,+∞ ,对定义域内的任意x 1,x 2都有f x 1x 2 =f x 1 +f x 2 ,且当0<x <1时,f x >0.(1)证明:当x >1时,f x <0;(2)判断f x 的单调性并加以证明;【题型9】指数型函数的抽象表达式对于指数函数 f (x )=a x,与其对应的抽象函数为f (x +y )=f (x )f (y ) 或f (x -y )=f (x )f (y ).奇偶性证明:由f (x +y )=f (x )⋅f (y )得f (x +y )f (x )=f (y ),判断f (x 2)f (x 1)=f (x 2-x 1)和1的大小关系1.已知函数f x 的定义域为R ,且f x 的图像是一条连续不断的曲线,则同时满足下列二个条件的一个f x 的解析式为f x =.①∀m ,n ∈R ,f m +n =f m f n ;②f x 在R 上单调递减.2.(2023上·浙江·高一校联考)(多选)已知定义在R 上的函数y =f x 满足:①y =f x 是偶函数;②当x >0时,f x >1;当x ≥0,y ≥0时,f x +y =f x f y ,则()A.f 0 =1B.f x 在0,+∞ 上单调递增C.不等式f x <f 4f 2的解集为-6,2 D.f x +y =f x +f y【巩固练习】1.如果f a +b =f a f b 且f 1 =2,则f 2 f 1 +f 4 f 3 +f 6f 5=()A.125B.375C.6D.82.已知函数f x 满足,f p +q =f p ⋅f q ,f 1 =3,则f 21 +f 2 f 1 +f 22 +f 4 f 3 +f 23 +f 6f 5+f 24 +f 8 f 7 +f 25 +f 10f 9 的值为()A.15B.30C.60D.753.已知定义在R 上的函数f x 满足:对任意的实数x ,y 均有f xy =f x f y ,且f -1 =-1,当0<x <1且f x ∈0,1 .(1)判断f x 的奇偶性;(2)判断f x 在0,+∞ 上的单调性,并证明;【题型10】幂函数的抽象表达式对于幂函数f (x )=x a,与其对应的抽象函数为f (xy )=f (x )f (y )或f x y=f (x )f (y )1.(2024·河北·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x 满足f xy =f -x y +f -yx+1xy,则()A.f x 是奇函数且在0,+∞ 上单调递减B.f x 是奇函数且在-∞,0 上单调递增C.f x 是偶函数且在0,+∞ 上单调递减D.f x 是偶函数且在-∞,0 上单调递增【巩固练习】1.已知函数f x 的定义域为-∞,0 ∪0,+∞ ,且xf x =y +1 f y +1 ,则()A.f x ≥0B.f 1 =1C.f x 是偶函数D.f x 没有极值点【题型11】正弦函数的抽象表达式三角函数注意系数的配凑,f (x )=a sin ωx ,f (x )=a cos ωx ,以下均以a =ω=1为例对于正弦函数f (x )=sin x ,与其对应的抽象函数为f (x +y )f (x -y )=f 2(x )-f 2(y )注: 此抽象函数对应于正弦平方差公式:sin2α-sin 2β=sin (α+β)sin (α-β)2024·广东江门·一模1.函数f x的定义域为,对任意的,,恒有成立.请写出满足上述条件的函数f x 的一个解析式.【巩固练习】1.(多选题)(2024·辽宁·模拟预测)已知函数f (x )的定义域为R ,且f (x +y )f (x -y )=f 2(x )-f 2(y ),f (1)=2,f (2)=0,则下列说法中正确的是()A.f (x )为偶函数B.f (3)=-2C.f (-1)=f (5)D.2024k =2f (k )=-22.(多选题)(2024·全国·模拟预测)已知函数f x 的定义域为R ,且f (x +y )f (x -y )=f 2(x )-f 2(y ),f (1)=1,f (2)=0,则下列说法中正确的是()A.f (x )为偶函数B.f (3)=-1C.f (-1)=-f (5)D.2023k =1f (k )=1【题型12】余弦函数的抽象表达式三角函数注意系数的配凑,f (x )=a sin ωx ,f (x )=a cos ωx ,以下均以a =ω=1为例(1) 对于余弦函数f (x )=cos x ,与其对应的抽象函数为f (x )+f (y )=2f x +y 2 f x -y 2 注: 此抽象函数对应于余弦和差化积公式:cos α+cos β=2cos α+β2cos α-β2(2) 对于余弦f (x )=cos x 函数 ,其抽象函数还可以是f (x )f (y )=12[f (x +y )+f (x -y )]注:余弦积化和差公式:cos αcos β=cos (α+β)+cos (α-β)2,2022新高考2卷T 8用的就是这个模型2024·吉林白山·一模1.已知函数f x的定义域为,且,f 1 =1,请写出满足条件的一个f x =(答案不唯一),f 2024 =.2024·重庆一中3月月考2.(多选)函数f x 的定义域为R ,且满足f x +y +f x -y =2f x f y ,f 4 =-1,则下列结论正确的有()A.f 0 =0B.f 2 =0C.f x 为偶函数D.f x 的图象关于1,0 对称【巩固练习】1.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f 2023 =.2.(2022新高考2卷T 8)已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )f (y ),f (1)=1,则22k =1f(k )=()A.-3B.-2C.0D.13.(2024·河北·模拟预测)(多选)已知定义在R 上的连续函数f x 满足∀x ,y ∈R ,f x +y +f x -y =f x f y ,f 1 =0,当x ∈0,1 时,f x >0恒成立,则下列说法正确的是A.f 0 =1 B.f x 是偶函数C.f 13=3 D.f x 的图象关于x =2对称【题型13】正切函数的抽象表达式对于正切函数 f (x )=tan x ,与其对应的抽象函数为f (x ±y )=f (x )±f (y )1∓f (x )f (y )注: 此抽象函数对应于正切函数和差角公式:tan (α±β)=tan α±tan β1∓tan αtan β1.已知函数f x 满足f (1)=1,f (x +y )=f (x )+f (y )1-f (x )f (y ),则()A.f 0 =0B.f -x =-f xC.f x 的定义域为RD.f x 的周期为4【巩固练习】1.(2024·广西贺州·一模)(多选)已知函数f (x )的定义域为(-1,1),f (x )+f (y )=f x +y1+xy,且当x ∈(0,1)时,f (x )>0,则下列说法正确的是()A.f x 是奇函数B.f x 为增函数C.若实数a 满足不等式f (2a )+f (a -1)>0,则a 的取值范围为13,+∞ D.f 12-f 13 >f 162.定义在-12,12 上的函数f (x )满足:对任意的都有,且当0<x<12时,.(1)判断f (x )在上的单调性并证明;(2)求实数t 的取值集合,使得关于x 的不等式在-12,12上恒成立.【题型14】二次函数的抽象表达式二次函数对于二次函数f (x )=ax2+bx +c ,与其对应的抽象函数为f (x +y )=f (x )+f (y )+2axy -c1.(2024·浙江杭州·模拟预测)对于每一对实数x ,y ,函数f 满足函数方程f x +f y =f x +y -xy -1,如果f 1 =1,那么满足f m =m m ≠1,m ∈Z 的m 的个数是()A.1个B.2个C.3个D.无数多个2.(2024·高三·河北保定·期末)已知函数f (x )满足:∀x ,y ∈Z ,f (x +y )=f (x )+f (y )+2xy +1成立,且f (-2)=1,则f 2n n ∈N * =()A.4n +6B.8n -1C.4n 2+2n -1D.8n 2+2n -5【巩固练习】1.(2024·陕西西安·模拟预测)已知函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,则下列结论正确的是()A.f (4)=12B.方程f (x )=x 有解C.f x +12是偶函数 D.f x -12是偶函数2.(2024·河南·三模)已知函数f x 满足:f 1 ≥3,且∀x ,y ∈R ,f x +y =f x +f y +6xy ,则9i =1f i 的最小值是()A.135B.395C.855D.990【题型15】其它函数的抽象表达式理论上,有多少种原函数就有多少种抽象函数与之对应,但也不乏一种原函数可以与多种抽象函数对应,以及一个抽象函数可以表示多种原函数。

抽象函数的一般解题,单调性构造,方程形式

抽象函数的一般解题,单调性构造,方程形式

一、抽象函数常见问题:1、定义域(就是自变量x 取值范围):整体替换,2、简单求值问题:主要就是赋值,主要赋值有0、1、2、-1、-23、综合问题(求值和解不等式):一般2种方向:赋值和构造函数 其目的就是构造f(x)<f(m)或f(x)=f(n)的形式,从而达到去掉“马甲 ”f, 难题可以多次赋值,从而达到构造目的二、抽象函数单调性常见构造形式:1、f(x 1+x 2)=f(x 1)+f(x 2)构造为f(x 2)=f(x 2-x 1+x 1)=f(x 2-x 1)+f(x 1)即f(x 2)-f(x 1)=f(x 2-x 1)2、f(x 1)+f(x 2)=f(x 1+x 2)-a构造为f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)即f(x 2)-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)-a3、f(x 1/x 2)=f(x 1)-f(x 2) 直接设x 1,x 2,函数直接作差即可4、f(x 1*x 2)=f(x 1)*f(x 2)构造为f(x 2)=f(x 2-x 1+x 1)=f(x 2-x 1)*f(x 1)即f(x 2)/f(x 1)=f(x 2-x 1)三、几个常见抽象函数的方程:(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.f(x/y)=f(x)-f(y)(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()c o f x x =,正弦函数()s i g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x →==.(6)正切函数f(x)=tanx,f(x+y)=(f(x)+f(y))/(1-f(x)f(y))或f(x-y)=(f(x)-f(y))/(1+f(x)f(y))。

抽象函数的定义域和求值(教师版)

抽象函数的定义域和求值(教师版)

抽象函数的定义域和求值1、抽象函数的定义域:记住两句话:地位相同范围相同,定义域是关于x 的。

所谓抽象函数就是指没有给出具体解析式的函数。

此类题目的关键是注意对应法则,在同一对应法则作用下,不管接受法则的对象是什么字母或代数式,其制约条件是一致的,即都在同一取值范围内。

该类型题目中最常见的是求复合函数的定义域,其有三种情况:(1)已知()f x 的定义域是[],a b ,求()f g x ⎡⎤⎣⎦的定义域。

该类题目实质上是由不等式()a g x b ≤≤所求x 的取值范围就是()f g x ⎡⎤⎣⎦的定义域。

例 2:已知函数()f x 的定义域是[]0,9,求函数()2f x 的定义域解:由题意知:209x ≤≤ 解得:33x -≤≤ 即函数()2f x 的定义域为[]3,3-。

(2)已知函数()f g x ⎡⎤⎣⎦的定义域是[],a b ,求函数()f x 的定义域。

该类型题目的实质是由x 的取值范围所求得的()g x 的取值范围就是函数()f x 的定义域。

例 3:已知函数()32f x +的定义域是(],3-∞,求函数()f x 的定义域。

解:∵3x ≤ ∴39x ≤ ∴3211x +≤ 即函数()f x 的定义域为(],11-∞。

(3)已知函数()f g x ⎡⎤⎣⎦的定义域是[],a b ,求函数()f h x ⎡⎤⎣⎦的定义域。

该类题目的解决方法是:先由函数()f g x ⎡⎤⎣⎦的定义域求出函数()f x 的定义域,再由函数()f x 的定义域取得函数()f h x ⎡⎤⎣⎦的定义域。

例 4:已知函数()12f x -的定义域是1,52⎡⎤⎢⎥⎣⎦,求函数()2f x -的定义域。

解:∵152x ≤≤ ∴1021x -≤-≤- ∴9120x -≤-≤ 即函数()f x 的定义域为[]4,9 ∴290x -≤-≤ 解得:解得:33x -≤≤ 即函数()2f x -的定义域为[]3,3-。

2抽象函数求值问题

2抽象函数求值问题

授课教案辅导日期:2016年月日辅导时间:学员:二、求值问题抽象函数的性质一般是用条件恒等式给出的,可通过赋值法解决,赋值需要明确目标,特殊优先,细心研究,反复试验。

★★★★例1.函数f(x)对任意实数x,y,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.【解析一】令x=y=0(特殊值优先,而f(1)一时难求),得f(0)=0,已经知道一个特殊值的函数值了,就要想办法找函数周期或递推式:令y=0(消元思想),发现没起到消元作用,已知f(0)=0那就令x=0,消去x,并令y=1(题目提到f(1)≠0,特殊优先)解得f(1)=,发现关于y2的关系式比较复杂,令y=1(求出f(m)则可以令自变量等于m以达到消掉次元及化简的作用),可得f(x+1)= f(x)+,则f(x+1)- f(x)=,,递推规律找出,又已知f(0)=0,易得f(2001)=。

【解析二】这种求较大自变量对应的函数值,一般从找周期或递推式即f(n+1)与f(n)关系着手:需求f(1),令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 需求f(0),则令x=y=0,得:f(0)=0,∴f(1)=,!!!!!y=f-1(x+2)表示x+2代入f(x+2)的反函数中还是表示f(x+2)的反函数?反函数上下或左右平移原函数会怎样y=f-1(x+2)-m的反函数又怎样?下题求的反函数方式不一定正确★★★★例2.R上的奇函数y=f(x)有反函数y=f-1(x),由y=f(x+1)与y=f-1(x+2)互为反函数,则f(2009)= .【解析】由于求的是f(2009),需找周期或递推公式,则考虑将y=f-1(x+2)化为f(x)的形式,由y=f-1(x+2)得其反函数y=f(x)-2,所以f(x+1)= f(x)-2,又y=f(x)为R上的奇函数,f(0)=0,通过递推可得f(2009)=-4018.本题难点在于由y=f-1(x+2)得其反函数y=f(x)-2,举个简单的一次函数,令f(x)=y=2x+1则其反函数求解过程是反解x得x=,改写x,y得其反函数f-1(x)=y=,又f(x+2)=y=2(x+2)+1,则求y=f-1(x+2)的过程是反解f(x+2)=2(x+2)+1中的x 并把x改写成y,y改写成x,即x+2=改写后即y+2=,化解即可。

[实用参考]高一必修一数学抽象函数常见题型解法综述.doc

[实用参考]高一必修一数学抽象函数常见题型解法综述.doc

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1.已知函数)(2x f 的定义域是[1,2],求f (G )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (G )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (G )的定义域问题,相当于已知))((x f ϕ中G 的取值范围为A ,据此求)(x ϕ的值域问题。

例2.已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (G )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求G 的取值范围。

例2和例1形式上正相反。

二、求值问题例 3.已知定义域为+R 的函数f (G ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f += 因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x 得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。

高中数学专题抽象函数

高中数学专题抽象函数

高中数学专题--抽象函数抽象函数是指没有给出函数的具体解析式,只给出了一些表达函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法〔如化归法、数形结合法等〕,这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。

常见的特殊模型:特殊模型抽象函数正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y)幂函数 f(x)=x nf(xy)=f(x)f(y) [或)y (f )x (f )y x (f =]指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [)y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )yx (f -=或正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x)正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+=+ 余切函数 f(x)=cotx)y (f )x (f )y (f )x (f 1)y x (f +-=+目录:一.定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题七、周期性与对称性问题 八、综合问题一.定义域问题 --------多为简单函数与复合函数的定义域互求。

例1.假设函数y = f 〔x 〕的定义域是[-2,2],则函数y = f 〔x+1〕+f 〔x -1〕的定义域为 11≤≤-x 。

解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。

高一数学抽象函数常见题型解法综述

高一数学抽象函数常见题型解法综述

高一数学抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1.已知函数f(某2)的定义域是[1,2],求f(某)的定义域。

22解:f(某2)的定义域是[1,2],是指1某2,所以f(某2)中的某满足1某4从而函数f(某)的定义域是[1,4]评析:一般地,已知函数f((某))的定义域是A,求f(某)的定义域问题,相当于已知f((某))中某的取值范围为A,据此求(某)的值域问题。

,2],求函数f[log1(3某)]的定义域。

例2.已知函数f(某)的定义域是[12,2],意思是凡被f作用的对象都在[1,2]中,解:f(某)的定义域是[1由此可得1log1(3某)2()3某()21221211某114所以函数f[log1(3某)]的定义域是[1,211]4评析:这类问题的一般形式是:已知函数f(某)的定义域是A,求函数f((某))的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知(某)的值域B,且BA,据此求某的取值范围。

例2和例1形式上正相反。

二、求值问题例3.已知定义域为R的函数f(某),同时满足下列条件:①f(2)1,f(6)1;②f(某y)f(某)f(y),5求f(3),f(9)的值。

解:取某2,y3,得f(6)f(2)f(3)欲求的f(3)沟通了起来。

赋值法是解此类问题的常用技巧。

三、值域问题例4.设函数f(某)定义于实数集上,对于任意实数某、y,f(某y)f(某)f(y)总成立,且存在某1某2,使得f(某1)f(某2),求函数f(某)的值域。

解:令某y0,得f(0)[f(0)]2,即有f(0)0或f(0)1。

若f(0)0,则f(某)f(某0)f(某)f(0)0,对任意某R均成立,这与存在实数某1某2,使得f(某1)f(某2)成立矛盾,故f(0)0,必有f(0)1。

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。

如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。

它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。

一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x 等。

2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。

解:先令3u x =,解出3u x =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+=⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫⎪⎝⎭,解得()6455u f u u=-即所求解析式为:()6455x f x x=-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。

解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b+=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =, 有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。

抽象函数定义域的种类及求值方式

抽象函数定义域的种类及求值方式

抽象函数定义域的种类及求值方式引言抽象函数是数学中常见的概念,它是将一组输入映射到一组输出的规则。

在定义一个抽象函数时,我们需要明确函数的定义域,即输入可以取的值的集合。

定义域的种类取决于各种因素,包括函数类型和应用领域等。

定义域的种类1. 实数定义域:一些函数可以定义在实数集上,这意味着输入可以是任意实数。

例如,常见的函数如幂函数、指数函数和三角函数等具有实数定义域。

2. 整数定义域:一些函数只能定义在整数集上,这意味着输入只能是整数。

例如,计数函数和离散数学中的一些函数都具有整数定义域。

3. 有限集定义域:某些函数只能定义在有限集上,这意味着输入只能是集合中的元素。

例如,集合中元素的个数等运算就是具有有限集定义域的函数。

4. 自定义定义域:有时,根据具体问题的要求,我们可以定义自己的特定范围作为函数的定义域。

例如,某些应用领域中定义的函数可能具有自定义的定义域。

求值方式在使用抽象函数时,我们常常需要对函数进行求值,即计算给定输入对应的输出。

求值方式取决于函数的定义域的类型。

1. 实数定义域的求值方式:对于实数定义域,我们可以直接代入输入值进行计算。

例如,对于函数f(x) = 2x + 1,当x取任意实数时,可以通过将输入值代入函数来求得对应的输出值。

2. 整数定义域的求值方式:对于整数定义域,我们只能输入整数进行求值。

例如,对于函数g(n) = n^2,当n取整数时,可以通过将整数输入值代入函数来求得对应的输出值。

3. 有限集定义域的求值方式:对于有限集定义域,我们只能输入属于集合的元素进行求值。

例如,对于函数h(A) = |A|,其中A是一个集合,可以通过计算集合中元素的个数来求得对应的输出值。

4. 自定义定义域的求值方式:对于自定义定义域,我们需要根据具体问题的要求来确定求值方式。

例如,如果一个函数的自定义定义域是某个特定的范围,我们可以根据问题的具体情况来确定求值方式。

结论抽象函数的定义域的种类和求值方式是根据函数类型和应用领域等因素而定的。

抽象函数常见题型和解法

抽象函数常见题型和解法

抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。

即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。

例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。

即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。

例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。

即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。

例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。

抽象函数及应用13种常考题型总结(原卷版)

抽象函数及应用13种常考题型总结(原卷版)

抽象函数及应用13种常考题型总结题型1抽象函数的定义域问题题型2抽象函数的值域问题题型3求抽象函数的值题型4求抽象函数的解析式题型5抽象函数的奇偶性问题题型6抽象函数的单调性问题题型7抽象函数周期性问题题型8抽象函数的对称性问题题型9解抽象不等式题型10抽象函数比较大小题型11抽象函数的最值问题题型12抽象函数的零点问题题型13双函数混合型1.抽象函数概念:我们把没有给出具体解析式的函数称为抽象函数,题目中往往只给出函数的特殊条件或特征.2.抽象函数定义域的确定所谓抽象函数是指用()f x 表示的函数,而没有具体解析式的函数类型,求抽象函数的定义域问题,关键是注意对应法则。

在同一对应法则的作用下,不论接受法则的对象是什么字母或代数式,其制约条件是一致的,都在同一取值范围内。

抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.注:求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.3.“赋值法”求抽象函数的值赋值法就是根据题目的具体情况,合理、巧妙地对某些元素赋予确定的特殊值(0,1,-1等),从而使问题获得简捷有效的解决。

注:(1)第一层次赋值:常常令字母取0,-1,1等.(2)第二层次赋值:若题中有条件0f x =t (),则再令字母取0x .(3)第三层次赋值:拆分赋值,根据抽象式子运算,把赋值数拆成某两个值对应的和与积(较多)或者差与商(较少).4.“赋值法”求抽象函数的解析式赋值法求抽象函数的解析式,首先要对题设中的有关参数进行赋值,再得到函数解析式的某种递推关系,最后求得函数的解析式。

5.“赋值法”探究抽象函数的奇偶性判断抽象函数的奇偶性的关键是得到()f x 与()f x -的关系,解题时要对有关变量进行赋值,使其最后只保留()f x 与()f x -的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授课教案
辅导日期:2016年 月 日 辅导时间: 学员:
二、求值问题 抽象函数的性质一般是用条件恒等式给出的,可通过赋值法解决,赋值需要明确目标,特殊优先,细心研究,反复试验。

★★★★例1.函数f(x)对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.
【解析一】令x=y=0(特殊值优先,而f(1)一时难求),得f (0)=0,已经知道一个特殊值的函数值了,就要想办法找函数周期或递推式:令y=0(消元思想),发现没起到消元作用,已知f (0)=0那就令x=0,消去x ,并令y=1(题目提到f(1)≠0,特殊优先)解得f(1)=21,发现关于y ²的关系式比较复杂,令y=1(求出f(m)则可以令自变量等于m 以达到消掉次元及化简的作用),可得f(x+1)= f(x)+
21,则f(x+1)- f(x)=21,,递推规律找出,又已知f (0)=0,易得f(2001)=2
2001。

【解析二】这种求较大自变量对应的函数值,一般从找周期或递推式即f(n+1)与f(n)关系着手:
,
)]1([2)()1(,1,2f n f n f y n x +=+==得令需求f(1), 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 需求
f(0),则令x=y=0,得:f(0)=0,∴f(1)=2
1,.22001)2001(f ,2n )n (f ,21f(n)-1)f(n =∴==+故即 y=f -1(x+2)表示x+2代入f(x+2)的反函数中还是
表示f(x+2)的反函数?反函数上下或左右平移原函数会怎样y=f -1
(x+2)-m 的反函数又怎样?下题求()()x f ϕ的反函数方式不一定正确
★★★★例2.R 上的奇函数y=f(x)有反函数y=f -1(x),由y=f(x+1)与y=f -1(x+2)互为反函数,则f(2009)= .
【解析】由于求的是f(2009),需找周期或递推公式,则考虑将y=f -1(x+2)化为f(x)的形式,
由y=f -1(x+2)得其反函数y=f(x)-2,所以f(x+1)= f(x)-2,又y=f(x)为R 上的奇函数,f(0)=0,通过递推可得f(2009)=-4018.本题难点在于由y=f -1(x+2)得其反函数y=f(x)-2,举个简单的一次函数,令f(x)=y=2x+1则其反函数求解过程是反解x 得x=
21-y ,改写x,y 得其反函数f -1(x)=y=2
1-x ,又f(x+2)=y=2(x+2)+1,则求y=f -1(x+2)的过程是反解f(x+2)=2(x+2)+1中的x 并把x 改写成y ,y 改写成x,即x+2=2
1-y 改写后即y+2=21-x ,化解即可。

由以上过程我们发现求()()x f ϕ的反函数,即令)(y ϕ= f -1
(x),求解出y 即可。

★★★★★例3.已知f(x)是定义在R 上的函数,f(1)=1,且对任意x ∈R 都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2002)=_________.
【解析】考虑g (x )用f(x)表达的形式,要求g(x)需要知道f(x)解析式,显然通过上面条件无法求出,故考虑f(x)用g(x)表达的形式代入以上条件来寻求g (x )的性质规律:由g(x)=f(x)+1-x,得f(x)=g(x)+x-1. 而f(x+5)≥f(x)+5,所以g(x+5)+(x+5)-1≥g(x)+x-1+5 , 又f(x+1)≤f(x)+1,所以 g(x+1)+(x+1)-1≤g(x)+x-1+1即g(x+5)≥g(x), g(x+1)≤g(x). 所以g(x) ≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1)故g(x)=g(x+1) 又赋值得g(1)=1, 故g(2002)=1.
★★★练1.已知定义域为+R 的函数f (x ),同时满足下列条件:①5
1)6(1)2(=
=f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

【解析】赋值法是解此类问题的常用技巧,可观察已知与未知的联系,巧妙赋值把已知条件欲求问题沟通起来。

取32==y x ,,得)3()2()6(f f f +=,因为51)6(1
)2(==f f ,,所以5
4)3(-=f 又取3==y x 得58)3()3()9(-
=+=f f f 。

★★★练2. f(x)的定义域为(0,)+∞,对任意正实数x,y 都有f(xy)=f(x)+f(y) 且f(4)=2 ,则(2)f =
【解析】取x=y=2得f(2)=1,取x=y=2得(2)f = =12
此类题速解法是联系函数模型,可在几秒内解出,但必须充分利用条件,准确说f(xy)=f(x)+f(y)是对数函数模型的必要而不充分条件。

如练1.
71)71(7)1(,,3)73(,2)72()72(21)2720()71(,)71()2(21)],1([)1()24341()21()1()43(,)41(,21,0)21(,1,0)1(22==∴===∴=+===-++-=+=+-==∴=====b f b f b f b f f f f b f a a a a a a a f f a a a f a f y x a f y x 同理则设可解得又,令则令【解析】★★★练3.的值是则且如果)
2001(f )2000(f )5(f )6(f )3(f )4(f )1(f )2(f ,2)1(f ),y (f )x (f )y x (f ++++==+ 。

2(1)(2)(1)f f f ++222(2)(4)(3)(6)(4)(8)(3)(5)(7)
f f f f f f f f f +++++= . 【解析】速解法可以看出函数模型为()2n f n =,符合该条件,易得一式=2000,二式=16.也可赋值发现规律,一式令y=1即可,二式赋值将各函数值都求出或找出分子分母关系即可。

★★★练4.对任意整数y x ,)(x f y =满足:1)()()(+++=+xy y f x f y x f ,若1)1(=f ,则=-)8(f ()
A.-1
B.1
C. 19
D. 43
【解析】选C 。

易得f(8)=43,又用x=y=0代入得f(0)=-1,最后用x=8,y=-8代入可求,或求出f(0)=-1后,先求f(-1),再求f(-2),f(-4),f(-8)也可。

★★★练 5.f(x)为R 上的偶函数,对x R ∈都有(6)()(3)f x f x f +=+成立,若(1)2f =,则(2005)f =( )
A . 2005 B. 2 C.1 D.0
【解析】选B ,令x=-3代入,得f(-3)=f(3)=0,所以函数周期为6.
★★★★定义在R 上的函数Y=f(x)有反函数Y=f -1(x),又Y=f(x)过点(2,1),Y=f(2x)的反函数为Y=f -1(2x),则Y=f -1(16)为( )(A )
A )18
B )116
C )8
D )16 ★★★★
的值求的值求均有对所有上的函数,满足,是定义在为实数,且已知练)7
1()2()1)(()()1()2(
,,
1)1(,0)0(]10[)(,10.6f a y af x f a y x f y x f f x f a a +-=+≤==<<
老师签字: 组长签字: 教务签字:。

相关文档
最新文档