空气-蒸汽对流传热系数测定
实验五 空气_蒸汽对流给热系数
76.3
76.4
76.7
76.9
77.2
75.9
78.9
78.8
43.2
23.9
75.8
75.6
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.5
24.2
75.8
75.5
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.6
24.4
75.8
75.6
76.2
102.5
103.1
15
51.8
83.1
102.3
103
10
49.9
82.9
102.4
103.1
7.5
47.6
82.5
102.4
103.2
5
表2冷流体特性参数
空气流速u(m/s)
对数平均温度差Δt
冷流体平均温度
空气密度ρ(Kg/m3)
空气质量流量qm(Kg/h)
空气黏度μ(Pa/s)×10-5
空气的导热系数λ(W•m﹣¹•K﹣¹)
cPF=1.01+(3.1949× ×lg37.7-5.5099×37.7-3.0506× )×10﹣³
=0.84kcal/Kg=161.7KJ/(Kmol•℃)
q= 1+161.7×(83.4-41.82)/90883.7=1.0740
故加料线方程y= X- =14.5X-2.58
= =0.246
即61.26/0.6950.4=A•25008m
50.90/0.6950.4=A•20388.1m
空气-蒸汽对流给热系数测定数据处理(数据表格、计算示例及图解)
一、原始数据记录表二、计算结果表实验号流量 温度(℃)m 3/h冷流体进口温度t1 冷流体出口温度t2 冷流体进口侧蒸汽温度T1冷流体出口侧蒸汽温度T2 1 5 35.8 76.8 102.9 102.4 2 7.5 36.6 76.5 101.9 101.2 3 10 37.2 76.9 102.2 101.8 4 12.5 38.4 77.5 102.5 102 5 15 40.1 77.8 102.4 101.9 6 17.5 41.9 78.3 102.5 101.9 7 20 43.4 78.6 102.4 101.8 8 22.544.1 78.5 102.5101.9序号Δt m \℃K W/m 2·℃Pr Re X Y m α21 43.2337 29.90223 0.597055 7324.592 1.143919 0.033442 0.020978 41.67203 2 41.99407 44.92077 0.596638 10982.84 0.826950.022261 0.020978 57.64489 3 41.92402 59.64674 0.595804 14633.02 0.656813 0.016765 0.020978 72.57683 4 41.33924 74.365130.5943118267.16 0.549236 0.013447 0.020978 86.79224 5 40.38487.940270.592657 21888.62 0.474507 0.011371 0.020978 100.4611 6 39.42766 101.6829 0.593118 25494.11 0.418598 0.009834 0.020978 113.8787 7 38.54594 114.7875 0.591641 29098.25 0.376053 0.008712 0.020978 126.7624 838.45563 126.43840.591149 32721.39 0.342197 0.007909 0.020978 139.3041计算示例:(以第一组为例)平均温度t 平均1=(t 1+t 2)/2=(35.8+76.8)/2=56.3℃ 此温度下,空气的各项物性分别为:空气进口处密度ρ’=1E-05*t 2-4.5E-03*t+1.2916=1.069947 空气的比热Cp :1005J/(kg ·℃) 温度在60℃以下 空气的导热系数λ=-2E-08*t 2+8*E-05*t+0.0244=0.028841空气的粘度μ=(-2E-06*t 2+5*E-03*t+1.7169)*1E-05=1.71338E-05序号平均温度t 平均空气进口处密度ρ’ 空气质量流量m 2 空气的比热Cp 实际流量V ’ 空气的导热系数λ空气的粘度μ NuNu/Pr 0.4ln(N u/Pr 0.4ln(R e)156.3 1.069947 0.001577 1005 0.001474 0.0288411.71338E-05 23.11853 28.41545 3.346933 8.898993 256.55 1.069104 0.002365 1005 0.002212 0.028861.71333E-05 31.95831 39.29159 3.671011 9.30409 357.05 1.067422 0.00315 1005 0.002951 0.0288991.71324E-05 40.18246 49.43051 3.900568 9.591036 457.95 1.064407 0.003932 1005 0.003694 0.0289691.71308E-05 47.93689 59.02894.078027 9.81286558.95 1.061076 0.004712 1005 0.00444 0.0290461.7129E-05 55.33806 68.21856 4.222717 9.993722 660.1 1.05727 0.005487 1009 0.00519 0.0291361.71268E-05 62.53688 77.06899 4.344701 10.1462 761 1.05431 0.006262 1009 0.005939 0.0292061.71251E-05 69.44557 85.66854 4.450486 10.27843 861.3 1.053327 0.007041 1009 0.006685 0.0292291.71245E-0576.25566 94.10077 4.544366 10.39578标定用流体的体积流量V 1=5m 3/h ρf=7800kg/m 3 ρ=1.205kg/m 3,由此可得出实际的空气流量为: V ’=()ρρρρρρ--f f ’)’(V=)()( 1.205-78001.069947 1.069947-7800205.136005=0.001474空气质量流量m 2=ρ’V ’=1.069947*0.001474=0.001577 d 2=0.016m l=1m 换热面积A=π*d 2*lm=0.020978d 4023.018.128.0=⨯⎪⎭⎫ ⎝⎛⨯π K=m 122p 2t t -t m ∆A c )(=43.2337*1*016.0*35.8-76.8*1005*0.001577π)(=29.90223Pr=λμ*p c =0.02884105-1.71338E *1005=0.597055Re===2d *V *4·d d πμρμρ’u 0.016*05-1.71338E * 1.069947*0.001474*4π=7324.592 X=8.022224.0Pr 1⎪⎪⎭⎫ ⎝⎛⨯μλm = 1.1439190.00157705-1.71338E 0.597055*0.02884118.00.4=⎪⎭⎫ ⎝⎛⨯ 0.0334421==KY 8.0224.0222m m Pr ⎪⎪⎭⎫ ⎝⎛⨯=μλα=41.6720305-1.71338E 0.0015770.0209780.597055*0.0288418.00.4=⎪⎭⎫ ⎝⎛⨯ 因为流体是被加热,故Nu 中n 取0.4,则:23.11853r *e *023.0u 4.08.0==P R N 28.415450.59705523.11853r 0.44.0==P Nu 3.3469330.59705523.11853ln Pr ln 0.44.0=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛Nu 8.898993Re ln =)(三、冷流体给热系数的准数式:Nu/Pr 0.4=ARe m,由实验数据作图拟合曲线方程,确定式中常数A 及m,如下:500010000150002000025000300003500040000450005000020406080100ReData: Data1_B Model: Allometric1Equation: y = a*x^b Weighting: y No weightingChi^2/DoF = 2.8642E-11R^2= 1 a 0.023±1.9337E-8b 0.8±8.3367E-8N u /P r 0.4作曲线如上,按照y=a*x^b 拟合,由表内数据可知a=0.023,b=0.8;与Nu/Pr 0.4=ARe m 比较,即确定常数A=0.023,m=0.8 ,与经验式Nu/Pr 0.4=0.023Re 0.8中数值完全一致.四、以ln(Nu/Pr 0.4)为纵坐标,ln(Re )为横坐标,如下:8.89.09.29.49.69.810.010.210.410.63.23.43.63.84.04.24.44.6ln(Nu/Pr0.4 Linear Fit of C1l n (N u /P r 0.4ln(Re)Equation y = a + b*xAdj. R-Squ 1ValueStandard ErC1Intercep -3.772 5.88102E-6C1Slope0.8 5.99225E-7作曲线如上,按照y=a+b*x 拟合,由表内数据可知a=-3.772,b=0.8;即ln(Nu/Pr 0.4)=-3.772+0.8*ln(Re),取e 的指数,两边消去ln ,则8.0Re ln 772.30.4)ln(N u/PrRe 023.0*Nu/Pr 8.00.4===-e e e ,与Nu/Pr 0.4=ARe m比较,即确定常数A=e -3.772=0.023,m=0.8 ,与经验式Nu/Pr 0.4=0.023Re 0.8中数值完全一致.。
空气-水蒸气对流给热系数测定实验报告
空气-水蒸气对流给热系数测定实验报告本实验使用臭氧编码器,通过悬浮思路分析,利用不同的匀速度下不同的温度差分析空气-水蒸气的对流换热系数,帮助我们理解空气-水蒸汽对流的过程。
本文将对实验的设备、方法、结果及分析进行详细介绍。
一、实验设备1. 实验室气体混合系统2. 实验室压力传感器4. 实验室水蒸气浸润计6. 实验室数据采集器二、实验方法1. 设计实验2. 实验片段将实验室气体混合系统、压力传感器、温度传感器、水蒸气浸润计和湿度传感器等设备设置在实验室中,同时使用数据采集器对数据进行实时记录。
在实验中,我们首先设置了一个不同的温度差,然后观察它们在不同的匀速度下的换热系数。
通过计算,我们可以得到不同匀速下不同温度差的换热系数。
三、实验结果及分析通过实验结果和数据分析,我们得到不同温度差和匀速度下的换热系数。
1. 换热系数随着温度差的增加而增加我们可以看到,在温度差越大的情况下,热传导的能力也越强。
颗粒与颗粒之间的间距越小,热量间的转移就越快,因此换热系数也越高。
当温度差在一定的范围内,换热系数与温度差的平方成正比。
我们还可以看到,在匀速越大的情况下,换热系数也会越大。
当匀速越大时,颗粒间的热传导也会越快,从而使换热系数更大。
综合以上分析,我们可以得到空气-水蒸汽的对流换热系数与温度差和匀速度密切相关。
当温度差和匀速度越大时,换热系数也会越大。
同时,通过这些实验结果,我们可以更好地理解空气-水蒸汽对流的过程。
四、实验结论通过本次实验,我们可以得出以下结论:1. 空气-水蒸汽的对流换热系数与温度差成正比,当温度差越大时,换热系数也会越大。
因此,我们可以通过控制空气-水蒸汽的温度差和匀速度来控制其换热系数,从而更好地理解热传导过程。
化工原理实验(四)空气-蒸汽对流给热系数测定
化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
空气蒸汽对流给热系数的测定
五、实验数据记录与处理1、实验原始数据记录表,根据相关计算式进行相关数据计算。
实验原始数据记录表计算示例(以次序1数据作为计算示例): 空气进口处密度:52310 4.510 1.2916t t ρ--=-⨯+=10-5× 38.62-4.5×10-3 ×38.6+1.2916=1.1328kg/m 3;空气质量流量:m s2 =ρV=4×1.1328÷3600=0.0012kg/s ;空气流速:u=4V/(πd 2)=4×4/(3.14×0.016×0.016×3600)= 5.5290m/s ;2.给热系数K 的计算空气定性温度:t 平均=(t 1+t 2)/2=(38.6+79.6)/2=59.1℃<60℃ 则空气比热:Cp=1005 J/(kg·°C) 定性温度下的空气密度ρ:52310 4.510 1.2916t t ρ--=-⨯+ =10-5× 59.12-4.5×10-3 ×59.1+1.2916=1.0606kg/m 3;冷、热流体间的对数平均温差:()()12211221ln t T t T tT t T t m-----=∆==40.32℃ 传热面积:22A d l π==3.14×0.016×1=0.0502m 2 对流传热系数:()mp t A t t c m K ∆-=1222= = 26.46W/(m 2·℃);3.近似法求给热系数α2 则α2=K=24.43W/(m 2·℃);(103.0-79.6)-(102.5-38.6)ln [(103.0-79.6)/(102.5-38.6)]0.0502×40.32空气粘度:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)=(-2×10-6×38.62+5×10-3×38.6+1.7169)×10-5=1.906×10-5P a.s 空气导热系数:8252108100.0244t t λ--=-⨯+⨯+ =-2×10-8×38.62+8×10-5×38.6+0.0244=0.0275 W/(m·K ) 雷诺数:μρdu =Re = ;普兰特数:λμ2Pr p c == =0.6966 ;努赛尔数:λαdNu ==26.46×0.016/0.0275=15.39 ; 对于流体在圆形只管内做湍流时的对流传热系数,如符合以下条件:Re=1×104—1.2×105,Pr=0.7-120,管长与管内径之比l/d≥60,则Nu=0.023Re 0.8Pr n 。
实验三对流给热系数测定实验(空气-水蒸气体系)
实验三 对流给热系数测定实验(空气-水蒸气体系)3.1 实验目的1) 观察水蒸气在水平管外壁上的冷凝现象;2)测定空气在圆形直管内强制对流给热系数和换热器总传热系数并随着流量的变化规律;3)掌握热电阻测温方法;4)掌握化工原理实验软件库(VB 实验数据处理软件系统)的使用。
3.2 基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=α0A 0(T -T W )m =αi A i (t w -t)m (1—15) 式中:V 被加热流体体积流量,m 3/s ; ρ 被加热流体密度,kg/m 3; C P 被加热流体平均比热,J/(kg ·℃);α0、αi 水蒸气对内管外壁的冷凝给热系数和流体对内管内壁的对流给热系数,W/(m 2·℃);t 1、t 2 被加热流体进、出口温度,℃; A 0、A i 内管的外壁、内壁的传热面积,m 2; (T -T W )m 水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1—16)(t w -t)m 内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w mw -----=- (1—17) 式中:T 1、T 2 蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2 外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1—17)可得:m P Tw T A t t C V )()(0120--=ρα (1—18)mw P it t A t t C V )()(012--=ρα (1—19) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 0或A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1 —18)算得实测的水蒸气(平均)冷凝给热系数α0;通过 式(1 —19)算得实测的流体在管内的(平均)对流给热系数αi 。
实验7. 空气-蒸汽对流给热系数的测定
实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
对流传热系数测定实验报告
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
实验三+蒸汽─空气对流传热传热系数的测定
实验三 蒸汽─空气对流传热传热系数的测定一、实验目的1. 测定套管式换热器的总传热系数K ;2. 测定圆形直管内传热膜系数α,并学会用实验方法将流体在管内对流及强制对流 时的实验数据整理成包括传热膜系数α的准数方程式;3. 了解并掌握热电偶和电位差计的使用及其温度测量。
二、基本原理1.测定传热系数K根据传热速率方程式:m T KA ∆=φ (1)mT A K ∆=φ(2)式中: φ传热速率,W ; K 总传热系数,W/(m 2·℃);A 传热面积; m T ∆两流体的平均温度差。
实验时,若能测定或确定φ、A 和,则可测定K 。
m T ∆⑴ 实验是测定蒸汽加热空气时的对流传热总传热系数,其中蒸汽通加套管环隙加热内管的空气,具体的流程如下:在不考虑热损失的条件下,有)(122211T T c q r q p −==m m φ (3)式中: q m1— 蒸汽冷凝液的质量,kg/s ; r 1 — 蒸汽冷凝潜热,J/kg ;q m2— 空气的质量流量,kg/s ; c p2 — 空气的定压比热,J/(kg ·K);T 1、T 2— 空气的进出口温度,℃; T W1、T W2— 内管外壁温度与内壁温度,℃。
实验中传热速率φ按空气的吸热速率计算。
其中空气的质量流量由孔板流量计测量其 体积流量后转化为质量流量。
即:q m =t ρq V (4)式中:t ρ—为空气进出口平均温度下的密度,kg/m 3。
q V — 为空气的体积流量,m 3/s 。
本实验中,空气的体积流量由孔板流量计测量并通过压力传感器将其差压数字在显示仪表上显示出。
20℃ 下空气流量由公式(5)计算。
6203.000)(p C q t ∆×=V (5)其中, — 20℃ 下的体积流量,m 0t q V 3/h ;C 0— 孔板流量系数,本实验装置中其值为22.696。
p ∆—孔板两端压差,kPa 。
则实验条件下的空气流量q V (m 3/h)则需按下式计算:2732730t Tq q t t ++×=V V式中:t q V —实验条件(管内平均温度)下的空气流量,m 3/h 。
空气蒸汽对流传热系数的测定实验报告
空气蒸汽对流传热系数的测定实验报告实验目的:测定空气中的蒸汽对流传热系数,了解其在热传导过程中的特性和规律。
实验原理:空气中的热传导有两个主要的途径,即对流传热和辐射传热。
在大气压力下,空气中的蒸汽通常以微小的水滴或颗粒的形式存在。
当热量传递给空气蒸汽颗粒时,其会通过对流传热的方式将热量散发到周围的空气中。
对流传热系数(h)是描述对流传热性能的一个重要参数,通过测量传热流量和温度差,可以计算出空气蒸汽对流传热系数。
实验器材:1. 空气蒸汽发生器:用于产生空气中的蒸汽。
2. 传热试样:具有良好的导热性能的金属试样。
3. 温度测量仪器:如温度计或热电偶,用于测量传热试样和周围环境的温度。
4. 流量计:用于测量蒸汽的流量。
5. 电源和电表:用于供电和测量电能消耗。
实验步骤:1. 将空气蒸汽发生器连接到传热试样,并保持一定的温度差。
2. 打开空气蒸汽发生器和流量计,开始生成空气中的蒸汽,并调整蒸汽流量至稳定。
3. 同时开启温度测量仪器,分别测量传热试样的表面温度和周围环境的温度。
4. 根据传热试样表面温度和周围环境温度的差值,计算出传热速率,即传热流量。
5. 根据蒸汽流量和传热流量,计算得到空气蒸汽的对流传热系数。
实验数据记录与处理:1. 记录传热试样表面温度和周围环境温度的数值。
2. 根据所测得的温度差值,计算出传热速率。
3. 根据蒸汽流量和传热速率的比值,计算得到空气蒸汽的对流传热系数。
实验结果与讨论:根据实验测得的数据,计算出空气蒸汽的对流传热系数,并进行实验结果的分析和讨论,比较不同实验条件下的对流传热系数差异,探究影响因素与对流传热系数的关系。
结论:通过本次实验,测定并计算得到了空气蒸汽的对流传热系数,并对影响因素进行了讨论。
实验结果可以为热传导以及相关工程问题的研究和应用提供参考。
空气蒸汽对流给热系数测定
实验数据记录与处理计算示例(以次序1数据作为计算示例):空气进口处密度:2916.138.9105.48.93102916.1105.4t 10325325+⨯⨯-⨯=+⨯-=----t ρ=1.13kg/m 3空气质量流量:skg V m s /1300.0360031.14.32=⨯=⨯=ρ空气流速:sm dVu /5.94016.0016.014.33600 4.3442=⨯⨯⨯⨯==π空气定性温度:()64.8)90.78.93(212121平均=+=+=t tt °C则空气比热:9100=Cp J/(kg·°C)定性温度下的空气密度'ρ:3325325'/40.12916.164.8105.464.8102916.1105.410m kg t t=+⨯⨯-⨯=+⨯-=----ρ冷、热流体间的对数平均温差:()()33.488.935.01090.74.610ln)8.935.010()90.74.610(ln12211221=-----=-----=∆t T t T t T t Tt m传热面积:2220502.01016.014.3m l d A =⨯⨯==π对流传热系数:()33.480502.0)8.9390.7(91000058.01222⨯-⨯⨯=∆-=mp t A t t c m K =42.04w/(m 2·°C) 3、2α理论值的计算空气粘度:532610)7169.1105102(---⨯+⨯+⨯-=t t μ=s Pa ⋅⨯=⨯+⨯⨯+⨯⨯-----553261088.110)7169.133.4810533.48102(空气导热系数:702.00244.033.4810833.48102-0244.0108102528-528=+⨯+⨯=+⨯+⨯-=---t tλ雷诺数:5265.151088.140.15.49016.0'Re 5=⨯⨯⨯==-μρdu普兰特数:70.0702.01088.19100Pr 5=⨯⨯==-λμCp努赛尔数:42.04027.0016.042.042=⨯==λαd Nu对于流体在圆形只管内做湍流时的对流传热系数,如符合以下条件:54102.1100.1Re ⨯-⨯=,1207.0Pr -=,管长与管内径之60/≥d l ,则nNu Pr Re023.08.0=。
空气-蒸汽对流传质系数的测定
五、实验数据记录及处理表1 实验原始数据记录表水蒸气压强MPa q V体积流量(m3/h)t1空气进口处温度(o C)t2空气出口处温度(o C)T1蒸汽进口温度(o C)T2蒸汽出口温度(o C)空气进口处密度(Kg/m3)q m质量流量(Kg/s)u空气流速(m/s)0.02 20.0 61.7 82.4 101.9 101.7 1.052019 0.005845 27.6450810.02 18.1 61.6 82.4 101.9 101.7 1.052346 0.005291 25.0187990.02 17.0 61.8 82.8 101.8 101.9 1.051692 0.004966 23.4983190.02 15.9 62.1 82.8 101.7 101.7 1.050714 0.004641 21.9778400.02 13.4 61.3 82.9 102.0 102.1 1.053327 0.003921 18.5222050.02 11.3 60.2 82.3 101.7 101.7 1.056940 0.003318 15.6194710.02 9.5 58.6 81.6 102.0 101.9 1.062240 0.002803 13.1314140.02 7.6 55.9 81.0 101.9 101.7 1.071298 0.002262 10.505131 空气进口处的密度:ρ=10-5t2-4.5*10-3t+1.2916(t为空气进口处温度,即t1)空气质量流量:qm =qv*ρ(Kg/s)空气流速:u=4qv/(πd2) (m/s) 表2 总传热系数K的计算空气定性温度(t平均o C)定性温度下的空气密度ρ’(Kg/m3)冷、热流体间的对数平均温差o C总传热系数K~h 怒塞尔数Nu72.1 1.019287 28.5 85.155885 45.325555 72.0 1.019440 28.6 77.354291 41.178316 72.3 1.018523 28.2 74.147705 39.440984 72.5 1.018065 28.0 68.937746 36.655585 72.1 1.019134 28.6 59.489350 31.660078 71.3 1.021741 29.1 50.666594 27.023563 70.1 1.025290 30.4 42.555131 22.764576 68.5 1.030429 31.7 35.778697 19.221460空气定性温度:t平均=1/2(t1+t2)空气比定压热容:Cp=1005J*Kg-1*K-1(<60O C) Cp=1009J*Kg-1*K-1(>70O C)定性温度下的空气密度:ρ’=10-5t2-4.5*10-3t+1.2916(t为空气定性温度,即t平均)冷、热流体间的对数平均温差:△tm=((T1-t2)-(T2-t1))/ln((T1-t2)/(T2-t1))传热面积:A=πd2l(m2)总对流传热系数K约等于冷流体的对流传热系数实验值h:h=K=qm1Cp1(t2-t1)/(A△tm)表3 h理论值的计算及各点之间的相对误差Pr普朗特数Re雷洛数怒塞尔数的理论值Nu’λ空气导热系数μ空气黏度h’理论值各点之间的相对误差0.693731 21814.371645 58.775796 0.030060 0.000021 110.425673 0.228840 0.693741 19747.220252 54.276472 0.030056 0.000021 101.959438 0.241323 0.693682 18517.762385 51.554046 0.030079 0.000021 96.919848 0.234959 0.693652 17305.855199 48.835874 0.030091 0.000021 91.845079 0.249413 0.693721 14611.770645 42.654431 0.030064 0.000021 80.147760 0.257754 0.693890 12377.370602 37.354834 0.029998 0.000021 70.036739 0.276571 0.694119 10469.433724 32.676831 0.029910 0.000021 61.084679 0.303342 0.691696 8449.528101 27.489055 0.029782 0.000020 51.167941 0.300760 空气黏度:μ=(-2*10-6t2+5*10-3t+1.7169)*10-5空气导热系数:λ=-2*10-8t2+8*10-5t+0.0244雷洛数:Re=duρ’/μ普朗特数:Pr=Cpμ/λ怒塞尔数的理论值:Nu’=0.023Re0.8Pr0.4怒塞尔数:Nu=Kd/λh理论值:=0.023Re0.8Pr0.4λ/d实验值h’与理论值h各点之间的相对误差:/h’-h//h’*100%误差分析:○1设备内的空气未排尽,即有不冷凝性气体存在,使实验值h下降。
空气-蒸汽对流给热系数测定
空气-蒸汽对流给热系数测定紫铜管规格:直径φ21×2.5mm ,长度L=1000mm 外套玻璃管规格:直径φ100×5mm ,长度L=1000mm1、原始数据记录如下表:2、根据()()12211221m t T tT ln t T t T t -----=∆ 将冷热流体的进出口温度换算成冷热流体间的对数平均温差,数据总结如下表.3、在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。
(1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-⨯+ (2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ∙℃),70℃以上p C =1009 J / (kg ∙℃)。
(3)空气的导热系数与温度的关系式: 8252108100.0244t t λ--=-⨯+⨯+(4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)按以上公式,并以标准单位换算,得到如下数据结果表:4、对于流体在圆形直管内作强制湍流对流传热时,若符合如下范围内:Re=1.0×104~1.2×105,Pr =0.7~120,管长与管内径之比l/d ≥60,则传热准数经验式为,n 8.0Pr Re 023.0Nu = (4-9) 式中:Nu -努塞尔数,λα=dNu ,无因次;Re -雷诺数,μρ=du Re ,无因次; Pr -普兰特数,λμ=p c Pr ,无因次;当流体被加热时n =0.4,流体被冷却时n =0.3;按以上公式,并以标准单位换算,得如下数据结果表。
5、由式 ()mp t A t t c m K ∆-=1222,实验测定2m 、2121T T t t 、、、、并查取()2121t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 如下表。
空气蒸汽给热系数测定实验报告
空气蒸汽给热系数测定实验报告
实验原理:
空气蒸汽给热系数是指空气与液体或固体接触时的传热能力,通常用
对流传热系数来表示。
在实际应用中,空气蒸汽给热系数对于优化传
热设备和工艺具有重要意义。
实验步骤:
1. 准备实验装置:将一根绝热管放置于恒温水槽中,通过管中通水形
成对流传热,空气通过导热管进入绝热管,从而与水接触实现传热。
2. 打开温度控制仪,设置所需温度;同时打开水泵,使水循环;将压
力表连接在导热管上,记录空气进口和出口的压力。
3. 通过流量计调节空气流量,记录流量计读数。
4. 使用热电偶测量水的温度,并记录读数。
5. 开始实验,记录空气进口和出口的压力以及水的温度。
6. 根据实验数据计算空气蒸汽给热系数,并进行数据分析和讨论。
实验数据处理:
根据实验记录的空气进口和出口的压力以及水的温度,可以计算空气
蒸汽给热系数。
可以使用以下公式计算空气蒸汽给热系数:
hc= Q/(m×ΔT)
其中,hc为空气蒸汽给热系数,Q为传热量,m为空气质量流量,ΔT为水与空气的温差。
实验结果:
实验结果可以通过计算得出空气蒸汽给热系数的数值,并进行数据分
析和讨论。
实验结果应该符合理论计算值,并且要注意误差的来源和
可能的原因。
结论:
通过空气蒸汽给热系数的测定实验,可以得到空气与液体或固体的传
热能力,这对于传热设备和工艺的优化具有重要意义。
根据实验结果,
可以评估实验的准确性和可靠性,并进行数据分析和讨论,进一步探讨传热现象和相关机理。
4气-汽对流传热实验
气—汽对流传热膜系数测定一、实验目的1. 掌握对流传热膜系数α 的测定方法,加深对其概念和影响因素的理解;2、掌握用最小二乘法确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值; 二、 实验原理对于流体在圆形直管中作强制湍流时的对流传热膜系数的准数关联式可以表示成:Nu = A Re m Pr n系数A 、指数m 和n 则需由实验加以确定。
通过实验测得不同流速下的压差,空气的进、出口温度和换热器的壁温(因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内、外壁温度与壁面的平均温度近似相等),根据所测的数据,经过查物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法(最小二乘法)确定关联式Nu = A Re m Pr n 中常数A 、m 的值。
线形回归:用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。
为了便于掌握这类方程的关联方法,可取n = 0.4(实验中流体被加热)。
这样就简化成单变量方程。
两边取对数,得到直线方程:在双对数坐标系中作图,找出直线斜率,即为方程的指数m 。
在直线上任取一点的函数值代入方程中得到系数A ,即用图解法,根据实验点确定直线位置,有一定的人为性。
而用最小二0.4mP rR eN u A =0.4lglg lg R eP rN u A m =+乘法回归,可以得到最佳关联结果。
三、实验装置气—汽对流传热系数测定装置流程图设备参数;四、实验操作方法和步骤3.1 实验前准备工作1)检查装置上各部件是否齐全、完好。
熟悉装置上各个设备、仪表和部件的使用方法,了解有关注意事项。
2)连接好自来水管线,向蒸汽发生器内供水至液位计指定水位。
3)开启电源总开关和加热开关,检查各个温度值显示是否正常,记下室温值。
同时启动旋涡气泵,管线接口处(尤其是进口处)不能有漏气。
3.2实验操作1)调节加热电流,其中一组为常热电流,维持在6A,另一组为可调电流,加热时为4A。
空气—蒸汽对流给热系数测定实验报告及数据、答案.doc
空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数实验内管内径d i(mm)16.00实验内管外径d o(mm)17.92实验外管内径D i(mm)50实验外管外径D o(mm)52.5总管长(紫铜内管)L(m) 1.3010测量段长度l(m) 1.10 1010图1 空气-水蒸气传热综合实验装置流程图1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;孔板流量计测量空气流量空气压力蒸汽压力空气入口温度蒸汽温度空气出口温度10 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
空气-蒸汽对流给热系数测定
空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1) 式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃);Tt图4-1间壁式传热过程示意图T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。