概率模拟题(高考试题)-P

概率统计模拟试题1-4解答

模拟试题(一)参考答案 一.单项选择题(每小题2分,共16分) 1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或 (D) AB 未必是不可 能事件 解 若AB 为零概率事件,其未必为不可能事件.本题应选D. 2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( ) (A) )1(3p - (B) 3)1(p - (C) 31p - (D) 21 3 )1(p p C - 解 所求事件的对立事件为“3次都不成功”,其概率为3p ,故所求概率为31p -.若 直接从正面去求较为麻烦.本题应选C. 3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续 解 由连续型随机变量概率密度的定义可知,)(x f 是定义在),(+∞-∞上的非负函数,且满足?∞ +∞-=1d )(x x f ,所以A 一定成立.而其它选项不一定成立.例如服从]2 1 ,31[上的均匀分布的随机变量的概率密度 ?????≤≤=其他, 0, 2131,6)(x x f 在31=x 与21=x 处不连续,且在这两点的函数值大于1.因而本题应选A. 4.若随机变量X 的概率密度为)( 21)(4 )3(2 +∞<<-∞=+- x e x f x π ,则=Y ( ))1,0(~N (A) 2 3+X (B) 2 3+X (C) 2 3-X (D) 2 3 -X

概率统计考试习题及答案

欢迎阅读 湖北汽车工业学院 概率论与数理统计考试试卷 一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1 【B 】2 【A 】),而 【C 】4 【D 】5【B 】6 若α=<)(c X P ,则c 等于 )(A 2αu . )(B 2)1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上): 1. 设样本空间{ },2,3,4,5,61=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61. 2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占 3%。已知一学生数学不及格,那么他语文也不及格的概率是5 1 . 3. 设离散型随机变量X 的分布列为{}k a k X P ?? ? ??==31, ,3,2,1=k ,则=a 2.

4. 已知2)(-=X E ,5)(2=X E ,那么=-)32015(X D 9. 5. 设随机变量X 与Y 独立且都服从[]3,0上的均匀分布,则()[]= ≥2,m in Y X P 9 1. 6. 设某种电子管的使用寿命服从正态分布)300,(2μN ,μ未知,从中随机抽取16个进行检验,测得平均使用寿命为1950小时,则未知参数μ的置信水平为95.0的置信区间为[]2097,1803. 【特别提醒】(1)以下各题的求解过程必须按题号写在答题卡上指定的方框内,题号对应错误以及超出方框部分的解答均无效.(2)答题卡上的任何位置不得用胶带粘贴,不得用涂改液涂改,否则将不被阅卷系统识别. 三、(本题满分10分)一个工厂有甲、乙、丙三个车间生产同一种螺钉,每个车间的产量分别占 (P (P (P 四、(求 2 (2) ()2020.50.50.501151 0.52()2662 x P X f x dx e dx dx e ----<<==+=-??? 五、(本题满分12分)设二维随机变量),(Y X 的联合概率密度为 ?? ?≤≤≤≤-=其它 0,10)1(24)(x y x y x y x f (1) 求随机变量X 与Y 的边缘概率密度; (2) 若Y X ,分别为一矩形木板的长与宽,求木板面积的数学期望. 解:(1)当0x 时,0)(=x f X ;

概率论与数理统计模拟题一及标准答案

概率论与数理统计模拟题一 一、 单项选择题(每小题3分,共30分) 1、设,,A B C 是随机事件,且AB C ?,则( )。 (A)C A B ?U (B) A C ?且B C ? (C)C AB ? (D) A C ?或B C ? 2、某工厂生产某种圆柱形产品,只有当产品的长度和直径都合格时才算正品,否则就为次品,设A 表示事件“长度合格”,B 表示事件“直径合格”,则事件“产品不合格”为( )。 (A)A B U (B) AB (C)AB (D) AB 或AB 3、已知()0.6,()0.8,()0.6P A P B P B A ===,则()P A B =( )。 (A)0.4 (B) 0.5 (C)0.6 (D) 0.7 4、在下述函数中,可以作为某随机变量的分布函数的为( )。 (A)21()1F x x = + (B) 11 ()arctan 2 F x x π=+ (C)1(1),0 ()20, 0x e x F x x -?->?=??≤? (D) ()()x F x f x dx -∞=?,其中()1f x dx +∞-∞ =? 5、设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则( )。 (A)0()1f x ≤≤ (B)()()P X x F x == (C)()()P X x F x =≤ (D) ()()P X x f x == 6、设随机变量~(0,1)X N ,则方程2240t Xt ++=没有实根的概率为( )。 (A)1)1(2-Φ (B))2()4(ΦΦ- (C))2()4(---ΦΦ (D))4()2(ΦΦ- 7、设二维离散型随机变量(,)X Y 的联合分布律为 已知事件{0}X =与{1}X Y +=相互独立,则( )。

概率论与数理统计模拟试题&参考答案

练习题一 一、填空题。 1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。 2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。 3、若)(~λP X ,则=EX ,=DX 。 4、二维离散型随机变量),(ηξ的分布律为: 则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。 5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n = ++ 服从__________。 6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。 7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x x x x x ?+≤

3、随机变量Y X ,相互独立必推出Y X ,不相关。( ) 4、已知θ 是θ的无偏估计,则2 θ 一定是2θ的无偏估计。( ) 5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为 0.4。( ) 三、选择题。 1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e - 2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为 (A ) ()3 131- y F (B )()13+y F (C )1)(3+y F (D )?? ? ??- 313 1y F 3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )2 4、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。 (A )8; (B )16; (C )28; (D )44 5、设B A ,满足1)(=B A P , 则有( ) (A )A 是必然事件 (B )B 是必然事件 (C )Φ=?B A (D ))()(A P B P ≤ 四.据某医院统计,心脏手术后能完全复原的概率是0.9,那么在对100名病人实施手术后,有84至95名病人能完全复原的概率是多少? (Ф0(1.67)=0.9525, Ф0(2)=0.9773) 五、设总体ξ的概率密度为0 (,)0x e x x λλ?λ-? >=? ?当其它,其中0λ>,试求参数λ的 最大似然估计量。 六、若已知某地幼儿身高总体的标准差7()cm σ=,现从该地一幼儿园中抽查了9名幼儿,测得身高()cm 为:115,120,131,115,109,115,115,105,110,试求总体期望值μ的95%的置信区间:(1)若已知幼儿身高分布为正态分布;(2)若幼儿身高分布未知。 七、证明:对于任何的随机变量ξ,都有22()D E E ξξξ=-。

2017高考试题分类汇编-概率统计

概率统计 1(2017北京文)(本小题13分) 某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图: (Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 2(2017新课标Ⅱ理)(12分) 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:

(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法 (30.01). 附:, 22 ()()()()() n ad bc K a b c d a c b d -= ++++ 3(2017天津理)(本小题满分13分) 从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的

概率分别为111 ,, 234 . (Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 4(2017新课标Ⅲ理数)(12分) 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 以最高气温位于各区间的频率代替最高气温位于该区间的概率。 (1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列; (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值? 5(2017山东理)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙中心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名B1,B2, B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示。 (I)求接受甲种心理暗示的志愿者中包含A1但不包含B3的频率。

概率统计模拟题一

概率统计模拟题一 一、填空题 (每空2分,共16分): 1.三个人独立地去破译一个密码, 他们各自能译出密码的概率分别为1/5,1/3,1/4,则三个人至少有一个人不能破译出密码的概率是_______ 2. 对于随机事件A,B,已知=0.8,P(B)=0.3,P(A|B)=0.4,则 P(A B)=________,P()=_______; 3.设随机变量X服从正态分布N(2,),已知F(2.5)=0.9938 则P(2

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

统计概率高考试题(答案)

统计、概率练习试题 1、【2012高考】 (4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88, 88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差 【答案】D 2、【2012高考】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 【答案】B 3、某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。 4、【2012高考】对某商店一个月每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ( ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,53 【答案】A. 5、【2012高考】容量为20的样本数据,分组后的频数如下表 则样本数据落在区间[10,40]的频率为 A 0.35 B 0.45 C 0.55 D 0.65 2【答案】B 6、【2012高考】由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准

差等于1,则这组数据为 .(从小到大排列) 【答案】1,1,3,3 7、【2012高考】右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率 分布直方图,其中平均气温的围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____. 【答案】9 8、【2012高考】图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员 在这五场比赛中得分的方差为_________.089 10352 图 (注:方差 2222121()()()n s x x x x x x n ??=-+-++-??L ,其中x 为x 1,x 2,…,x n 的平均数)[来 【答案】6.8 9、【2012高考】某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从 该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生. 【答案】15。 10、【2012高考】袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于 (A ) 15 (B )25 (C )35 (D )45 【答案】B 【解析】1个红球,2个白球和3个黑球记为112123,,,,,a b b c c c ,

概率初步测试题(含答案))

第25章《概率初步》 一、填空题(每题2分,共20分) 1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是. 2.下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为;必然事件为;不可能事件为.(只填序号) 3.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为____ __. 4.一个小妹妹将10盒蔬菜的标签全部撕掉了.现在每个盒子看上去都一样,但是她知道有三盒玉米、两盒菠菜、四盒豆角、一盒土豆.她随机地拿出一盒并打开它.则盒子里面是玉米的概率是,盒子里面不是菠菜的概率是. 5.从4台A型电脑和5台B型电脑中任选一台,选中A型电脑的概率为_____,B型电脑的概率为___ __. 6.从一副扑克牌(除去大、小王)中任抽一,则抽到红心的概率为;抽到黑桃的概率为;抽到红心3的概率为. 7.给出以下结论: ①如果一件事发生的机会只有十万分之一,那么它就不可能发生; ②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生 危险; ③如果一件事不是必然发生的,那么它就不可能发生; ④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性. 其中正确的结论是_______________. 8.某班的联欢会上,设有一个摇奖节目,奖品为圆珠笔、软皮本和水果,标在一个转盘的相应区域上(转盘被均匀等分为四个区域,如图).转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得圆珠笔的概率为. 9.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数目为5的概率是.

概率论与数理统计试题与答案()

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5)1(=≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。 (按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

最新高中概率高考真题总结

全国各地高考及模拟试卷试题分类----------概率 选择题 1.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( B ) A . 12 1 B . 2 1 C . 6 1 D . 3 1 2.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概 率是 ( D ) A . 45 2 B. 15 2 C. 3 1 D. 15 7 3.甲乙两人独立的解同一道题,甲乙解对的概率分别是 21,p p ,那么至少有1人解对的概率 是 ( D ) A. 21p p + B. 21p p ? C. 211p p ?- D.)1()1(121p p -?-- 4.从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率 是 ( B ) A. 51 B. 52 C. 53 D. 5 4 5.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和 为偶数的概率是 ( C ) A 、 12 B 、12n C 、121n n -- D 、121 n n ++ 6.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名 女生的概率是 ( C ) A . 45 2 B . 15 2 C . 15 7 D . 3 1 7.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色 外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再 从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的 ( B ) A . 5 1 B . 1009 C .100 1 D . 5 3 8.已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A 中任取一个元素 用a i (i=1,2,3,4,5)表示,在B 中任取一个元素用b j (j=1,2,3,4,5)表示,则 所取两数满足a i >b I 的概率为( B )

南京工业大学-概率统计模拟题

南京工业大学概率统计模拟题 一、填空题 1.设()0.4P A =,()0.7P A B =,那么 (1)若A 与B 互不相容,则P(B)= ; (2)=)(B P B A 相互独立,则与若 . 2.已知(0)0.5(()x Φ=Φ其中是标准正态分布的分布函 数(1,4),N ξ,~且21=≥}(a P ξ,=a 则 。 3.设随机变量的概率密度为ξ 的三次对立重复表示对,以其它 ξη???<<=,010,2)(x x x f 观察中事件=出现的次数,则}{}{221=≤ηξP , =ηE , =ηD 。 4.若随机变量,求方程 )5,0(~U ξ02442=+++ξξx x 有实根的概率为 。 5.设总体X 服从 ),,((32122X X X N 已知,未知,),其中,σμσμ是样本。作样本函数如下:①;321313234X X X +- ②;∑=-n i i X X n 1 2)(1 ③;321323231X X X -+ ④.313232321X X X -+这些函数中是统计量的有

;是μ的无偏估计量的有 ;最有效的是 。 二、选择题: 1.设A 和B 是任意两个概率不为零的不相容事件,则下 列结论中肯定正确的是( ) 不相容与B A A )( 相容与B A A )( )()()()(B P A P AB P C = )()()(A P B A P D =- 2.袋中有5个黑球,3个白球,大小相同,一次随机摸 出4球,其中恰有3个白球得概率为( )。 83)(A )()()(8 1835B )()()(81833C 3.对任意两个随机变量,则,若和ηξξηηξE E E ?=)(( )。 ηξξηD D D A ?=)()( ηξηξD D D B +=+)()( 独立和ηξ)(C 不独立和ηξ)(D 三、在电源电压不超过200伏,在200~240伏和超过240伏三种情况下,某种电子元件损坏的概率分别为0.1, 0.001和0.2。假设电源电压 )25,220(2N 服从正态分布ξ,试求(已知)(788.0)8.0(x Φ=Φ,其中是标准正态分布函数): (1)该电子元件损坏的概率;

概率论模拟卷1~6及答案

一、(15分)玻璃杯成箱出售,每箱20只。已知任取一箱,箱中0、1、2只残次品的概率相应为0.8、0.1和0.1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。 试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。 二、(12分)设随机变量X的分布列为 .求:(1)参数;(2);(3) 的分布列。 三、(10分)设二维随机变量在矩形上服从均匀分布,(1)求的联合概率密度(2)求关于、的边缘概率密度(3)判断与的独立性。 四、(12分)设 ,,且与相互独立,试求和的相关系数(其中a、b是不全为零的常数)。 五、(12分)设从大批发芽率为0.9的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。 六、(12分)设总体的概率密度为 是取自总体的简单随机样本。求:(1)的矩估计量;(2)的方差。 七、(12分)设服从,是来自总体的样本,+。试求常数,使得服从分布。 八、(15分)从一批木材中抽取100根,测量其小头直径,得到样本平均数为,已知这批木材小头直径的标准差,问该批木材的平均小头直径能否认为是在以上?(取显著性水平=0.05) 附表一: , , , ,

一、(14分)已知50只铆钉中有3只是次品,将这50只铆钉随机地用在10个部件上。若每 个部件用3只铆钉,问3只次品铆钉恰好用在同一部件上的概率是多少? 二、(14分)已知随机变量X 的概率密度为()? ? ?<<=其他 ,01 0, 2x Ax x f ,求:(1)参数A ; (2)}35.0{<θ。试求θ的最大似然估计量。 八、(14分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布)75.0,54(N ,在某日生产的零件中抽取10 件,测得重量如下: 54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 如果标准差不变,该日生产的零件的平均重量是否有显著差异(取05.0=α)? 附表一: 5871.0)2222.0(=Φ,9495.0)64.1(=Φ,9505.0)65.1(=Φ,9750.0)96.1(=Φ,9826.0)108.2(=Φ,9901.0)33.2(=Φ,9929.0)45.2(=Φ,9950.0)575.2(=Φ.

统计概率高考试题参考答案

统计、概率练习试题 1、【2012高考山东】 (4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差 【答案】D 2、【2012高考四川】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 【答案】B 3、某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。 4、【2012高考陕西】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ( ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,53 【答案】A. 5、【2012高考湖北】容量为20的样本数据,分组后的频数如下表 则样本数据落在区间[10,40]的频率为 A 0.35 B 0.45 C 0.55 D 0.65 2【答案】B 6、【2012高考广东】由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列) 【答案】1,1,3,3 7、【2012高考山东】右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5), [21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

高中概率测试题及答案

---- 第三章(概率)检测题 班级姓名学号10 小题,每小题3 分,共30 分,在每小题给出的四个选项中,只有一项是符合题(本题共一、选择题: 目要求的) 1.下列说法正确的是(). A.如果一事件发生的概率为十万分之一,说明此事件不可能发生 B.如果一事件不是不可能事件,说明此事件是必然事件 C.概率的大小与不确定事件有关 D .如果一事件发生的概率为99.999%,说明此事件必然发生1/5,已知袋中红球有3 个,则袋中共有除颜色外完全相2.从一个不透明的口袋中摸出红球的概率为 同的球的个数为().

B.8 个C..5 个10 个D.15 个A 3..下列事件为确定事件的有() (1)在一标准大气压下,20℃的纯水结冰 (2) 平时的百分制考试中,小白的考试成绩为105 分 (3)抛一枚硬币,落下后正面朝上 (4)边长为a,b 的长方形面积为ab A.1个B.2 个C.3个D.4个 4.从装有除颜色外完全相同的2 个红球和2 个白球的口袋内任取2 个球,那么互斥而不对立的两个().事件是个红球1 .至少有1 个白球,至少有.至少有A 1 个白球,都是白球B .至少有个白球D 个白球,恰有C.恰有 1 2 个白球,都是红球1 5.从数字1,2,3,4,5 中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400 的().概率是C.2/7D.2/3B、3/42/5.A (54(”的概率是K )中抽取一张牌,抽到牌“.6.从一副扑克牌张) C.A .1/54 1/18 1/27 2/27D.B. ()的概率为.5 .同时掷两枚骰子,所得点数之和为7 -- ----

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院 《概率论与数理统计》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。 一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。 [A] P (A)=1-P (B ) [B] P (A│B)=0 [C] P (A│B )=1 [D] P (A B )=0 2、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。 [A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A│B )=P (B ) [D] P (A│B )=P(A ) 3、若A 、B 相互独立,则下列式子成立的为( )。 [A] )()()(B P A P B A P = [B] 0)(=AB P [C] )()(A B P B A P = [D] )()(B P B A P = 4、下面的函数中,( )可以是离散型随机变量的概率函数。

[A] {}1 1(0,1,2)!e P k k k ξ-=== [B] {}1 2(1,2)! e P k k k ξ-=== [C] {}31 (0,1,2)2 k P k k ξ=== [D] {}41 (1,2,3)2 k P k k ξ== =--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使 12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。 [A]1 ,2a =-32 b = [B] 2,3a = 23b = [C] 3,5a = 2 5 b =- [D] 1,2a = 32 b =- 二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T ,错误的填F ,填在答题卷相应题号处。 6、事件“掷一枚硬币,或者出现正面,或者出现反面”是必然事件。 ( ) 7、通过选取经验函数()12;,,...,k x a a a μ中的参数使得观察值i y 与相应的函数值 ()12;,,...,i k x a a a μ之差的平方和最小的方法称之为方差分析法。 ( ) 8、在进行一元线性回归时, 通过最小二乘法求得的经验回归系数^ b 为xy xx l l 。 ( ) 9、连续抛一枚均匀硬币6 次,则正面至少出现一次的概率为 9 2 。( ) 10、设某次考试考生的成绩服从正态分布( )2 70,N σ ,2 σ 未知,为了检验样本均 值是否显著改变,抽取36名同学测得平均成绩为66.5分,标准差为15分,显著水平0.05α=,则应该接受原假设。 ( )

相关文档
最新文档