列主元高斯消去法实验报告
高斯列组元消去法
Console.WriteLine("高斯消去法方程:");
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
Console.Write(a[i, j].ToString() + " ");
Console.WriteLine();
{
s = 0;
for (j = i + 1; j <= n - 1; j++)
s = s + a[i, j] * x[j];
x[i] = (a[i, n] - s) / a[i, i];
}
return x;
}
static void Main(string[] args)
{
//double[,] a=new double[4, 5] { { 10, -7, 0, 1, 8 }, { -3, 2.099999, 6, 2, 5.900001 }, { 5, -1, 5, -1, 5 }, { 2, 1, 0, 2, 1 } };
高斯列组元消去法课程实验报告
课程名称
数值分析
班级
15计本
实验名称
高斯列组元消去法
姓名
学号
实验成绩
实验目的及要求
1.利用MATLAB编写高斯列组元消去法,并测试。
2.调用函数解题
实验环境
Windows 7或以上版本+ VS2010或以上版本
实验内容
调试过程及实验结果
总结
1、实验结果与理论一致;
Gauss列主元消去法实验
<数值计算方法>实验报告1.实验名称实验2 Gauss 列主元消去法2.实验题目用Gauss 列主元消去法求解线性方程组。
0.0011 2.0002 3.0003 1.0001.0001 3.7122 4.6233 2.0002.0001 1.0722 5.6433 3.000x x x x x x x x x ++=⎧⎪-++=⎨⎪-++=⎩3.实验目的加深自己对Gauss 列主元消去法的理解和认识,并且通过做实验或做练习来加强自己Gauss 列主元消去法的掌握,学会并灵活运用Gauss 列主元消去法来求解方程组。
4.基础理论-------Gauss 列主元消去法1.Gauss 列主元消去法的基本思想是:在进行第k (k=1,2,...,n-1)步消元时,从第k 列的kk a 及以下的各元素中选取绝对值最大的元素,然后通过行变换将它交换到主元素kk a 的位置上,再进行消元。
2.Gauss 列主元消去法的优点:当kk a (k=1,2,...,n-1)的绝对值很小时,用Gauss 列主元消去法来求解方程组时,可以避免所的数值结果产生较大误差或失真。
5.实验环境实验系统:Win 7实验平台:VisualC++语言6.实验过程写出算法→编写程序→计算结果Gauss 列元消去法的算法Input:方程组未知量的个数n;增广矩阵()()1,2,...,T ij A a A A An ==,其中i=1,2,…,n; j=1,2,…,n+1Output:方程组的解x1,x2,…,xn,或失败信息。
1. for i ←1ton-1 do;2. temp ←|ii a |;3. p ←I;4. for j ←i+1 to n do5. if ||ji a >temp then6. p ←j;8. end9. end10. if temp=0 then11. |return False;12. end13. if p ≠I then14. p A ⇔i A ;//i,p 两行交换15. end//列选主元16. for j ←i+1 to n do17.*j ji i A m A -ji m ←/ji ii a a ;18. j A ←*j ji i A m A -;//消元19. end7.实验结果原方程组的解为:X1=-0.490396 , x2=-0.051035 ,x3=0.3675208.附录程序清单#include<iostream.h> #include"stdio.h"#include"math.h"void main ( ){ int n=3,i,j,k,p;doubleA[10][10]={{0.001,2.000,3.000,1.000},{-1.000,3.712,4.623,2.000},{-2.0 00,1.072,5.643,3.000}},temp,m,x[100];for(i=0;i<n;i++){ //选主元temp=fabs(A[i][i]); p=i;for(k=i+1;k<n;k++)if(fabs(A[k][i])>temp){temp=fabs(A[k][i]); p=k;}if(temp==0){ printf("\n无法求解:");return;}if(p!=i)for(j=0;j<n+1;j++){ temp=A[i][j];A[i][j]=A[p][j];A[p][j]=temp;}//消元for(k=i+1;k<n;k++){ m=A[k][i]/A[i][i];for(j=i+1;j<=n;j++)A[k][j]=A[k][j]-m*A[i][j];}}//回代for(i=n-1;i>=0;i--){x[i]=A[i][n];for(j=i+1;j<n;j++)x[i]=x[i]-A[i][j]*x[j];x[i]=x[i]/A[i][i];}printf("\nx=\n");for(i=0;i<n;i++)printf("%f \n",x[i]);}。
高斯列主元消去法实验报告
《数值计算方法》实验报告专业:年级:学号:姓名:成绩:1.实验名称实验2高斯列主元消去法2. :用Gauss列主消去法求解线性方程组0.001*X1+2.000*X2+3.000*X3=1.000-1.000*X1+3.217*X2+4.623*X3=2.000-2.000*X1+1.072*X2+5.643*X3=3.0003.实验目的a.熟悉运用已学的数值运算方法求解线性方程—Gauss列主消去法;b.加深对计算方法技巧的认识,正确使用计算方法来求解方程;c.培养用计算机来实现科学计算和解决问题的能力。
4.基础理论列主元消去法:a.构造增广矩阵b.找到每列绝对值的最大数;c.行变换;d.消去;e.回代5.实验环境Visual C++语言6.实验过程实现算法的流程图:7.结果分析a.实验结果与理论一致;b.由于数值设置成双精度浮点型,所以初值对计算结果影响不大;c.运用程序能更好的实现计算机与科学计算的统一和协调。
8. 附录程序清单#include<stdio.h>#include<math.h>int main(){int n=3,i,j,k,p;double a[4][4];double b[4];double x[4];double m[4][4];double temp;a[1][1]=0.001; a[1][2]=2.000; a[1][3]=3.000; b[1]=1.000;a[2][1]=-1.000; a[2][2]=3.1712; a[2][3]=2.000; b[2]=2.000;a[3][1]=-2.000; a[3][2]=1.072; a[3][3]=5.643; b[3]=3.000;for(i=1;i<=n-1;i++){temp=a[i][i];p=i;for(j=i+1;j<=n;j++)if(fabs(a[j][i])>temp){temp=a[j][i];p=j;}if(temp==0)return 0;if(p!=i) //换行{for(j=1;j<=n;j++)a[0][j]=a[i][j];for(j=1;j<=n;j++)a[i][j]=a[p][j];for(j=1;j<=n;j++)a[p][j]=a[0][j];b[0]=b[i];b[i]=b[p];b[p]=b[0];}for(j=i+1;j<=n;j++){m[j][i]=a[j][i]/a[i][i];for(k=i;k<=n;k++)a[j][k]=a[j][k]-m[j][i]*a[i][k];}}if(a[n][n]==0)return 0;x[n]=b[n]/a[n][n];for(i=n-1;i>=1;i--)//回代{temp=0;for(j=i+1;j<=n;j++)temp=temp+a[i][j]*x[j];temp=b[i]-temp;x[i]=temp/a[i][i];}for(i=1;i<=n;i++)//输出结果{printf("输出结果为:x[%d]=%lf ",i,x[i]);}printf("\n");return 0;}。
列主元消去法解方程组实验报告
实验名称:列主元消去法解方程组1 引言我们知道,高斯消去法是一个古老的解线性方程组的方法。
而在用高斯消去法解Ax=b时,其中设A为非奇异矩阵,可能出现的情况,这时必须进行带行交换的高斯消去法。
但在实际计算中即使但其绝对值很小时,用作除数,会导致中间结果矩阵元素数量级严重增长和舍入误差的扩散,使得最后的结果不可靠。
因此,小主元可能导致计算的失败,我们应该避免采用绝对值很小的主元素。
为此,我们在高斯消去法的每一步应该在系数矩阵或消元后的低阶矩阵中选取绝对值最大的元素作为主元素,保持乘数,以便减少计算过程中舍入误差对计算解的影响。
一种方式是完全主元消去法,这种消去法是在每次选主元时,选择为主元素。
这种方法是解低阶稠密矩阵方程组的有效方法,但这种方法在选取主元时要花费一定的计算机时间。
实际计算中我们常采用部分选主元的的消去法。
列主元消去法即在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。
2 实验目的和要求运用matlab编写一个.m文件,要求用列主元消去法求解方程组(实现PA=LU):要求输出以下内容:(1)计算解x;(2) L,U;(3)整形数组IP(i)(i=1,2,…,n-1)(记录主行信息)3 算法原理与流程图(1)算法原理设有线性方程组Ax=b,其中设A为非奇异矩阵。
方程组的增广矩阵为第1步(k=1):首先在A的第一列中选取绝对值最大的元素,作为第一步的主元素:,然后交换(A,b)的第1行与第i1行元素,再进行消元计算。
设列主元素消去法已经完成第1步到第k-1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定ik使(2)如果,则A为非奇异矩阵,停止计算。
(3)如果ik≠k,则交换[A,b]第ik行与第k行元素。
(4)消元计算消元乘数满足:(5)回代求解计算解在常数项b(n)内得到。
数值代数(第05周)实验报告
end
end
2.2.3实验(或测试)结果
得分:
3、综合运用:用列主元Gauss消去法求解线性方程组
3.1算法描述
得分:
(写出用列主元Gauss消去法的求解线性方程组Ax=b的计算过程)
(1)
(2)
(3)
3.2程序清单
3.2.1程序(和实验)代码
得分:
(用列主元Gauss消去法的求解线性方程组Ax=b的程序和实验代码)
%输入
% A: nxn级矩阵
%输出
% L: nxn级单位下三角矩阵形矩阵
% U: nxn级上三角形矩阵
% P:置换矩阵
%
n = size(A,1);
L = eye(n); U = zeros(n); P = eye(n); u = 1:n-1;
for k = 1:n-1
[v,pos] = max(abs(A(k:n,k))); %列主元
n = 100; A = rand(n); b = rand(n,1); x0 = A \ b; x = zeros(n,1);
A_ex = [A,b]; %增广矩阵
u=1:n-1;பைடு நூலகம்
for k = 1:n-1
[v,pos] = max(abs(A(k:n,k))); %列主元
if v < eps
error('矩阵是奇异的');
if v < eps
error('矩阵是奇异的');
end
u(k) = u(k) + pos - 1;%主元在矩阵中的位置
if u(k) ~= k%行交换
计算方法-实验三列主元高斯消去法
计算方法课程设计报告实验三高斯列主元消去法姓名:黄仁化学号:031010151551017班级:计算机科学与技术2004班日期:二○○六年六月十日一、实验目的:1、掌握高斯消去法的基本思路和迭代步骤。
2、 培养编程与上机调试能力。
二、高斯列主元消去法的基本思路与计算步骤:列主元高斯消去法计算步骤:将方程组用增广矩阵[]()(1)ij n n B A b a ⨯+==表示。
步骤1:消元过程,对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+使得,max k i k ikk i n a a ≤≤=(2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。
(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+。
(4) 消元,对,,i k n =,计算/,ik ik kk l a a =对1,,1j k n =++,计算.ij ij ik kj a a l a =-步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。
(2) ,1/;n n n nn x a a +=对1,,2,1i n =-,计算,11/ni i n ij j ii j i x a a x a +=+⎛⎫=-⎪⎝⎭∑三:程序流程图四:程序清单:function X=uptrbk(A,b)% A 是一个n 阶矩阵。
% b 是一个n 维向量。
% X 是线性方程组AX=b 的解。
[N N]=size(A);X=zeros(1,N+1);Aug=[A b];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A是奇异阵,方程无惟一解'breakendfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endend% 这里用到程序函数backsub来进行回代。
列主元高斯消去法和列主元三角分解法解线性方程
计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。
数值方法高斯列主元消元法试验报告
1)用高斯列主元消元法求解下面的方程组#include <iostream>#include <cmath>#include <iomanip>using namespace std;int main(){//double a[4][5]={1,-1,1,-4,2,5,-4,3,12,4,2, 1,1,11,3,2,-1,7,-1,0};//int i,j,k;int Line,Row;double temp[4][5];//中间量Row=4;Line=5;//Inintial//Result//double X[5];cout<<"最初的矩阵为:"<<endl;for(i=0;i<4;i++){for(j=0;j<5;j++){cout<<a[i][j]<<' ';}cout<<endl;}cout<<endl;/////////////////////////////////for(k=0;k<Row-1;k++){//for(i=k+1;i<Row;i++){//temp[i][k]=a[i][k]/a[k][k];for(j=k;j<Line;j++){a[i][j]-=temp[i][k]*a[k][j];}}}//////////////////////////////////cout<<"经过消元后的增广矩阵为:"<<endl;for(i=0;i<4;i++){for(j=0;j<5;j++){cout<<a[i][j]<<' ';}cout<<endl;}cout<<endl;/////////////////////////////////for(i=Row-1;i>=0;i--){//double temp_new;temp_new=0;for(j=i+1;j<=Row-1;j++){a[i][Row]-=a[i][j]*a[j][Row];}a[i][Row]/=a[i][i];}///////////////////////////////////Print;cout<<"最后的解为:"<<endl;for(i=0;i<Row;i++){//cout<<"X"<<i+1<<"="<<a[i][Row]<<endl;}/////////////////////////////////return 0;}1.2列主元方法#include <iostream>#include <cmath>#include <iomanip>using namespace std;void Print(double a[][5]){int i,j;for(i=0;i<4;i++){for(j=0;j<5;j++){cout<<a[i][j]<<' ';}cout<<endl;}cout<<endl;}int main(){//double a[4][5]={1,-1,1,-4,2,5,-4,3,12,4,2, 1,1,11,3,2,-1,7,-1,0};//double b[4][5]={0.3e-15,int i,j,k,n;int Line,Row;double temp[4][5];//中间量Row=4;Line=5;//Inintial//////////////////////////////////////////////cout<<"最初的矩阵为:"<<endl;Print(a);////////////////////////////////////////////////the main process is underint kk;//flagsdouble max;//bool flag=false;double t;//the temp of change;for(k=0;k<Row-1;k++){/////////////////search the max_num//flag=false;max=a[k][k];kk=k;for(i=k;i<Row;i++){if(abs(a[i][k])>max){max=a[i][k];kk=i;//flag=true;}}//////////////////change the linefor(j=0;j<Line;j++){t=a[k][j];a[k][j]=a[kk][j];a[kk][j]=t;}cout<<"第"<<k+1<<"次换行结果:"<<endl;Print(a);cout<<endl;cout<<"第"<<k+1<<"次消元结果:"<<endl;//////////////////消元的过程for(i=k+1;i<Row;i++){//temp[i][k]=a[i][k]/a[k][k];for(j=k;j<Line;j++){a[i][j]-=temp[i][k]*a[k][j];}}///////////////////Print(a);//}//回带的过程n=Row-1;for(i=n;i>=0;i--){//double temp_new;temp_new=0;for(j=i+1;j<=n;j++){a[i][n+1]-=a[i][j]*a[j][n+1];}a[i][n+1]/=a[i][i];}/////////////////////////////////////////////cout<<"经过消元后的增广矩阵为:"<<endl;Print(a);////////////////////////////////////////////////Print;cout<<"最后的解为:"<<endl;for(i=0;i<Row;i++){//cout<<"X"<<i+1<<"="<<a[i][Row]<<endl;}/////////////////////////////////return 0;}2)分别用列主元消元法与不选主元消元法求解,分析对结果的影响#include <iostream>#include <cmath>#include <iomanip>using namespace std;void Print(double b[][5]){int i,j;for(i=0;i<4;i++){for(j=0;j<5;j++){cout<<b[i][j]<<' ';}cout<<endl;}cout<<endl;}int main(){double b[4][5]={0.3e-15,59.14,3,1,59.17,5.291,-6.130,-1,2,46.78,11.2,9,5,2,1,1,2,1,1,2};int i,j,k,n;int Line,Row;double temp[4][5];//中间量Row=4;Line=5;//Inintial//////////////////////////////////////////////cout<<"最初的矩阵为:"<<endl;Print(b);////////////////////////////////////////////////the main process is underint kk;//flagsdouble max;//bool flag=false;double t;//the temp of change;for(k=0;k<Row-1;k++){/////////////////search the max_num//flag=false;max=b[k][k];kk=k;for(i=k;i<Row;i++){if(abs(b[i][k])>max){max=b[i][k];kk=i;//flag=true;}}//////////////////change the linefor(j=0;j<Line;j++){t=b[k][j];b[k][j]=b[kk][j];b[kk][j]=t;}cout<<"第"<<k+1<<"次换行结果:"<<endl;Print(b);cout<<endl;cout<<"第"<<k+1<<"次消元结果:"<<endl;//////////////////消元的过程for(i=k+1;i<Row;i++){//temp[i][k]=b[i][k]/b[k][k];for(j=k;j<Line;j++){b[i][j]-=temp[i][k]*b[k][j];}}///////////////////Print(b);//}//回带的过程n=Row-1;for(i=n;i>=0;i--){//double temp_new;temp_new=0;for(j=i+1;j<=n;j++){b[i][n+1]-=b[i][j]*b[j][n+1];}b[i][n+1]/=b[i][i];}/////////////////////////////////////////////cout<<"经过消元后的增广矩阵为:"<<endl; Print(b);////////////////////////////////////////////////Print;cout<<"最后的解为:"<<endl;for(i=0;i<Row;i++){//cout<<"X"<<i+1<<"="<<b[i][Row]<<endl;}/////////////////////////////////return 0;}Ax (迭代法收敛速度实验)注意修改不同的A、B的数组2、用迭代法求解;b3、//雅可比迭代法/*@auther luozhengxiao*/#include <iostream>#include <cmath>#include <iomanip>using namespace std;//void Print(double x[]){for(int i=0;i<3;i++){cout<<setprecision(8)<<fixed<<x[i]<<endl;}}int main(){//double B1[3]={-3,2,4};double B2[3]={100,-200,345};double A[3][3]={6,2,-1,1,4,-2,-3,1,4};double x[3],x_old[3],temp;int i,j,k;for(i=0;i<3;i++){cout<<"请输入第"<<i+1<<"个数:";cout<<"\t x["<<i<<"]=";cin>>x[i];//x_old[i]=x[i];}int n;cout<<"请输入迭代次数:";cin>>n;/////////////////////////////////for(k=0;k<n;k++){//for(i=0;i<3;i++){//temp=0;j=0;while(j<3){if(j==i) {j++;continue;}temp+=A[i][j]*x[j];j++;}x_old[i]=B1[i]-temp;x_old[i]/=A[i][i];}for(j=0;j<3;j++){x[j]=x_old[j];}}Print(x);return 0;}。
高斯消去算法实验报告
高斯消去算法实验报告1. 实验背景高斯消去算法,也称为高斯消元法,是一种用于求解线性方程组的常用方法。
通过进行一系列的行变换,将方程组化简为阶梯矩阵,从而得到方程组的解。
本实验旨在使用高斯消去算法,解决给定的线性方程组。
2. 实验过程2.1 算法原理高斯消去算法的基本思想是通过进行行变换,将线性方程组化简为阶梯矩阵。
具体流程如下:1. 对于每一列,从对角线开始,选取主元(即该列中绝对值最大的元素),并将该主元所在的行与对角线所在的行交换位置。
这样可以避免除法中的误差积累。
2. 通过进行行变换,将主对角线以下的元素全部清零。
具体方法是,对于每一行i,通过消去第i+1行到最后一行的第i列元素,从而将下三角矩阵的元素清零。
3. 倒序遍历每一行,通过行变换,将主对角线以上的元素清零。
具体方法是,消去第i-1行到第1行的第i列元素,从而将上三角矩阵的元素清零。
4. 将矩阵化简为阶梯矩阵。
2.2 实验步骤1. 取得待解线性方程组的系数矩阵A和常数向量b。
2. 将矩阵A和向量b合并为增广矩阵Ab。
3. 通过高斯消去算法,将增广矩阵化简为阶梯矩阵。
4. 根据化简后的阶梯矩阵,求解线性方程组。
3. 实验结果以一个3阶线性方程组为例进行实验,方程组如下:2x + 3y + z = 93x + 2y + 4z = 124x + 3y + 6z = 18按照操作步骤,我们将系数矩阵A和常数向量b合并为增广矩阵Ab:markdownA = [[2, 3, 1],[3, 2, 4],[4, 3, 6]]b = [9, 12, 18]Ab = [[2, 3, 1, 9],[3, 2, 4, 12],[4, 3, 6, 18]]然后,通过高斯消去算法,将增广矩阵Ab化简为阶梯矩阵:markdownAb = [[2, 3, 1, 9],[0, 1.5, 2.5, 6],[0, 0, 0, 0]]根据化简后的阶梯矩阵,我们可以得到方程组的解:x = 1y = 2z = 0因此,该线性方程组的解为x=1,y=2,z=0。
数值分析实验报告高斯消元法和列主消元法
《计算方法》实验指导书 实验三、高斯消元法和列主消元法一、实验目的:1. 通过matlab 编程解决高斯消元发和列主消元发来解方程组的问题, 加强编程能力和编程技巧,要熟练应用matlab 程序来解题,练习从数值分析的角度看问题进而来解决问题。
更深一步体会这门课的重要性,练习动手能力,同时要加深对数值问题的理解,要熟悉matlab 编程环境。
二、实验要求:用matlab 编写代码并运行高斯消元法和列主消元发来解下面的方程组的问题,并算出结果。
三、实验内容:用高斯消元法和列主消元法来解题。
1.实验题目:用高斯消元法和列主消元法来解下列线性方程组。
⎪⎪⎩⎪⎪⎨⎧−=+−−−=+−−=+−−=−+−.142,16422,0,13143214321432432x x x x x x x x x x x x x x x 2.实验原理高斯消元法:就是把方程组变成上三角型或下三角形的解法。
上三角形是从下往上求解,下三角形是从上向下求解,进而求得结果。
而列主消元法是和高斯消元法相类似,只不过是在开始的时候找出x1的系数的最大值放在方程组的第一行,再化三角形再求解。
3.设计思想高斯消元法:先把方程组的第一行保留,再利用第一行的方程将其余几行的含有x1的项都消去,再保留第二行,同理利用第二行的方程把第二行以下的几行的含有x2项的都消去,以此类推。
直到最后一行只含有一个未知数,化为上三角形,求得最后一行的这个未知数的值,再回带到倒数第二个方程求出另一个解,再依次往上回带即可求出这个方程组的值。
而列主消元法与高斯消元法类似,只不过在最开始时找出x1项系数的最大值与第一行交换再进行与高斯算法相似的运算来求出方程组的解。
4.源代码高斯消元法的程序:f unction [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m*B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')endend在工作窗口输入程序:A=[1 -1 1 -3; 0 -1 -1 1;2 -2 -4 6;1 -2 -4 1];b=[1;0; -1;-1]; [RA,RB,n,X] =gaus (A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.运行结果为:RA =4RB =4n =4X =-0.50000.5000.列主消元发的程序:function [RA,RB,n,X]=liezhu(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m*B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')endend在工作窗口输入程序:A=[1 -1 1 -3; 0 -1 -1 1;2 -2 -4 6;1 -2 -4 1];b=[1;0; -1;-1]; [RA,RB,n,X]=liezhu(A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.运行结果为:RA =4RB =4n =4X =-0.50000.5000实验体会:通过这次实验我了解了高斯消元法和列主消元方法的基本思想,虽然这两个程序的编写是有点困难的,但运行起来还是比较容易的,解决了不少实际问题的计算。
数值分析实验报告(包括高斯消去、二分法、牛顿迭代法)
for k=1:N
x=(a+b)/2;
fx=feval(f,x);fa=feval(f,a);
if abs((b-a)/2)<e || abs(fx)<e
disp('the number of iterations is');k
f=input('please enter a function:f(x)=');
x0=input('please enter the initial value:x0=');
e=input('please enter error:e=');
N=input('please enter the largest number of iterations:N=');
disp('the approximate solution is');x
disp('f(x) is');fx
disp('the number of iterations is');k
return
else
x0=x;
end
end
end
disp('The maximum number of iterations is reached, stop calculation');
开课学院、实验室:实验时间:2014年1月1日
课程
名称
数值分析基础性实验
实验项目
名称
数值计算算法及实现
高斯消元法与列主元消去法实验报告
实验报告:Gauss消元法小组成员:李岚岚、邱粉珊、缪晓浓、杨水清学号:0917020040、0917010078、0917010073、0917010112一、实验问题编写两个程序,分别利用Gauss消元法和列主元消去法求解方程组二、分析及其计算过程Gauss顺序消元法:源程序:function [x]=gaussl(A,b)[n1,n2]=size(A);n3=size(b);if n1~=n2|n2~=n3|n1~=n3disp('A的行和列的维数不同!');return;endif det(A)==0disp('系数矩阵A奇异');return;end%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[1 2/3 1/3;9/20 1 11/20;2/3 1/3 1];>>b=[2 2 2];>> [x]=gaussl(A,b)x =1 1 1Gauss列主元消去法:源程序:function [x]=gaussll(A,b) [n1,n2]=size(A);n3=size(b);if n1~=n2|n1~=n3|n2~=n3disp('输入的方程错误!');return;endif det(A)==0disp('系数矩阵A奇异');return;endmax=zeros(n1);for m=1:n1%找主元for i=m:n1if abs(A(i,m))>maxmax=A(i,:);A(i,:)=A(m,:);A(m,:)=max;maxb=b(i);b(i)=b(m);b(m)=maxb;endend%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endendend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[-0.002 2 2;1 0.78125 0;3.996 5.5625 4]; >>b=[0.4 1.3816 7.4178];>>[x]= gaussll(A,b)x =1.9273 -0.6985 0.9004。
高斯消去实验报告分析
一、实验背景高斯消去法(Gaussian Elimination)是线性代数中解决线性方程组的重要方法之一。
它通过初等行变换将系数矩阵化为行阶梯形矩阵,从而求解线性方程组。
本实验旨在通过编写程序实现顺序高斯消去法和列主元高斯消去法,并对比分析两种方法的计算效率和精度。
二、实验目的1. 理解高斯消去法的原理和步骤。
2. 编写程序实现顺序高斯消去法和列主元高斯消去法。
3. 比较两种方法的计算效率和精度。
4. 分析高斯消去法的适用范围和局限性。
三、实验内容1. 顺序高斯消去法- 实现顺序高斯消去法,将系数矩阵化为行阶梯形矩阵。
- 求解线性方程组,得到未知数的解。
2. 列主元高斯消去法- 实现列主元高斯消去法,将系数矩阵化为行阶梯形矩阵。
- 求解线性方程组,得到未知数的解。
3. 比较两种方法- 对比两种方法的计算效率和精度。
- 分析两种方法的优缺点。
四、实验步骤1. 编写程序- 使用C/C++、Python等编程语言编写顺序高斯消去法和列主元高斯消去法程序。
- 程序应包含以下功能:- 输入线性方程组的系数矩阵和常数项。
- 实现顺序高斯消去法和列主元高斯消去法。
- 输出求解结果。
2. 测试程序- 使用一组已知线性方程组测试程序的正确性。
- 验证求解结果与精确解是否一致。
3. 比较分析- 使用不同的线性方程组测试两种方法的计算效率和精度。
- 比较两种方法的运行时间、解的精度和误差。
五、实验结果与分析1. 顺序高斯消去法- 计算效率:顺序高斯消去法的时间复杂度为O(n^3),其中n为方程组中未知数的个数。
- 精度:顺序高斯消去法可能会受到舍入误差的影响,导致求解结果与精确解存在一定的误差。
2. 列主元高斯消去法- 计算效率:列主元高斯消去法的时间复杂度同样为O(n^3),但通过选择主元,可以减少舍入误差,提高求解精度。
- 精度:列主元高斯消去法具有更高的精度,求解结果与精确解更接近。
3. 比较分析- 顺序高斯消去法和列主元高斯消去法在计算效率上基本相同,但列主元高斯消去法具有更高的精度。
列主元高斯消去法实验报告
}
}
printf("高斯消去:\n");
for(i=0;i<n;i++)
{
for(j=0;j<n+1;j++)
printf("%f",a[i][j]);
printf("\n");
}
if(fabs(a[n-1][n-1])<DETLA)
{
printf("A奇异,break \n");
int i,j,n,k,m;
printf("确定一个初元数:n=");
scanf("%d",&n);
printf("输入数组:a[%d][%d]\n",n,n+1);
for(i=0;i<n;i++)
{
for(j=0;j<n+1;j++)
scanf("%f",&a[i][j]);
}
printf("得到数组:\n");
若m≠k,交换第k行与第m行对应的元素(换行):
消元:
对i=k+1,…,n-1,计算l=lik=aik/akk;
对j=k+1,…,n-1,n,计算aij=aij-lik*akj=aij-l*akj
回代:
若|ann|<DELTA,则A奇异,结束程序,否则继续
xn-1=an-1,n/ an-1, n-1
对i=n-2 ,…, 1, 0,计算:
编程要求:
1)方程组的矩阵系数用二维数组表示,不用指针,且其值要求用输入语句输入。(数组形式的完成,经检查后,有能力的可以改用指针方式)
选列主元的高斯消去法实验报告2
选列主元的高斯消去法实验报告令狐烈一,实验目的:(1)掌握gauss消去法的基本算法思想和学会编写其MATLAB代码。
(2)掌握选列主元的gauss消去法的基本算法思想和学会编写其MATLAB代码。
(3)分析选列主元的gauss消去法相比于gauss消去法的优点。
(4)对选列主元的gauss消去法和gauss消去法进行误差分析二,实验原理对于非奇异矩阵A,求解线性方程组Ax=b可以使用gauss消去法进行。
但是,gauss消去法要求系数矩阵A的顺序主子式非奇异。
为此做出改进:每次消元之前,首先选出第i列(i<=k)中最大的作为列主元,这样,就能保证消元乘数不仅不被系数矩阵A的顺序主子式非奇异的限制,还这样就能有效的防止误差的传播与放大。
算法:(1)对增广矩阵[a b]进行第i次消元,首先选取列主元a(i,k)=Max|a(I,i:n),交换第i行与第k行;(2)以列主元进行消元,计算公式为a(k,i)= a(k,i)/a(i,i); (k=i+1:n)a(k,j)=a(k,j)-a(k,i)*a(i,j); (j=i:n)(3)回代法计算结果,计算公式为:x(n)=b(n)/a(n,n);x(p)=[b(p)-∑a(p,j)x(j)]/a(p,p) (j=p+1:n)注:gauss(a,b)为选取列主元gauss消去法,gauss2(a,b)为gauss消去法。
三,实验MATLAB程序代码实验的MATLAB程序代码如下四,实验结果与分析1,两种算法对系数矩阵的顺序主子式奇异线性方程的效果分析实验结果(如图一)对于顺序主子式奇异的系数矩阵,使用gauss消去法(gauss2(a,b))不能解出,而使用选列主元的gauss消去法(gauss(a,b))能够解出。
主要是选列主元的gauss消去法每次都选出最大的列主元,从而保证了每次用作除数的a(I,i)≠0.图一:两种算法对系数矩阵的顺序主子式奇异线性方程的效果2,两种算法对舍入误差的放大效应分析用随机生成函数random('Normal',1,7,10,10)生成10*10矩阵,分别gauss消去法和选列主元的高斯消去法解出,并用公式er(x)=||x−x∗||||x||≤cond(a)∗||r||||b||估计其误差,结果如下图。
计算方法实验报告_列主元高斯消去法
row_first=A[i][i]; for(int j=0;j<n+1;j++)
计算方法实验报告
{ A[i][j]=A[i][j]/row_first;
} }
for(int k=n-1;k>0;k--) {
for(int i=0;i<N;i++) {
for(int j=0;j<N;j++) {
A_B[i][j]=A[i][j]; } A_B[i][N]=B[i][0]; } return A_B; }
3
//输出矩阵 A 的 row x col 个元素 void Show_Matrix(double **A,int row,int col) {
for(int i=0;i<N;i++)
{
int row=Choose_Colum_Main_Element(N,A_B,i);
if(Main_Element<=e) goto A_0;
Exchange(A_B,N+1,row,i);
Elimination(N,A_B,i);
cout<<"选取列主元后第"<<i+1<<"次消元:"<<endl;
double factor; for(int i=start+1;i<n;i++) {
factor=A[i][start]/A[start][start]; for(int j=start;j<n+1;j++) {
高斯列主消元数值分析实验报告
数值分析实验报告之高斯列主消元法一、实验目的:清楚高斯列主元消去法与高斯主元素消去法的区别,以及它提出的必要性;掌握高斯列主元消去法的原理及推导过程,会用其解简单的线性方程组。
二、实验内容:用高斯列主元消去法解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--643.5072.1000.2623.4712.3000.1000.3000.2001.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000.3000.2000.1 三、实验原理:在采用高斯消去法解方程组时,小主元可能产生麻烦,即用其做除数,会导致其他元素数量级的严重增长和舍入误差的扩散,最终使得计算的解不可靠。
故应避免采用绝对值小的主元素。
在消元之前,选择一个绝对值最大的元素作为主元,用其做除数来进行消元,这样就具有较好的数值稳定性。
这就是选主元消去法。
下面详细说明列主元素消去法。
第一步:在Ax=b 即)1()1(b x A =的系数矩阵)1(A 的第一列元素中选择一个绝对值最大的元素,不妨设为)1(1l a 。
对调)1(1j a 和)1(lj a 及)1(1b 和)1(l b (j=1,2,……,n ,1≤l ≤n)。
以)1(1l a 作为新的)1(11a 进行消元(消去对调后的第2~n 个方程中的1x )。
第k 步:(1≤k ≤n-1)设第k-1步消元过程完成,得到)()(k k b x A =,检查)(k A 中第k 列的后n-k+1个元素)(k kk a ,)(1k k k a +,…,)(k nk a ,从中选出绝对值最大者,不妨设是)(k pk a ,称它为第k 列主元素。
若p=k ,则取)(k kk a 做除数直接进行消元。
若p ≠k,则将第p 个方程与第k 个方程对调,使)(k pk a 成为新的)(k kk a ,然后以其作为除数进行消元,继续这一过程,直至得到等价的三角形方程组)()(n n b x A =,下一阶段的回代过程不变。
计算方法数值实验报告
计算方法数值实验报告(一)班级:0902 学生:苗卓芳 倪慧强 岳婧实验名称: 解线性方程组的列主元素高斯消去法和LU 分解法实验目的: 通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。
实验内容:解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 解:(1) 用熟悉的算法语言编写程序用列主元高斯消去法和LU 分解求解上述两个方程组,输出Ax=b 中矩阵A 及向量b, A=LU 分解的L 及U ,detA 及解向量。
①先求解第一个线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x在命令窗口中运行A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34] 可得A =3.0100 6.0300 1.99001.2700 4.1600 -1.23000.9870 -4.8100 9.3400b=[1,1,1]可得b =1 1 1H =det(A)可得 H =-0.0305列主元高斯消去法:在命令窗口中运行function x=Gauss_pivot(A,b)、A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];n=length(b);x=zeros(n,1);c=zeros(1,n);dl=0;for i=1:n-1max=abs(A(i,i));m=i;for j=i+1:nif max<abs(A(j,i))max=abs(A(j,i));m=j;endendif(m~=i)for k=i:nc(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得实验结果ans =1.0e+003 *1.5926-0.6319-0.4936LU分解法:在命令窗口中运行function x=lu_decompose(A,b)A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];L=eye(n);U=zeros(n,n);x=zeros(n,1);c=zeros(1,n);for i=1:nU(1,i)=A(1,i);if i==1;L(i,1)=1;elseL(i,1)=A(i,1)/U(1,1);endendfor i=2:nfor j=i:nsum=0;for k=1:i-1sum =sum+L(i,k)*U(k,j);endU(i,j)=A(i,j)-sum;Ifj~=nsum=0;for k=1:i-1sum=sum+L(j+1,k)*U(k,i);endL(j+1,i)=(A(j+1,i)-sum)/U(I,i);endendendy(1)=b(1);for k=2:nsum=0;forj=1:k-1sum=sum+L(k,j)*y (j);endy(k)=b(k)-sum;endx(n)=y(n)/U(n,n);260页最后一行c(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得结果ans =1.0e+003 *1.5926-0.6319-0.4936②再求解第二个线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 即A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2];b=[8,5.900001,5,1];重复上述步骤可的结果为ans =0.0000-1.00001.00001.0000(2)将方程组(1)中系数3.01改为3.00,0.987改为0.990,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消元:
对i=k+1,…,n-1,计算l=lik=aik/akk;
对j=k+1,…,n-1,n,计算aij=aij-lik*akj=aij-l*akj
回代:
若|ann|<DELTA,则A奇异,结束程序,否则继续
xn-1=an-1,n/ an-1, n-1
实验步骤:
1)完成列主元高斯消去法解线性方程组的程序设计及录入、编辑;
#include<stdio.h>
#include <stdlib.h>
#include<math.h>
#define DETLA 1e-6
#define N 100
void main()
{
float a[N][N],b,l,x[N],s=0;
for(i=0;i<n;i++)
{
for(j=0;j<n+1;j++)
printf("%f",a[i][j]);
printf("\n");
}
for(k=0;k<n;k++)
{
m=k;
for(i=k+1;i<n;i++)
if(fabs(a[i][k])>fabs(a[m][k]))
m=i;
if(fabs(a[m][k])<DETLA)
实验四:线性方程组数值解法——列主元高斯消去法
目的与要求:
1)熟悉列主元高斯消元法解线性方程组的算法;
2)掌握列主元高斯消去法的编程。
实验内容:
列主元高斯消去法的编程实现。
算法:
消元:对k=0,2,…,n-2,按下列步骤进行:
选主元:找出mє{k,k+1,…,n-1},使
若|am,k|<DELTA,则A奇异,结束程序,否则继续
a[i][j]=a[i][j]-l*a[k][j];
}
}
printf("高斯消去:\n");
for(i=0;i<n;i++)
{
for(j=0;j<n+1;j++)
printf("%f",a[i][j]);
printf("\n");
}
if(fabs(a[n-1][n-1])<DETLA)
{
printf("A奇异,break \n");
对i=n-2 ,…, 1, 0,计算:
编程要求:
1)方程组的矩阵系数用二维数组表示,不用指针,且其值要求用输入语句输入。(数组形式的完成,经检查后,有能力的可以改用指针方式)
2)方程组的元数n要求用输入语句输入。
3)加入中间运算结果的显示,以便于检查程序。
4)列主元解方程组方法写成函数形式。如:void ColPivot(float a[10][11], int n, float x[10])
printf("x[%d]=%f\n",i+1,x[i]);
}
2)完成程序的编译和链接,并进行修改;
3)用书上P52例2的例子对程序进行验证,并进行修改;
4)用完成的程序解算习题中的题目。
int i,j,n,k,m;
printf("确定一个初元数:n=&;n);
printf("输入数组:a[%d][%d]\n",n,n+1);
for(i=0;i<n;i++)
{
for(j=0;j<n+1;j++)
scanf("%f",&a[i][j]);
}
printf("得到数组:\n");
exit(0);
}
x[n-1]=a[n-1][n]/a[n-1][n-1];
for(i=n-2;i>=0;i--)
{
for(j=i+1;j<=n-1;j++)
s=s+a[i][j]*x[j];
x[i]=(a[i][n]-s)/a[i][i];
s=0;
}
printf("回代结果为:\n");
for(i=0;i<n;i++)
{
printf("A奇异,break \n");
exit(0);
}
if(m!=k)
for(j=k;j<n+1;j++)
{
b=a[k][j];a[k][j]=a[m][j];a[m][j]=b;
}
for(i=k+1;i<n;i++)
{
l=a[i][k]/a[k][k];
for(j=k+1;j<n+1;j++)