分数阶微分方程的数值解法.ppt

合集下载

分数阶微分方程课件00_ECE-5930-syllabus (12)

分数阶微分方程课件00_ECE-5930-syllabus (12)

Columns 9 through 11 0 >> 0 0 3 6
Computation of fractional derivatives
Hany Farid:
%%% FRACTIONAL DERIVATIVES (12.14.00) %%% Hany Farid (farid@ | /~farid) %%% clear; set( gcf, 'Renderer', 'zbuffer' ); dim! ramp ! ramp ! f! f! F! = 256; = [-dim:dim-1]; = pi * ramp/dim; = exp( -(ramp.^2)/(0.5) ); ! = f - mean(f);! ! ! = fftshift( fft( f ) ); ! !
(2) There is a routine at MATLAB File Exchange:
Eα,β (Z ), α = 1.1 : 0.1 : 1.9, β = 1
for each routine make a qualitative check
Columns 9 through 11 0.0013 0.0009 0.0007
Computation of the Mittag-Leffler function
(1) Directly using the definition:
Numerical methods of the fractional calculus
(continued II)
function y=mitlef(alpha,beta,z,N) % Evaluation of the Mittag-Leffler function in two parameters: % E_{alpha,beta}(z), using its series expansion. % % PARAMETERS: % alpha - first index (scalar), beta - second index (scalar) % z - row vector of values of the function argument % N - number of terms in the power expansion (scalar) % OPTIONAL, default N=100. if nargin<4, N=100; end m1=max(size(z)); m2=min(size(z)); if m2>1, z=z(1,:); end k=repmat((1:N)',1,m1); t=repmat(z,N,1); t=t.^(k-1); a=repmat(gamma(alpha*((1:N)'-1)+beta), 1, m1); y=sum(t./a);

数值分析5─微分方程ppt课件

数值分析5─微分方程ppt课件
地址:北京学院路29号 教三楼315
电话:010-82322022 邮件:cbz@ 主页:
数值分析
(常微分方程数值解)
褚宝增
数值分析─常微分方程数值解
一阶初值问题的数值解法
2
数值分析─常微分方程数值解
另:显式的几何解释
3
数值分析─常微分方程数值解
数值分析─常微分方程数值解
23
数值分析─常微分方程数值解
24
数值分析─常微分方程数值解
25
数值分析─常微分方程数值解
26
数值分析─常微分方程数值解
27
数值分析─常微分方程数值解
线性多步法
28
数值分析─常微分方程数值解
29
数值分析─常微分方程数值解
30
数值分析─常微分方程数值解
31
数值分析─常微分方程数值解
4
数值分析─常微分方程数值解
5
数值分析─常微分方程数值解
6
数值分析─常微分方程数值解
7
数值分析─常微分方程数值解
8
数值分析─常微分方程数值解
9
数值分析─常微分方程数值解
龙格—库塔方法
10
数值分析─常微分方程数值解
11
数值分析─常微分方程数值解
12
数值分析─常微分方程数值解
13
数值分析─常微分方程数值解
四阶rungekutta方法推导数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解线性多步法数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解一阶常微分方程组的数值解法数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解高阶初值问题的求解以三阶为例数值分析常微分方程数值解二阶边值问题的求解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解数值分析常微分方程数值解

第一讲分数阶微分方程

第一讲分数阶微分方程
设 α > 0 是任意正实数, n 是大于 α 的最小正整数, 即 n − 1 ≤ α < n, 则 R-L 分数阶导数 定义为
RL a
Dαx
f
(x)
Dn
(
a
Dαx −n
f
) (x)
=
1 Γ(n − α)
dn dxn
ˆx
a
f (t) (x − t)α−n+1
dt,
(1.6)
即先做 n − α 次分数阶积分, 然后再求 n 次导数. 我们注意到 0 < n − α ≤ 1.
RL a
Dαx
a
D−x α
f (x)
=
Dn
a
Dαx −n
a
D−x α
f (x)
=
Dn
a
D−x n
f (x)
=
f (x).
如果将次序反过来的话, 则有下面的复合公式.
定理 1.4 设 α > 0, 且 n − 1 ≤ α < n, 则
a
D−x α
RL a
Dαx f (x)
=
f (x)
∑n −
[a Dαx−i f (t)]t=a Γ(α − i + 1)
(
a
D−x 1
f
) (x)
=
dn dxn
f
(x),
因此, 当 α 是正整数时, R-L 分数阶导数与整数阶导数的定义是一致的. 所以, R-L 分数阶导数在整数阶导 数之间架起了 “桥”.
1.1.3 Caputo 分数阶导数
R-L 分数阶导数是最先提出来的, 理论分析也相对完善. 但与实际应用却存在一定的困难和障碍 [4, page 4]. 一个比较好的解决方法就是由 Caputo [1, 2] 提出来的 Caputo 分数阶导数.

分数阶导数与分数阶微分方程

分数阶导数与分数阶微分方程

要点三
计算方法
整数阶导数的计算方法相对简单,可 以通过求极限的方式得到;而分数阶 导数的计算涉及复杂的数学运算,如 特殊函数的计算、数值逼近等。
02 分数阶导数的定 义与性质
分数阶导数的定义
分数阶导数是一种扩展了整数阶导数的概念,其中导数的阶数可以是任意 实数或复数。
分数阶导数描述了函数在某一点的非局部性质,即函数在该点附近的变化 情况,而不仅仅是该点的局部变化率。
生物医学工程
在生物医学工程中,分数阶微分方程可以用来描述生物组 织的电生理特性、药物代谢过程等,为生物医学研究和治 疗提供新的思路和方法。
04 分数阶导数与分 数阶微分方程的 数值计算
分数阶导数的数值计算方法
01
Grunwald-Letnikov方法
基于整数阶导数的差分定义,通过极限过程推导得到分数 阶导数的差分格式。
描述复杂系统的动力学行为
分数阶导数能够更准确地描述具有记忆效应和长程相互作 用的复杂系统的动力学行为,如黏弹性材料、电解质溶液 等。
建模非线性物理现象
分数阶微分方程可用于建模非线性物理现象,如混沌、分 形、湍流等,这些现象在传统整数阶导数框架下难以准确 描述。
量子力学与统计物理中的应用
在量子力学和统计物理中,分数阶导数和分数阶微分方程 可用于描述粒子的非经典扩散行为、量子隧穿等现象。
分数阶导数具有非局部性,即函 数在某一点的分数阶导数不仅与 该点的函数值有关,还与函数在 该点附近的其他点的函数值有关 。
分数阶导数的计算方法
分数阶导数的计算可以通过定义直接进 行,但这种方法通常比较复杂且计算量 大。
可以利用一些特殊函数(如Gamma函数、 Beta函数等)的性质来简化分数阶导数的计 算。

分数阶微分方程课件

分数阶微分方程课件

分数阶微分方程第三讲分数阶微分方程基本理论一、分数阶微分方程的出现背景及研究现状1、出现背景分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。

整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。

但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题:(1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;(2)因材料或外界条件的微小改变就需要构造新的模型;(3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。

基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。

分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。

2、研究现状在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。

然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。

分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。

随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。

然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。

在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。

分数阶微分方程课件

分数阶微分方程课件

分数阶微分方程第三讲分数阶微分方程基本理论一、分数阶微分方程的出现背景及研究现状1、出现背景分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。

整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。

但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题:(1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;(2)因材料或外界条件的微小改变就需要构造新的模型;(3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。

基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。

分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。

2、研究现状在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。

然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。

分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。

随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。

然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。

在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。

分数阶微分方程数值解的一种逼近方法讲解

分数阶微分方程数值解的一种逼近方法讲解

分数阶微分方程数值解的一种逼近方法By:Pankaj Kumar, Om Prakash Agrawal摘要本文提出了一类分数阶微分方程(FDEs)的数值解方案.在这种方法中,FDEs 被Caputo型分数阶导数所表现. Caputo型分数阶导数的属性可以让一个分数阶微分方程减弱为一个Volterra型积分方程. 这样做了之后,许多研究Volterra 型积分方程的数值方法也可以应用于寻找FDEs的数值解. 本文总时间被划分为一组小区间,在两个连续区间中,用二次多项式逼近未知函数. 这些近似被替换成转化的Volterra型积分方程由此获得一组方程. 这些方程的解提供了FDE的解. 这种方法被应用于解决两种类型的FDEs,线性和非线性. 用这里给出的方法得到的解能与解析解和其他方法的数值解较好的吻合. 同时结果说明这种数值方法是稳定的.1.引言本文讨论分数阶微分方程的数值解. 分数阶导数和分数阶积分近年来收到了广泛的关注. 在许多实际应用中,分数阶导数和分数阶积分为考虑的系统提供了更加精确地模型. 比如,分数阶导数已经被成功地运用到模拟许多粘性材料的依赖频率的阻尼行为.1980年之前,Bagley 和Torvik提出了这个领域已经被研究的工作的一个回顾,并且说明了半阶导数模型可以非常好地描述阻尼材料的频率以来. 另一些学者说明了分数阶导数和分数阶积分在电化学过程,电解质极化,有色噪声,粘性材料和混沌领域的应用. Mainardi,Rossikhin和Shitikova 提出了分数阶导数和分数阶积分在一般固体力学,特定粘弹性阻尼模型中的应用的调查. Magin提出了分数阶微积分在生物工程的三个关键部分的回顾. 分数阶导数和分数阶积分在其他领域的应用以及相关的数学工具和技巧还可以在许多其他文献上找到.系统模型中分数阶导数的引进大多会导致分数阶微分方程的出现. 对某些特定的分数阶微分方程在通常系统条件下的解,已经有几种方法被找到. 这些方法包括,拉普拉斯变换,傅里叶变换,模态综合法和特征向量展开法,数值法以及基于Laguerre积分公式的方法. 然而,这些方法中大多数不能被应用到非线性分数阶微分方程. 更进一步的,正如Diethelm等人指出的,这些方法很多只能应用到特定类型的分数阶微分方程,并且人们并不知道他们能否被推广. 并且,在很多作者的研究成果中,并没有出现系统性的收敛性分析.最近,对于能被应用到线性和非线性分数阶微分方程的数值稳定数值逼近技巧,人们的兴趣愈发浓厚. 这些方法技巧大多利用了分数阶微分方程可以被减弱为Volterra型积分方程的特性. 因此,Volterra型积分方程的数值解法也可以应用到分数阶微分方程的解当中. Diethelm等人提出了分数阶微分方程数值解的一种PECE方法,其中P,C,E分别代表预测,校正和估计. 这样一来很多学者又推广了应用于常微分方程和分数阶微分方程的Adams–Bashforth–Moulton 型预测-校正格式. 这种方法的提出也是利用分数阶微分方程可以被转化为Volterra型积分方程的特点. 这些作者同时提出了误差分析和用Richardson外推法改善数值精度的延伸. Ford和Simpson提出了一种阶数大于1的分数阶微分方程的数值解法. 在该公式中,阶大于1的分数阶微分方程被减弱为阶小于1的分数阶微分方程,然后用相应的数值解法解由此导出的系统. 在所有这些方法当中,节点之间的未知函数用线性函数逼近. Kumar and Agrawal提出了阶数大于1的分数阶微分方程的数值解法. 这种方法要求就y(t)和它的导数在时间节点上连续.本文基于古典分数阶微分方程可以转化为Volterra型积分方程的特点也提出了一种数值方法来逼近分数阶微分方程的解. 特别地,我们用二次逼近函数来建立这种算法,结果说明这种方法可以被应用到寻求分数阶微分方程的数值解. 我们还通过两个例子,线性和非线性问题的解决,说明了这种方法的高效和准确,并且这种数值方法是稳定的.2.数值算法关于分数阶导数的定义已经出现有好几种,它们包括Riemann–Liouville, Grun-wald–Letnikov, Weyl, Caputo, Marchaud,和Riesz分数阶导数. 这里,我们规定使用Caputo导数.其中,Caputo导数的定义是, (n-1<α<n),(1)其中,α是导数的阶数,n是比α大的最小的整数.式(1)早在19世纪就在Liouville的论文中被提出,在Caputo的论文发表前一年它被Rabotnov所用. 然而,在文献中,被(1)式所定义的分数阶导数作为Caputo导数被广泛认知.在接下来的讨论中,我们考虑含有Caputo导数的初值问题:(2)在初始条件:, k=0,1,...,n-1,(3)下的解,其中,f是任意函数,是y的k阶导数,,k=0,1,…,n-1是指定初值条件. 假设这个函数关于参数和积分区间都是连续的,并且对于它的第二个参数满足Lipschitz条件.在纯数学中,Riemann–Liouville导数比Caputo导数应用更加广泛. 然而,这里考虑Caputo导数是因为以Riemann–Liouville导数为基础的分数阶微分方程要求y(t)在t=0点的导数和积分为0.一般来说,这些条件的物理意义不是已知的,并且在实际应用中,他们是不可用的. Lorenzo and Hartley讨论了寻找在更一般的情况满足下初始条件的正确格式的问题. 在Diethelm and Ford的文章中,方程(2)和(3)被证明可以等价描述为:,(4)其中g(t)为:. (5)为了解释以二次多项式为基础的数值方法,我们假设我要求的是由(2)式定义的分数阶微分方程从0到T的积分. 为了达到这个目的,我们把时间T等分成N 份,令h=T/N,作为时间区间的每一个部分. 时间在网格点上被表示为. 同时假设y(t)的数值逼近值被网格点所决定. 该方法的基本思想是在相邻的两个时间节点和上数值地获取函数y(t)的值,然后重复这个过程来接近所求积分直到取到终点T.为了便于接下来的讨论,我们规定如下记号:, ,这里的方法需要对方程(4)每一步求两次积分值. 这里有两种方法来达成目的.第一种,用一些近似函数逼近y(t),然后用一种数值方法确定式(4)的积分值.这里需要在未知积分的情况下对和作初始的估计. 第二种, 都用近似函数来显式地逼近y(t)和f(t,y(t))以及确定式(4)的积分. 注意在这种情况下,和会作为参数出现在函数f当中. 本文利用的是第二种逼近方法.现在,我们给出算法的详细思路. 首先我们需要确定y(t),,的值. 用二次插值函数可以在区间[0,]上逼近y(t)和f(t,y(t)):(6)以及(7)其中,是函数在第k个时间节点的值,,k=0,1,2是二次插值函数,其中下标(j,k)代表在第j+1,j=0,…,m步的第k个近似函数.我们首先确定y(t)在和处的值. 把(7)式带入(4)式,并积分得到:(8)其中,,(9)可以精确计算得到. 注意式(8)需要知道f在和的值(或者间接地说,y的值). 为了得到,在[,]上把f(t,y(t))近似为:,(10)其中,,是另一个二次插值函数. 函数,k=1,2,3由下式给出,函数由相似的办法定义.把(10)代到(4)中,积分得到:, (11)其中,, (12)可以(9)中一样被精确计算出来. 由(7)可以得到的值为:(13) 这里,我们充分利用了二次多项式的性质. 在非二次多项式的情况下,将会有不同的参数.把(13)代到(11)得到,+, (14)注意到(8)和(14)是关于两个未知量和的方程,可以用Newton–Raphson法,不动点迭代或者其他非线性方法求解. 这里,我们用Newton–Raphson法求解这些非线性方程. 这个方法需要对和作一个初始的估计. 当α大于1, 由t=0处的斜率可以得到关于和的更好的估计. 然而,在这里,对于α>1和α<1我们对把这些变量的初值估计为. 注意在每一次迭代式,时间步长取2h.现在我们假定在处,y的值是已知的,我们要求的是和处的值. 根据以上的逼近方法,和可以被表示为:+, (15)++(16)其中,,k=2m,2m+2,2m+2,,k=2m,2m+1/2,2m+1是和,用同样方法确定的系数. 注意(15),(16)的积分可以被数值确定因为y(t)在,处的值是已知的. 这些方程含有两个未知量和,而他们可以通过Newton–Raphson法得到. 本文中,我们把作为和的初值估计. 这样一来,方程(1)就可以在需要的区间上求积分.作为特殊情况,考虑如下非线性系统:.这种条件下,,式(16)和(15)减弱为:, (17) 其中=, (18)=, (19)=-, (20)=1+(21)=-, (22)=- . (23)(17)是一组线性联立方程,可以用线性方法求解.请注意以下两个补充说明. 第一,方程(1)只含有一个y(t). 当y(t)是一个向量函数时,算法同样成立.不过,所有的y(t)和f(t,y(t))必须换成相应的近似向量函数. 第二,算法需要保存所有算过的的y的值. 这是很多分数阶微分方程的典型特征. 这将会导致一些问题,特别是当y的维数和分数阶有限元系统一样大时. 这种情况下,系统有临近的短期记忆,y(t)在过去一段时间长度的值可以忽略不计,以此来改善对存储空间的需求和计算效率.3. 数值结果为了说明这种方法的效率,我们分别考虑一个线性和一个非线性的算例. 讨论这些例子是因为他们解的逼近格式是可靠的,并且可以用其他数值方法求解. 这样我们就可以把用这种方法得到的结果和解析解以及其他数值方法的结果相比较.3.1例1线性方程在第一个例子中,我们考虑如下给出的线性方程:,0<α<2,(24) 且. (25) 初始条件仅当α>1是成立. (24),(25)的解是:,(26) 其中,. (27) 是Mittag–Leffler函数的阶.图1.α=0.75时y(t)的比较(O:解析解,X:本文数值方法)表1.α=0.75时h在不同值下函数y(t)的误差对不同的α和h可以得到很多结果,这里给出其中一些. 在各种情况下,我们另T=6.4s.考虑这个区间是因为它接近α=2的系统的时间. 这里图(1)比较了α=0.75时的解析解和二次数值方法. 在这种情况下,我们令h=0.1s. 注意到这两个结果几乎完全重合. 为了强调收敛性,表(1)列出了当α=0.75,h分别等于0.4,0.2,0.1,0.05和0.025时的结果. 注意到随着步长的缩小,误差也如期望一样的缩小了. 在大部分节点误差比R=E(2h)/E(h)都非常接近3.37,这表明误差阶为1.75(或E(h)=O()).图2. α不同时y(t)的比较(O:α=0.25,X:α=0.5,+:α=0.75,Δ:α=0.95,*:α=1.)图3.α=1.5时y(t)的比较(O:解析解,X:本文数值方法)表2.α=1.5时h在不同值下函数y(t)的误差图(2)展示了h=0.025,α分别等于0.25,0.5,0.75,0.95和1时y(t)的数值结果.因为解析解和数值结果完全一致,因此图中没用画出解析解. 当α=1时,精确解为y(t)=. 注意到随着α越来越接近1,数值解越收敛到解析解y(t)=,即在极限情况下,分数阶微分方程的解接近整数阶导数的解.更进一步地,我们给出了α>1的一系列结果.α<1和α>1的结果是分离的,因为y(t)的斜率在α=1处有一个跃迁.图3比较了y(t)在α=1.5,h=0.4时的解析解和数值解. 两个结果又一次几乎完全重合.为了突出收敛性,表2给出了α=1.5,h分别等于0.4,0.2,0.1,0.05和0.025时的数值解. 正如之前观察到的一样,在这种情况下,随着步长的减小,误差也随之减小. 在这种情况下,误差比接近5.5,这表明误差阶为2.5(或E(h)=O()). 这样一来,通过观察α<1和α>1的收敛结果,可以知道误差的收敛阶为1+α(或E(h)=O()),即误差的阶不仅依赖于h,还依赖于导数的阶α.图4. α不同时y(t)的比较(O:α=1.25,X:α=1.5,+:α=1.75,Δ:α=1.95,*:α=2.)图5.α=0.25,0.75,1.25,1.75时y(t)的比较(O:解析解,X:本文数值方法)表3.本文数值方法和文献(35)中y(t)的误差的比较.图4展示了h=0.025,α分别等于1.25,1.5,1.75,1.95和2时y(t)的数值结果.又一次,因为解析解和数值结果完全一致,因此图中没用画出解析解. 当α=2时,精确解为y(t)=cos(t). 注意到随着α越来越接近2,数值解逐渐收敛到整数阶导数的解. 图2和图4展示的收敛结果十分重要,因为他们说明了在极限情况下,分数阶微分方程和他们的解逼近整数阶微分方程以及他们的解析解. 表3比较了t=1.0文献(35)的解的误差和用本文数值方法在α=0.5和1.25,h=0.1,0.05,0.025的解的误差. 注意到本文的方法得到了更低阶的误差. 这是因为,这里的方法是一种高阶方法. 当α和h取其他值时这种趋势也能显现出来.3.2 例2.非线性方程在第二个例子中,我们考虑一个如下定义的非线性方程:(28) 且. (29) 和之前一样,第二个初始条件仅适用于α>1. (28)(29)的精确解在文献(35)中已给出,(30)注意到当α<1, 方程的解在t=0处的斜率趋近于无穷. 因此,他可能导致在t=0附近出现一个巨大的数值误差.表4. α=0.75和1.5,h取不同值下y(t) 的误差.表5. 文献(35)中y(t)的误差和用本文数值方法得到的y(t)的误差的比较上面给出了一些在不同α和h下的数值结果. 图5表示了h=0.05,α分别等于0.25,0.75,1.25,1.75时解析解和数值解的结果. 由它可以得到(1).解析解和数值解基本重合,当α取其他值是,可以得到同样的结果. (2)尽管在t=0处斜率非常大,但是方法给出了非常精确的结果. (3)正如预期的那样, 在t=1处,对所有的α,y(t)的值收敛到0.25. 表4列出了当α=0.75和1.5,h=0.1,0.05和0.025的数值解的误差. 注意到误差随着步长的减小而减小. 同样的趋势在α取其他值时也能观察到. 在尝试过的α的值中,误差比R=E(2h)/E(h)表明没有特定的收敛阶. 然而,当α=0.75和1.5时,收敛的误差的平均值接近12和15.表5比较了文献(35)中在t=1.0处解的误差和用这种方法在α=0.25和1.25,h=0.05时的误差. 这里我们用的是文献(35)中用Richardson外推法得到的值. 观察得到,本文的方法又一次给出了更小的误差. 当α=0.25时,这种方法给出了比Richardson外推法小得多的误差. 这可能是因为,当α等于0.25时y(t)在t=0附近的斜率改变非常迅速,并且线性方法不能精确地获得结果. 需要指出的是,这种数值方法对于α和h取其他值时同样给出了更加精确的结果.4.结论本文给出了一种经典的分数阶微分方程的数值逼近方法. 这里的分数阶微分方程是依据Caputo型分数阶导数给出的, 这种导数的性质可以把分数阶微分方程减弱为Volterra型积分方程. 时间区间被分成一组网格,通过3个连续节点的二次插值多项式逼近未知的和已知的函数y(t)和f(t,y(t)). 把这些多项式带入Volterra型积分方程可以得到一组代数方程,这种数值方法的提出就是用来解这些方程以及获取y(t)的解. 通过一个线性一个非线性的例子的解决,说明了这种数值方法的作用. 用这种方法得到结果和解析解以及其他数值方法的结果是一致的. 还得到一个结论就是结果随着步长的减小而收敛. 在极限情况小,当α逼近整数值,数值方法会得到一个整数阶系统的解. 结果还表明这种方法是数值稳定的.。

分数阶偏微分方程及其数值解

分数阶偏微分方程及其数值解

分数阶偏微分方程及其数值解分数阶偏微分方程(FractionalPartialDifferentialEquations,FPDE)是一种研究结构化复杂度在时空尺度上宏观的量的物理学方程的一个特殊的类型,它建立在常微分方程的基础上,可以概括和描述各种类型的多元系统的行为,因此在多元系统与过程控制领域具有重要的应用意义。

分数阶偏微分方程是一种特殊的微分方程,它不仅描述了混合模型,而且具有动态改变、非线性行为、多尺度关系以及复杂流动等特点,它们可以用来描述流体力学、热力学和电磁学等多元系统。

分数阶偏微分方程具有时间和空间的动态变化,可以用来表征机械系统、生物系统以及其他复杂系统的行为。

该方程的求解具有许多特点,由于分数阶偏微分方程具有复杂的动态变化,求解其解时需要使用更高级的数值方法。

常见的分数阶微分求解方法有迭代法、积分技巧和特殊函数技巧等,但是它们的仿真的准确性往往不能满足实际的建模要求。

为了更好地描述和解决分数阶偏微分方程,研究人员开发了许多数值求解方法,包括:动态块法(Dynamic Block Methods)、时间分片法(Time Slice Method)、传递性函数法(Transfer Function Method)、动态块法(Dynamic Block Method)、格式差分(Grid Difference Method)等等。

其中动态块法是一种有效的、高效的方法,它基于分数阶偏微分方程的分块性质,将分数阶偏微分方程划分成多个小区域,然后运用普通微分方程的求解方法解决每个小区域的分数阶偏微分方程,并使用Lagrange插值在多个小区域之间进行数值计算,将多个小区域的解组合起来得到最终的整体解。

时间分片法是一种基于斯特林积分的求解方法,它通过将分数阶偏微分方程空间划分成若干小片,再用普通微分方程的求解方法解决每一小片的分数阶偏微分方程,最终通过斯特林积分来组合这些求解的答案,得到最终的整体解。

分数阶偏微分方程的数值解—分析和算法

分数阶偏微分方程的数值解—分析和算法

分数阶偏微分方程的数值解—分析和算法分数阶偏微分方程是一类具有特殊微分阶数的偏微分方程,其在应用领域具有重要的意义。

本文将从分析和算法两个方面对分数阶偏微分方程的数值解进行探讨。

一、分析1. 分数阶微积分简介分数阶微积分是对传统微积分的一种扩展,它将微积分的概念从整数阶推广到分数阶。

分数阶导数和分数阶积分不仅适用于分数阶偏微分方程,也在信号处理、图像处理等领域有广泛应用。

2. 分数阶偏微分方程的特点与整数阶偏微分方程相比,分数阶偏微分方程具有更丰富的动力学行为和非局部性。

分数阶导数的存在使得系统的响应不仅与瞬时状态相关,还与历史状态相关。

这种非局部性导致了分数阶偏微分方程的分析更加困难。

3. 分数阶偏微分方程的数值解方法传统的整数阶偏微分方程的数值解方法不适用于分数阶偏微分方程。

常用的分数阶偏微分方程数值解方法包括有限差分法、有限元法、谱方法等。

这些方法将分数阶偏微分方程离散化为代数方程,然后使用计算机进行求解。

二、算法1. 有限差分法有限差分法是最常见的分数阶偏微分方程数值解方法之一。

基本思想是将偏微分方程中的导数用差分近似代替,将方程离散化为代数方程组。

常用的有限差分格式包括格点法、Jacob分数阶差分格式等。

2. 有限元法有限元法是另一种常用的分数阶偏微分方程数值解方法。

它将求解域划分为若干个子域,并在每个子域上建立近似方程。

通过求解这些子域上的代数方程组,得到原分数阶偏微分方程的数值解。

3. 谱方法谱方法是一种利用基函数进行逼近的分数阶偏微分方程数值解方法。

基函数的选取对于谱方法的精确度起到关键作用。

常用的基函数包括Chebyshev多项式、Legendre多项式等。

谱方法的优点是收敛速度快且精度高,但适用范围相对较窄。

三、应用1. 生物医学领域分数阶偏微分方程在生物医学领域有着广泛的应用,如癌症模拟、血管网络模拟等。

通过数值解方法,可以更好地理解和预测生物医学系统中的动力学行为。

2. 材料科学领域分数阶偏微分方程在材料科学领域的应用主要集中在材料的传输性质研究。

微分方程数值解法 ppt课件

微分方程数值解法  ppt课件

6
0.6 0.757147 0.735294
7
0.7 0.688354 0.671141
8
0.8 0.622018 0.609756
9
0.9 0.560113 0.552486
10 1.0 0.503642 0.500000
11 1.1 0.452911 0.452489
12 1.2 0.407783 0.409836 ppt课件
ppt课件
14
1741年 - 1766(34岁-59岁)任德国科学院物理数学所所 长,任职25年。在行星运动、刚体运动、热力学、弹道学、人 口学、微分方程、曲面微分几何等研究领域均有开创性的工作。 1766年应沙皇礼聘重回彼得堡,在1771年(64岁)左眼失 明。 Euler是数学史上最多产的数学家,平均以每年800页的速 度写出创造性论文。他去世后,人们用35年整理出他的研究成 果74卷。
22
一般先用显式计算一个初值,再迭代求解。
隐式欧拉法的局部截断误差: NhomakorabeaRi

y(xi1)
yi1

h2 2
y(xi ) O(h3)
即隐式欧拉公式具有 1 阶精度。
ppt课件
23
梯形公式 /*trapezoid formula */
— 显、隐式两种算法的平均
yi 1

yi

h 2 [ f (xi ,
计算量大
多一个初值, 可能影响精度
ppt课件
26
改进欧拉法 /* modified Euler’s method */
Step 1: 先用显式欧拉公式作预测,算出
yn1 yn hf xn, yn

分数阶微分方程课件00_ECE-5930-syllabus (1)

分数阶微分方程课件00_ECE-5930-syllabus (1)

Fractional order models and fractional differential equations in science and engineering Igor Podlubny L 178 797-7118 (Office) igor.podlubny@tuke.sk M W F 10:00–11:30 Other hours by appointment. Tu Th 12:30–14:50 ENGR 204 standard calculus and basic numerical methods. Podlubny I. Fractional Differential Equations. San Diego: Academic Press; 1999. Magin R. Fractional Calculus in Bioengineering. Begell House Inc., Redding; 2006.
ECE 5930 / ECE 6930:
Course outline: page 2/3
Fractional Green's Function. Definition and Some Properties. One-Term Equation. TwoTerm Equation. Three-Term Equation. Four-Term Equation. General Case: n-term Equation. Other Methods for the Solution of Fractional-order Equations. The Mellin Transform Method. Power Series Method. Babenko's Symbolic Calculus Method. Method of Orthogonal Polynomials. Numerical Evaluation of Fractional Derivatives. Approximation of Fractional Derivatives. The "Short-Memory" Principle. Calculation of Heat Load Intensity Change in Blast Furnace Walls. Order of Approximation. Computation of Coefficients. Higher-order Approximations. Numerical Solution of Fractional Differential Equations. Initial Conditions: Which Problem to Solve? Numerical Solution. Examples of Numerical Solutions. The "ShortMemory" Principle in Initial Value Problems for Fractional Differential Equations. Matrix approach to discrete fractional calculus. Numerical solution of nonlinear problems. Applications. SUPPLEMENTAL REFERENCES: 1. Podlubny, I., Heymans, N.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta. vol. 45, 2006, pp. 765–771. 2. Podlubny I.: Fractional-order systems and PIλDµ–controllers, IEEE Transactions on Automatic Control, vol. 44, no. 1, January 1999, pp. 208-213. 3. Podlubny, I., Petras, I., Vinagre, B.M., O'Leary P., Dorcak L.: Analogue realizations of fractional-order controllers. Nonlinear Dynamics, vol. 29, no. 1–4, 2002, pp. 281–296. 4. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, vol. 5, no. 4, 2002, pp. 367–386. 5. Podlubny, I.: Matrix approach to discrete fractional calculus. Fractional Calculus and Applied Analysis, vol. 3, no. 4, 2000, pp. 359–386. 6. Carpinteri A, Mainardi F, editors. Fractals and fractional calculus in continuum mechanics. CISM Courses and Lectures no. 378. International Center for Mechanical Sciences. New York: Springer-Verlag Wien; 1997. 7. Churchill RV.Operational mathematics. New York: McGraw- Hill; 1958. 8. Magin RL, Fractional Calculus in Bioengineering, Critical Reviews in Biomedical Engineering, Part I 32(1): 1-104, 2004, Part II 32(1) : 105-193, 2004, Part III 32(1) 9. Mandelbrot BB. The fractal geometry of nature. New York: W. H. Freeman; 2000. 10. Miller KS, Ross B. An introduction to the fractional calculus. New York: John Wiley; 1993. 11. Oldham KB, Spanier J. The fractional calculus. New York: Academic Press; 1974. 12. West BJ, Bologna M, Grigolini P. Physics of fractal operators. New York: Springer; 2003. Web site: http://people.tuke.sk/igor.podlubny/ http://people.tuke.sk/igor.podlubny/USU/ http://people.tuke.sk/igor.podlubny/fc.html Homework

《微分方程数值解法》PPT课件

《微分方程数值解法》PPT课件

方程的解 U~n 。为了弄清差分格式(2.58)的稳定性条件, 给出稳定的定义:
对于任意给定的 0 ,存在与h, k 无关且依赖于 的
正数 ,使当
U~0 U 0 V 0
时,对于任何的 n0 nk T ,差分格式得到的解U~ n ,U n
满足不等式
U~n U n V n
连同初值条件:U
0 m

mk
, m
1,2,M
1
边值条件:U
n 0

U
n M
0, n
0,1,2,, N
逐层解出结点处的U 值。
现在对
h

ห้องสมุดไป่ตู้

,取二种 20
k
,使
r

k h2
5 和5 11 9
。图2.9
和图2.10中的曲线表示不同的时刻微分方程的精确解,图
中“ ”表示差分方程的解
(2.54)
下面我们先研究上式右边第二项,即差分方程的理论
解与计算机上解得的近似解之间的差别是随着n 的增大而
无限增大还是有所控制。如果这种差别是无限增加,则称
差分格式不稳定,显然不稳定的格式是不能使用的,因为
误差的无限增加淹没了真解。上例中的r 5 时就是差分
9
方程不稳定的情况。从差分方程,比如格式(2.29)可知,
如果差分方程为显式,则对所有的n ,An I ;如 An I
果 An

0

U U
n1 CnU
0
n
An1en , Cn

An1Bn
(2.58)
,则隐式格式可以写成显式形式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档