16.2__二次根式的运算 2
16.2二次根式的运算(教案)
1.理论介绍:首先,我们要了解二次根式运算的基本概念。二次根式是指形如√a的表达式,其中a是非负实数。它在数学运算中非常重要,可以帮助我们解决实际问题,如几何中的长度计算等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何计算两个二次根式的乘积和商,以及这些运算在几何问题中的应用。
16.2二次根式的运算(教案)
一、教学内容
本节课选自教材第十六章第二节,主要围绕二次根式的运算展开,具体内容包括:
1.二次根式的乘法与除法法则:掌握二次根式乘法与除法的运算规则,能够正确进行相关计算。
-乘法法则:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\),其中\(a \geq 0\),\(b \geq 0\);
3.二次根式的性质与化简:掌握二次根式的性质,能够对二次根式进行化简。
-性质:\(\sqrt{a^2} = |a|\),其中\(a\)为实数。
二、核心表达与交流的能力,通过二次根式运算的学习,使学生能够准确、清晰地用数学语言表述问题,展示逻辑推理过程。
-除法法则:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\),其中\(b \neq 0\),\(a \geq 0\),\(b > 0\)。
2.二次根式的加法与减法法则:了解二次根式加、减运算的法则,能够进行简单的合并同类二次根式。
-加减法则:\(\sqrt{a} \pm \sqrt{b}\),其中\(a\)、\(b\)为正实数,且两个二次根式具有相同的根指数和被开方数。
3.重点难点解析:在讲授过程中,我会特别强调二次根式乘法与除法法则,以及合并同类二次根式这两个重点。对于难点部分,我会通过具体的例题和对比分析来帮助大家理解。
新人教版数学八年级下册《16.2 二次根式的乘除(第2课时)》课件
例2 计算: (1) 3 42 ;
56
(2)2
11 1 22
1.
6
解:(1) 3 42 3 42 3 7;
56 5 6 5
(2)2 1 1 1
22
1 (2 1)( 3
6
22
1)(2 2) 6
3 1 4 26
36 2
12.
提示:类似(2)中被开方数中含有带分数,应先将带分数化成 假分数,再运用二次根式除法法则进行运算.
探究新知
归纳总结 最简二次根式应满足的条件: (1)被开方数不含分母或分母中不含__二__次__根__式____; (2)被开方数中不含___开__得__尽__方___的因数或因式. 注:当被开方数是整式时要先判断是否能够分解因式, 然后再观察各个因式的指数是否是2(或大于2的整数), 若是则说明含有能开方的因式,不满足条件,不是最简 二次根式.
解:d2 8 40 16 10.
问题3 他从海拔100米处登上海拔200米高的山顶,那么他看
到的水平线的距离是原来的多少倍?
解:
d2 16 10 . d1 16 5
【思考】乘法法则是如何得出的?二次根式的除法该怎样算呢?
除法有没有类似的法则?
素养目标
3. 理解最简二次根式的概念,能熟练地将二 次根式化为最简二次根式. 2. 会运用除法法则及商的算术平方根进行简 单运算.
解:(1) 3 =
5
3= 5
3 5 = 15 = 5 5 52
15 ; 5
(2)3 2 =3
27
2= 32 3
2= 3
6; 3
(3)
8 2a
=
23 2a
2a = 4 a = 2 a .
人教版八年级数学下册_16.2二次根式的乘除
特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).
16_2_2二次根式的除法同步作业 解析版【2023春人教版八下数学优质备课】
16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。
16.2 二次根式的乘除
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
知识点四商的算术平方根
������ ������
=
������������(a≥0,b>0).
名师解读 (1)商的算术平方根,等于被除数的算术平方根与除数
的算术平方根的商.
(2)在应用商的算术平方根时,一定要注意根号下的字母,不管是
数还是代数式,都必须满足a≥0,b>0.
如 (-4)(-16)化成 -4 × -16就是错误的,而 (-4)(-16)化成 4 ×
16才是正确的. (3)如果给出的二次根式,被开方数的因式中有一些幂的指数不
小于 2,即含有完全平方的因式(或因数),通常可根据积的算术平方 根的性质,并利用 ������2=a(a≥0),将这个因式(或因数)“开方”出来.
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
23
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四
拓展点一根据二次根式的隐含条件化简二次根式
例 1 把二次根式(x-1) 11-������中根号外的因式移到根号内,结果是 ()
A. 1-������ B.- 1-������ C.- ������-1 D. ������-1
10
教材新知精讲
综合知识拓展
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
例3
计算:(1) 72 ÷
6;(2)
1
1 2
÷
16;
(3)4 1 13÷6 3 15;
(4)-23
������3������
(a>0,b>0).
2
������ ������
16.2.2.2 二次根式的混合运算(课件)2024-2025学年度沪科版数学八年级下册
不是同类二次 根式不能合并
6 3 12 2
探究新知 巩固新知 课堂小结 布置作业
典型例题 【例2】计算: 3( 8 50) 30 45 .
解: 3( 8 50) 30 45 3(2 2 5 2) 30 45 37 2 6 53 5 7 6 6 20 6 33
探究新知 巩固新知 课堂小结 布置作业
3 4 3+4+3 2 3 3 7 2 3.
探究新知 巩固新知 课堂小结 布置作业
二次根式的混合运算的注意事项
1 二次根式的混合运算与整式的运算顺序一样,先乘除, 后加减,有括号先算括号里面的(或先去括号).
2 乘法运算的运算律、运算法则和乘法公式在二次根式的 运算中仍然适用.
3 二次根式运算的结果要最简,不能含有能合并的同类二 次根式.
探究新知 巩固新知 课堂小结 布置作业
随堂练习 1.化简:
(1)( 5 3)2;
(2)( 3 2)2 (3 3)(1 3).
解: (1)( 5 3)2 ( 5)2 2 5 3 ( 3)2 5 2 15 3 8 2 15; (2)( 3 2)2 (3 3)(1 3) ( 3)2 2 3 2+22 +3 3 3 3 3
4 运算时,能用乘法公式的要尽量使用,灵活运用公式可 简化计算过程.
探究新知 巩固新知 课堂小结 布置作业
教科书第13页 习题16.2 第4、7 题
典型例题
实数的运算性质和法则同 样适用于二次根式的运算
【例1】计算: (1) ( 3 1)( 3 1);
满足完全平方公式
(2) ( 6 2 3)2 6(3 3). 乘法分配律
解:(2) ( 6 2 3)2 6(3 3)
( 6)2 2 6 2 3+(2 3)2 63 6 3
沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》
沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》一. 教材分析《第16章二次函数16.2二次根式的运算(第2课时)》这一节的内容,主要是对二次根式的运算进行深入的讲解和练习。
在前一课时,学生已经了解了二次根式的定义和性质,本课时将在此基础上,进一步学习二次根式的加减乘除运算,以及混合运算的法则。
教材通过具体的例题和练习题,使学生掌握二次根式的运算方法,提高他们的数学运算能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有一定的了解。
但学生在进行二次根式运算时,容易出错,对混合运算的法则理解不够深入。
因此,在教学过程中,教师需要引导学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
三. 说教学目标1.知识与技能:学生会运用二次根式的加减乘除法则进行计算,解决一些简单的实际问题。
2.过程与方法:学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
3.情感态度与价值观:学生能够感受到数学与生活的联系,增强他们对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够掌握二次根式的加减乘除运算方法,解决一些简单的实际问题。
2.教学难点:学生对混合运算的法则的理解和运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、讨论法、练习法等教学方法。
通过引导学生观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
同时,我将运用多媒体教学手段,展示二次根式的运算过程,使学生更加直观地理解二次根式的运算方法。
六. 说教学过程1.导入:通过复习上一课时所学的内容,引导学生回顾二次根式的定义和性质,为新课的学习做好铺垫。
2.教学新课:讲解二次根式的加减乘除运算方法,通过具体的例题,使学生掌握二次根式的运算规律。
3.巩固练习:学生进行一些相关的练习题,巩固新学的知识。
4.课堂小结:教师引导学生总结本节课所学的内容,使学生对二次根式的运算有一个清晰的认识。
【人教版八年级下册】《16.2 二次根式的乘除(第2课时)》教案教学设计
16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
1.通过探究二次根式的乘除运算,培养学生的逻辑思维能力和运算能力。
2.运用小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
3.引导学生运用数形结合的方法,通过图形直观地理解二次根式的乘除运算。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
针对以上问题,我制定了以下教学策略,以提高学生的学习效果和解决问题的能力。
二、教学目标
(一)知识与技能
1.理解二次根式的乘除法则,能够正确进行二次根式的乘除运算。
2.掌握二次根式的性质和化简方法,能够将二次根式进行化简。
3.能够运用二次根式的乘除运算解决实际问题,提高运用数学知识解决实际问题的能力。
2.二次根式的化简方法:引导学生总结二次根式的化简方法,掌握提取公因数、应用平方差公式等技巧,提高解题效率。
3.实际问题解决:引导学生总结如何运用二次根式的乘除运算解决实际问题,培养学生的应用能力和解决问题的能力。
(五)作业小结
1.布置作业:设计具有针对性和实践性的作业,让学生巩固和应用所学知识,提高学生的实际操作能力。
2.培养学生勇于探索、坚持不懈的学习精神,培养学生的自主学习能力。
3.通过对实际问题的解决,让学生体验到数学与生活的紧密联系,培养学生的应用意识和社会责任感。
作为一名特级教师,我深知教学目标的重要性,它不仅是教学活动的出发点和归宿,也是评价教学效果的重要依据。在教学过程中,我将紧紧围绕以上教学目标,采用多种教学方法和手段,引导学生积极参与,主动探究,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
一、案例背景
16.2二次根式的乘除 (教学课件)- 初中数学人教版八年级下册
解: ( 思考】乘法法则是如何得出的?二次根式的除法该怎样算呢2 除法有没有类似的法则?
学习 目标 3. 理解最简二次根式的概念,能熟练地将二 次根式化为最简二次根式。
2. 会运用除法法则及商的算术平方根进行简 单运算.
1. 掌 握二次根式的除法法则,会用法则进行计算.
探究新知 知识点1
二次根式的除法
探究新知
归纳总结 二次根式的乘法法则的推广: ①多个二次根式相乘时此法则也适用,即
√a·√b .....√n=√ab...n(a≥0,b≥0....n≥0)
②当二次根号外有因数(式)时,可以类比单项式乘单 项式的法则计算,即根号外的因数(式)的积作为根号 外的因数(式),被开方数的积作为被开方数,即
化简:
(1)√ 16×81;(2)√4a²b³(a≥0,b≥0).
解:(1)√ 16×81
(2)√4a²b³
(2 ) 中4 ²ab³ 含有 像 4 a²,b²,, 这
= √16×√81
=√4O√a²O√b³
样开的尽方的因 数或因式,把它
=4×9
=36;
=2OaO√b²Ob
们开方后移到根 号外.
巩固练习
计算:
(1)
(2)
●
解: (1) (2)
提示:像(2)中除式是分数或分(1)
(2)
(3)
●
解:(1)
探究新知
考点② 利用二次根式的除法法则计算根号外因数不是1的 二次根式
计算: (1) 解:(1)
假分数,再运用二次根式除法法则进行运算.
巩固练习 计算,看谁算的既对又快.
重
探究新知
方法点拨
化简二次根式的步骤:
1.把被开方数分解因式(或因数);
二次根式16.2(2)
课题16.2二次根式的乘除(2)备课教师张立辉单位梅河口市第二中学教学目标知识与技能理解最简二次根式的意义,掌握二次根式的除法法则,并能应用法则进行二次根式的除法计算。
过程与方法经历探索二次根式除法法则的过程,发展观察、归纳、猜测、验证等能力。
情感态度价值观让学生在独立思考的基础上,积极参与对数学问题的讨论,勇于发表自己的观点,病尊重与理解他人的见解,从交流中获益。
教学重点掌握和应用二次根式的除法法则。
教学难点正确进行二次根式的化简。
教法启发探究式学法自主探究教具计算器,CAI课件教学流程教师与学生活动内容设计意图提出问题探究新知计算下列各式,观察计算结果,你能发现什么规律?4(1)_____,9=4_____;9=16(2)_____,25=16_____;25=36(3)_____,49=36______.49=1.让学生大胆猜想二次根式的除法法则,在学生充分讨论的基础上师生共同归纳:一般地,二次根式的除法法则是:(0,0).a aa bbb=≥>接着可适当讨论二次根式乘除法的类同点与不同之处,让学生加深对条件b>0的印象。
2.你能进行下列计算吗?24(1);331(2).218÷通过上面的计算,你认为二次根式除法运算的步骤有哪些?3.你能化简下列二次根式吗?3(1);10075(2);273(3);532(4);278(5).2a让学生在相互讨论的基础上掌握二次根式的化简方法。
教师强调:(1)我们把被开方数不含分母且被开放数中不含能开得尽方的因数或因式的二次根式叫做最简二次根式;(2)在二次根式的运算中,最后结果中的二次根式一般要写成最简二次根式的形式。
提出问题,鼓励学生观察、猜想、归纳、总结。
引导学生积极参与数学学习,培养他们的概括能力和语言表达能力。
通过对二次根式乘除法的类同点与不同之处的讨论,让学生进一步注意法则的条件部分。
与二次根式的乘法运算进行类比,体会话未知为已知的思想方法。
16.2 第2课时 二次根式的除法(讲课)
讲授新课
一 二次根式的除法 计算下列各式:
(1) 4 = 4;
99
(1)
4
2
___3 _;
9
(2)
16 25
4
__5__;
(3)
36 49
6
___7_;
4
2
= __3_;
(2)
16 = 16; 25 25
9
16 25
=
4
__5_;
(3)
36 49
36 . 49
36
6 特殊
一般
49 = __7_.
拓展法则 性质
a a (a 0,b 0) bb
m a n b=(m n) a b (a 0,b 0)
a a (a 0,b 0). bb
分母有理化
相关概念 最简二次根式
作业推荐
• 作业本:P10 复习巩固2t,3t • 《基础训练》 P7-8
你会去掉 2 这样的式子分母的根号吗? 3
类比分数
的基本性
2 2 3 6
质
3 3 3 3
概念学习
把分母中的根号化去,使分母变成有理数的这个过程就叫 做分母有理化.
典例分析
你能去掉分母
例3 计算:
的根号吗?
(1) 3 ; 5
(2)3 2 ; (3) 8 .
27
2a
解:(1) 3 3 5 15 .
Ⅻ
Ⅸ
Ⅲ
Ⅵ 2分钟
复习回顾
二次根式的乘法法则:
一般地,对于二次根式的乘法是
a b a b a 0__不变,被__开__方__数__相乘. 注意:① a,b都必须是非负数
②多个二次根式相乘也具备特征 .
16.2二次根式的乘除二次根式的乘法教案
一、教学内容
《16.2二次根式的乘除》二次根式的乘法教案,本节课我们将围绕以下内容展开:
1.教材章节:16.2二次根式的乘除
2.内容列举:
a.理解二次根式乘法的概念及法则;
b.学会运用二次根式乘法法则进行乘法运算;
c.掌握化简二次根式乘法结果的方法;
d.能够解决实际问题时运用二次根式乘法法则。
2.教学难点
a.理解并掌握异号根式相乘的法则,即一个正数根式与一个负数根式相乘的结果为负数根式;
b.化简二次根式乘法结果时,正确提取平方因子,并简化根号内表达式;
c.解决实际问题时,能够将问题抽象为二次根式乘法运算,并正确应用法则。
举例解释:
-难点1:讲解异号根式相乘时,解释√a * (-√b) = -√(a*b),并举例说明,如√8 * (-√2) = -√(8*2) = -√16 = -4。
同学们,今天我们将要学习的是《16.2二次根式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如长方形的长和宽分别是√2和√3,求面积)这个问题与我们将要学习的二次根式乘法密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式乘除的奥秘。
4.明确课程Biblioteka 难点,加强巩固练习,确保学生扎实掌握知识点。
举例解释:
-重点1:讲解同号根式相乘时,强调两个正数根式相乘或两个负数根式相乘,结果仍为正数根式;如√a * √b = √(a*b)。
-重点2:通过示例,展示如何运用二次根式乘法法则进行运算,如√8 * √2 = √(8*2) = √16 = 4。
-重点3:通过实际例子(如计算矩形面积),让学生理解二次根式乘法在实际问题中的应用。
16.2二次根式的乘除(2)
2= 2 5 5
a 0, b 0
两个二次根式相除,等于把被开方数相除, 作为商的被开方数
a b
a b
a 0, b 0
3 1 2 18
两个二次根式相除,等于把被开方数相除, 作为商的被开方数 例4:计算
1
解:
24 3
2
1
24 24Байду номын сангаас 8 3 3
4 2 2 2
1、解:要使等式成立,m必须满足 m-3 0 m5 m-5>0
m-3
课堂小结:
掌握
a a = (a≥0,b>0)和 b b
=
a = b
a b
(a≥0,b>0)及其运用.并利用它们进行计 算和化简.
=
今日作业
课本P10 习题16.2 第 2、8 题
计算下列各式,观察计算结果,你发现什么规律?
4 1. 9 16 2. 49
2 , 3
4 , 7
a b
4 9 16 49
2 3
4 9
4 9
4 7
16 16 49 49
2 2 (3) = 3 3 a 规律: b
0.09 ×169 (4) 0.64 ×196
16b c (3) a 0, b 0 2 a
2
2 2 81 81 9 c 7 25 25 5 16 b c 16 b c 4 b 4× b 13 0 . 09 × 169 0 . 09 × 169 0 . 3 39 解:( 3 ( 1) = = (2 ) 22 = = = ) = = = c 2 ( 4) = 2 92 9 9= a 3 5a x= 25 x a a 25 x 0.64 ×196 0.64 ×196 0.8 ×14 112
16.2二次根式的运算(第2课时)讲解与例题
【例2】计算:
(1)-2-3+5+4;
(2)(-)-(-).
分析:进行二次根式的加减法可按一化(把二次根式化成最简二次根式)、二看(看被开方数是否相同)、三合并(把被开方数相同的二次根式进行合并)的步骤进行.(1)题中的每个二次根式都是最简二次根式,可直接识别出:-2与5,-3与4被开方数相同,因此可直接进行合并.
___________________________________________________________________________
___________________________________________________________________________
二次根式加减时,先将二次根式化成最简二次根式,再将同类二次根式进行合并.
(5)二次根式的加减法的一般步骤:
①将每一个二次根式化成最简二次根式;
②找出其中的同类二次根式;
③合并同类二次根式.
知识点拓展:(1)①当式子中有括号时要先去括号,并且在运算过程中应注意符号;②二次根式的加减与整式的加减相类似,体现了数学中的类比思想,在学习时应注意对比理解和应用.
__________________________________________________________________________
____________________________________________________________________________
解:(1)-2-3+5+4
=(-2+5)+(-3+4)=3+.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.探究新知:
1.计算下列各式,观察计算结果,你能发现什么规律?
(1) ;(2) ;
2.二次根式的除法法则是(用式子表示)。
三.法则应用
1.计算(1) =;(2) =;(4) =
2.计算(1) (2)
四.归纳:像 等二次根式我们称为二次根式。
如果二次根式的被开方数中不含有开的尽方的因式或因数,并且不含有分母,那么像这样的二次根式就称为。
课堂清练习
1.下列二次根式中是最简二次根式的有()个.
; ; ; ; ; ;
2.计算(1) (2)
反
思
16.2二次根式的运算2
教学目标
1、使学生掌握二次根式的除法法则;会应用此法则实行简单的二次根式的除法运算;
2、能准确地实行简单的二次根式的乘除法混合运算;
重点
应用二次根式的除法法则实行简单的次根式的乘除法混合运算
集体备课内容
个案补充
教
学
程
序
一.知识回顾:
1.用式子表示二次根式积的算术平方根的性质为(用式子表示);二次根式的乘法法则为;二者的关系是