公务员公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.两次相遇公式:单岸型S二(3Sl+S2)/2两岸型S二3S1-S2
例题:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸400米处又重新相遇。问:该河的宽度是多少?
A. 1120米
B. 1280米
C. 1520米
D. 1760米典型两次相遇问题,这题属于两岸型(距离较近的甲岸720米处相遇、距离乙岸400米处又重新相遇)代入公式3*720-400=1760选D如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸
2.漂流瓶公式:T二(2七逆*七顺)/ (t逆-t顺)
例题:AB两城由一条河流相连,轮船匀速前进,A--B,从A城到B城需行3天时间,而从B城到A
城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?
A^ 3天B、21天C、24天D、木筏无法自己漂到B城
解:公式代入直接求得24
3.沿途数车问题公式:发车时间间隔T二(2tl*t2)/ ( tl+t2 )车速/人速=(tl+t2)/(t2-tl)
例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6
分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()
倍?
A. 3
B. 4
C. 5
D. 6
解:车速 /人速二(10+6) /(10-6)二4 选 B
4.往返运动问题公式:V均=(2vl*v2)/(vl+v2)
例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小
时?()
A. 24
B. 24. 5
C. 25
D. 25. 5
解:代入公式得2*30*20/(30+20) =24选A
5.电梯问题:能看到级数二(人速+电梯速度)*顺行运动所需时间(顺)
能看到级数二(人速-电梯速度)*逆行运动所需时间(逆)
6•什锦糖问题公式:均价A=n / {( 1/al ) +(l/a2) + (l/a3) + (l/an) }
例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,己知甲、乙、丙三种糖每千克费用分别为4.4元,6元,
6.6元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?
A. 4. 8 元
B. 5 元
C. 5. 3 元
D. 5. 5 元
7.十字交叉法:A/B二(r-b)/(ar)例:某班男生比女生人数多80%, 一次考试后,全班平均成级为75分,而女生的平均分比男生的平均分高
20% ,则此班女生的平均分是:
析:男生平均分X,女生1.2X
1.2X
75-X
75=
1. 2X-75 1.8
得X=70女生为84
8.N人传接球M次公式:次数=(N-1) 的M次方/N最接近的整数为末次传他人次数,第
二接近的整数为末次传给自己的次数
例题:四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
公式解题:(4-1)的5次方/ 4=60. 75
最接近的是61为最后传到別人次数,第二接近的是
60为最后传给自己的次数
9. 一根绳连续对折N 次,从中剪M 刀,则被剪成(2的N 次方*M+1)段
10. 方阵问题:方阵人数二(最外层人数/4+1 )的2次方N 排N 列最外层有4N-4人 例:某校的学生刚好排成一个方阵,最外层的人数是
96人,问这个学校共有学生?
析:最外层每边的人数是 96/4+1 = 25,则共有学生25*25二625
11. 过河问题:M 个人过河,船能载N 个人。需要A 个人划船,共需过河(M-A ) / (N-A )次 例题(广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要儿次才能渡完? (
) A. 7
B. 8
C. 9
D. 10
解:(37-1 ) / (5-1 ) =9
12. 星期日期问题:闰年(被4整除)的2月有29日平年(不能被4整除)的2月有28
日,记口诀:一年就是1,润日再加1; 一月就是2,多少再补算
例:2002年9月1号是星期日2008年9月1号是星期儿?
因为从2002到2008 —共有6年,其中有4个平年,2个闰年,求星期,贝归 4X1+2X2=&此即在星期口的基础上加
&即加1,第二天。
例:2004年2月28日是星期六,那么2008年2月28日是星期儿? 4+1= 5,即是过5天,为星期四。(08年2月29日没到)
13. 复利计算公式:本息二本金* { ( 1+利率)的N 次方} , N 为相差年数
例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为 20%,则税
后他能实际提取岀的本金合计约为多少万元? (
)
A. 10.32
B. 10.44
C. 10.50
D10.61
两年利息为(1+2%的平方*10-10=0. 404 本金合计约为10. 32万元
14. 牛吃草问题:草场原有草量二(牛数-每天长草量)*天数 例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干, 12小时,如果用6台抽水机,那么需抽多少小时?
A 16
B 、 20
C 、 24
D 、 28
解:(10-X ) *8二(8-X ) *12求得X=4 (10-4 ) *8二(6-4 ) *Y 求得答案Y 二24公式熟练以后可以
不设方程直接求岀来 15. 植树问题:线型棵数二总长/间隔+1 环型棵数二总长/间隔 楼间棵数二总
长/间隔-1
例题:一块三角地带,在每个边上植树,三个边分别长 156M 186M 234M,树与树之间距离为6M, 三个角上必
须栽一棵树,共需多少树?
税后的利息为0.404* (1-20%)约等于0.323,则提取出的
10台抽水机需抽8小时,8台抽水机需抽
A 93
B 95
C 96
D 99