中考数学答题策略与技巧
中考数学总复习实用方法总结
中考数学总复习实用方法总结复习能够帮助我们对学过的知识进行更好的巩固,尤其数学知识点具有“多杂难”这样的特点,更需要我们利用有限的时间进行复习。
下面是小编为大家整理的关于中考数学总复习实用方法,希望对您有所帮助!中考数学复习策略一、梳理策略总结梳理,提炼方法。
复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。
对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。
如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。
总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。
梳理了题型就可以进一步探索解题规律。
同时也可以换角度进行思考,如一个任意的三角形可以剪拼成平行四边形或矩形,最少需几条剪切线?联想到任意四边形可以剪拼成哪些特殊图形,任意梯形可以剪拼成哪些特殊图形等。
做题时,要注重发现题与题之间的内在联系,通过比较,发现规律,做到触类旁通。
反思错题,提升能力。
在备考期间,要想降低错误率,除了进行及时修正、全面扎实复习之外,非常关键的一个环节就是反思错题,具体做法是:将已经复习过的内容进行“会诊”,找到最薄弱部分,特别是对月考、模拟试卷出现的错误要进行认真分析,也可以将试卷进行重新剪贴、分类对比,从中发现自己复习中存在的共性问题。
正确分析问题产生的原因,例如,是计算马虎,还是法则使用不当;是审题不仔细,还是对试题中已知条件或所求结论理解有误;是解题思路不对,还是定理应用出错等等,消除某个薄弱环节比做一百道题更重要。
应把这些做错的习题和不懂不会的习题当成再次锻炼自己的机会,找到了问题产生的.原因,也就找到了解题的最佳途径。
事实上,如果考前及时发现问题,并且及时纠正,就会很快地提高数学能力。
数学中考答题技巧(集锦13篇)
数学中考答题技巧(集锦13篇)数学中考答题技巧第1篇1、迅速摸清“题情”。
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。
首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。
摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。
对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
2、答卷顺序“三先三后”。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。
我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。
在做题的时候我们要遵循“三先三后”的原则。
首先是“先易后难”。
这点很容易理解,就是我们要先做简单题,然后再做复杂题。
当全部题目做完之后,如果还有时间,就再回来研究那些难题。
当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。
也就违背了我们的原意。
其次是“先高后低”。
这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。
这样能够拿到更多的总得分。
并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
最后是“先同后异”。
这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
3、做题原则“一快一慢”。
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。
数学答题方法和技巧.docx
数学解题技巧(中考)1.中考选择题解题八技巧(1)排除法根据题设和有关知识,排除明显不正确选项,那么剩下惟一的选项,自然就是正确的选项,如果不能立即得到止确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
(2)数形结合法:解决与图形或图像有关的选择题,常常要运用数学结合的思想方法,有时还要综合运用其他方法。
(3)(特例检验法:取满足条件的特例(特殊值,特殊点,特殊图形,特殊位置等)进行验证即可得正确选项,因为命题对一般情况成立,那么对特殊情况也成立。
(4)代入法:将选择支代入题干或题代入选择支进行检验,然后作出判断。
(5)观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
(6)枚举法:列举所有可能的情况,然后作出正确的判断。
例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有()(A)5种(B)6 种(C)8种(D) 10种。
分析:如果设面值2元的人民币x 张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B.(7)待定系数法:要求某个两数关系式,可先假设待泄系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
(8)不完全归纳法:当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若丁简单情形进行考查,从中找出一般规律,求得问题的解决。
该法有一定的局限性,因而不能作为一种严格的论证方法,但它可以帮助我们发现和探求一般问题的规律,从而找到解决问题的途径。
二.选择题的解法技巧:1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目屮的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
常考的规律探究问题-2024年中考数学答题技巧与模板构建(含解析)
常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16,⋯,试猜想第n个等式(n为正整数):a n=.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n.(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503B.1,513C.2,503D.2,5131(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a 2,1 ,我们把第4行从左到右数第3个定为a 4,3 ,由图我们可以知道:a 2,1 =1,a 4,3 =3,按照图中数据规律,a 8,5 +a 9,6 的值为.2(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+15(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243C.2021,20223B.2022,202437(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0,、0,-8AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12D.12,-10C.-12,10B.-10,-128(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.80919(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.10210(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-202111(23·山东济宁·期末)如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P,作P1P2⊥OP1,且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2⋯依此法继续作下去,得OP2021=()A.2023B.2022C.2021D.202012(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4根据前面各式的规律,则(a+b)6=.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4⋯,依次进行下去,则点A2023的坐标为.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;(+5)*(-7)=-(+5)2+(-7)2;0*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1*n+2=0,若存在,求出m,n的值,若不存在,说明理由.20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-1 2※-15=,-23※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a※b-3=0.计算:1a×b +1a+2×b+2+1a+4×b+4+1a+6×b+6+1的值.a+8×b+8常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a 1=1-13,a 2=12-14,a 3=13-15,a 4=14-16,⋯,试猜想第n 个等式(n 为正整数):a n =.【答案】1n -1n +2.【详解】根据题意可知,a 1=1-11+2,a 2=12-12+2,a 3=13-13+2,a 4=14-14+2,⋯∴a n =1n -1n +2.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n 个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n .(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.【详解】(1)第(1)(2)(3)个图中阴影部分小三角形的个数分别是:1+3=22,1+3+5=32,1+3+5+7=42,由此可推测第(9)个图中阴影部分小三角形的个数是(9+1)2=102=100(个),空白三角形的个数为2×(9+2-1=21);故答案为:100;21;(2)第n 个图形中阴影三角形与非阴影三角形的个数比是:n +1 22n +2 -1=44143,解得,n =20或n =-6443(舍去)经检验,n =20符合要求,所以,n =20;(3)设第(m )个图形可重新拼成一个菱形,第(m )个图形总的三角形个数为m +2 2=m 2+4m +4, 由于可以拼一个菱形,则是一含有60度角的菱形,即两个等边三角形构成的菱形,每个等边三角形中含小三角形数为x 2,则有:2x 2=m +2 2解得,m =±2x -2∴m 不是正整数,∴不可能拼成一个菱形.例3.(2023·江西)规律探究与猜想:①方程x 2-3x +2=0的解为x 1=1,x 2=2;②方程x 2-5x +6=0的解为x 1=2,x 2=3;③方程x 2-7x +12=0的解为x 1=3,x 2=4;④方程x 2-9x +20=0的解为x 1=4,x 2=5;⋯⋯(1)根据以上各方程及其解的特征,请解答下列问题:①方程x2-19x+90=0的解为______.②第个方程为______,其解为______.(2)请用公式法解方程x2-9x+20=0,验证猜想结论的正确性.【详解】(1)解:方程x2-3x+2=x2+(-1-2)x+(-1)×(-2)=(x-1)(x-2)=0,解为x1=1,x2=2;方程x2-5x+6=x2+(-2-3)+(-2)×(-3)=(x-2)(x-3)=0,解为x1=2,x2=3;方程x2-7x+12=x2+(-3-4)+(-3)×(-4)=(x-3)(x-4)=0,解为x1=3,x2=4;⋯①x2-19x+90=x2+(-9-10)+(-9)×(-10)=(x-9)(x-10)=0,解为x1=9,x2=10;②第个方程为x2+-n-(n+1)x+(-n)×-(n+1)=(x-n)x-(n+1)=0∴第个方程为x2-(2n+1)x+n2+n=0,解为x1=n,x2=n+1.(2)解:x2-9x+20=0Δ=(-9)2-4×1×20=1,∴x1=9-12=4,x2=9+12=5.故结论正确.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2【答案】B 【详解】解:∵四边形ABOC 是矩形,∴OA =BC =2,∵每秒旋转45°,8次一个循环,2025÷8=253⋅⋅⋅⋅⋅⋅1,∴第2025秒时,点A 的对应点A 2025落在y 轴正半轴上,∴点A 2025的坐标为0,2 .故选:B .平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)【答案】B 【详解】解:∵2018÷4=504余2,∴第2014次运动为第505循环组的第2次运动,横坐标为504×4+2-1=2017,纵坐标为0,∴点的坐标为(2017,0).故选B .翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503D.2,513C.2,503B.1,513【答案】C【详解】解:观察所给图形,发现x轴上方的点是4的倍数,∵100÷4=25,∴点A100在x轴上方,∵A3A4=4,∴A54,0,∵A5A7=6,∴A7-2,0,∵A8A7=8,∴点A8的坐标为2,43,同理可知,点A4n的坐标为2,2n3,∴点A100的坐标为2,503. 故选:C.1(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a2,1,我们把第4行从左到右数第3个定为a4,3=,由图我们可以知道:a2,1 1,a4,3+a9,6的值为.=3,按照图中数据规律,a8,5【详解】解:如图所示,按照图中数据规律,a8,5=35,a9,6=56,∴a8,5+a9,6=35+56=91,故答案为:912(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.【答案】2024个【详解】解:根据题意,可得当n为偶数时,第n个图形中黑色正方形的数量为n+n2个,当n为奇数时,第n个图形中黑色正方形的数量为n+n+12个,∴n=1349时,黑色正方形的个数为1349+1349+12=2024个.故答案为:2024个.3(2023·陕西)如图,第1个图用了6枚棋子摆成;第2个图用了9枚棋子摆成;第3个图用了12枚棋子摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.【答案】3(n+1)【详解】根据题意有,第1个图形棋子数为:3+3×1,第2个图形棋子数为:3+3×2,第3个图形棋子数为:3+3×3,⋯⋯,第n个图形棋子数为:3+3×n=3(n+1),∴第n个图需要棋子3(n+1)枚,故答案为:3(n+1).4(2023·云南)如图图形是同样大小的小五角星按一定规律组成的,按此规律排列,则第n个图形中小五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+1【答案】A【详解】解:则第1个图形中小五角星的个数为:12+1=2;则第4个图形中小五角星的个数为:1+22=5;则第3个图形中小五角星的个数为:1+32=10;则第4个图形中小五角星的个数为:1+42=17;⋯⋯;则第n个图形中小五角星的个数为:1+n2,故选:A.5(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点【答案】A【详解】解:当正六边形在转动第一周的过程中,F、E、D、C、B、A分别对应的点为1、2、3、4、5、6,∴翻转6次为一循环,∵2021÷6=337,∴数轴上2022这个数所对应的点是A点.故选:A.6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243B.2022,20243C.2021,20223【答案】D【详解】解:∵直线l:y=3x+3与两坐标轴交于A、B两点,∴A-1,0,,B0,3∴AB=2,OA=1,OB=3,=3,OA∴∠BAO=60°,如图,等边△ABC经过第1次翻转后,A1-1,23,过点A2作A2M⊥x轴于点M,则AA2=3AB=6,∵∠A2AM=60°,=3,∴AM=AA2cos∠A2AM=6×12A2M=AA2sin∠A2AM=6×3=33,2等边△ABC经过第2次翻转后,A23,33,等边△ABC经过第3次翻转后,点A仍在点A2处,∴每经过3次翻转,点A向右平移3个单位,向上平移33个单位,∵2023÷3=674⋯⋯1,第2次与第3次翻转后点A处在同一个点,∴点A经过2023次翻转后,向右平移了3×674=2022个单位,向上平移了33×674+23=20243个单位,∴等边三角形翻滚2023次后点A的对应点坐标是2021,20243,故选:D.7(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0、0,-8,AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12B.-10,-12C.-12,10D.12,-10【答案】B 【详解】解:如图,过点D 作DT ⊥x 轴于点T .矩形ABCD 的顶点A 、B 分别在x 轴、y 轴上,其坐标分别为-6,0 、0,-8 ,∴OA =6,OB =8,∴AB =OA 2+OB 2=10,∵∠ATD =∠AOB =∠BAD =90°,∴∠DAT +∠BAO =90°,∠BAO +∠ABO =90°,∴∠DAT =∠ABO ,∴△ATD ∽△BOA ,∴AD AB =AT OB =DT OA,即2010=AT 8=DT 6,∴AT =16,DT =12,∴OT =AT -OA =16-6=10,∴D 10,12 ,∵矩形ABCD 绕点O 顺时针旋转,每次旋转90°,则第1次旋转结束时,点D 的坐标为12,-10 ;则第2次旋转结束时,点D 的坐标为-10,-12 ;则第3次旋转结束时,点D 的坐标为-12,10 ;则第4次旋转结束时,点D 的坐标为10,12 ;⋯发现规律:旋转4次一个循环,∴2022÷4=505⋯2,则第2021次旋转结束时,点D 的坐标为-10,-12 .故选:B .8(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.8091【答案】A 【详解】观察图形的变化可知:摆第1个图案要用火柴棒的根数为:5;摆第2个图案要用火柴棒的根数为:9=5+4=5+4×1;摆第3个图案要用火柴棒的根数为:13=5+4+4=5+4×2;⋯则摆第n个图案要用火柴棒的根数为:5+4n-1=4n+1;故第2023个图案要用火柴棒的根数为:4×2023+1=8093故选:A9(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.102【答案】D【详解】解:由题意知,图①中共有12个圆点,图②中共有12+6=18个圆点,图③中共有12+6+7=25个圆点,图④中共有12+6+7+8=33个圆点,⋯∴图⑩中共有圆点12+6+7+8+9+10+11+12+13+14=102,故选:D.10(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-2021【答案】B【详解】解:∵直线m上各点的横坐标都为0,即直线m为y轴,∴A11,3,在第一象限,∵直线n上各点的纵坐标都为1,即直线n为直线y=1;∴A21,-1,在第四象限,∵直线p上各点的横坐标都为-2,即直线p为直线x=-2,∴A3-5,-1,在第三象限,∵直线q上各点的纵坐标都为3,即直线q为直线y=3,∴A4-5,7,在第二象限,∴A55,7在第三象限,,在第一象限,A65,-5,在第四象限,A7-9,-5∴每四个点坐标所在象限为一个循环,∵2023=4×505+3,∴A2023与A3在同一象限,∵A3-5,-1,A7-9,-5,∴可知,第三象限的点坐标的特征为A n -n +2 ,-n -2 ,∴A 2023-2025,-2021 ,故选:B .11(23·山东济宁·期末)如图,OP =1,过点P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过点P ,作P 1P 2⊥OP 1,且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2⋯依此法继续作下去,得OP 2021=()A.2023B.2022C.2021D.2020【答案】B【详解】解:由勾股定理得:OP 1=OP 2+OP 12=12+12=2,OP 2=OP 12+P 1P 22=(2)2+12=3,OP 3=OP 22+P 2P 32=(3)2+12=2,⋯,依此类推可得:OP n =(OP n -1)2+(P n -1P n )2=(n )2+12=n +1,∴OP 2021=2021+1=2022,故选:B .12(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4根据前面各式的规律,则(a +b )6=.【答案】a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6【详解】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.【答案】75【详解】解:在图①中,圆点个数为y1=12个.在图②中,圆点个数为y2=y1+2+4=18个.在图③中,圆点个数为y3=y2+2+5=25个.在图④中,圆点个数为y4=y3+2+6=33个....以次类推,在图⑧中,圆点个数为y8=y7+(2+10)=y6+(2+9)+12=y5+(2+8)+11+12=y4+(2+7)+10+11+12=33+9+10+11+12=75.故答案为:75.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.【答案】40°.【详解】连续左转后形成的正多边形边数为:45÷5=9,则左转的角度是360°÷9=40°.故答案是:40°.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.【答案】243【详解】观察图②和图③可知,前8行中包含3个前4行的图形,中间三角形中的数字均为0,∴前8行中“1”的个数是前4行中“1”的个数的3倍,即前8行中“1”的个数为9×3=27(个),同理可知前16行中“1”的个数是前8行中“1”的个数的3倍,即前16行中“1”的个数为27×3=81(个),前32行中“1”的个数是前16行中“1”的个数的3倍,即前32行中“1”的个数为81×3=243(个),故答案为:243.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4⋯,依次进行下去,则点A 2023的坐标为.【答案】-1012,10122【详解】解:∵A 点坐标为(1,1),∴直线OA 为y =x ,A 1(-1,1),∵A 1A 2∥OA ,∴直线A 1A 2为y =x +2,解y =x +2y =x 2得x =-1y =1 或x =2y =4 ,∴A 2(2,4),∴A 3(-2,4),∵A 3A 4∥OA ,∴直线A 3A 4为y =x +6,解y =x +6y =x2 得x =-2y =4 或x =3y =9 ,∴A 4(3,9),∴A 5(-3,9)⋯,∴A2023-1012,10122,故答案为:-1012,10122.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.【答案】(1)-10;30;(2)x2-2nx-3n2=0【详解】(1)由表格中的规律可知,第10个方程的解为x1=-10,x2=30;(2)根据表格中的规律可知,第n个方程的解是x1=-n,x2=3n,∴根据根与系数的关系可知:第n个方程就是x2-2nx-3n2=0.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.【详解】解:(1)由前几项的规律可得:第五项、第六项依次为:5a5,-6a6;(2)第2007个单项式为:2017a2017,第2018个单项式为:-2018a2018;(3)第n个单项式的系数为:n×(-1)n+1,次数为n,故第n个单项式为:(-1)n+1nan.(4)原式=-1-2-3⋯-100=-5050.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;;(+5)*(-7)=-(+5)2+(-7)20*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1=0,若存在,求出m,n的值,若不存在,说明理由.*n+2【详解】(1)解:归纳*运算的法则∶两数进行*运算时,同号得正,异号得负,并把两数的平方相加.特别地,0和任何数进行*运算,或任何数和0进行*运算,等于这个数的平方.(2)解:+1 *0*-2 ,=+1 *-2 2,=+1 *4,=+12+42 ,=1+16,=17;(3)解:m -1 *n +2 =0,=±m -1 2+n +2 2 =0,∴m -1=0,n +2=0,解得:m =1,n =-2,20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-12 ※-15=,-23 ※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a ※b -3 =0.计算:1a ×b +1a +2 ×b +2 +1a +4 ×b +4 +1a +6 ×b +6+1a +8 ×b +8的值.【详解】(1)解:①-12 ※-15 =-12 +-15 =12+15=710,故答案为:710.②-23 ※+1 =--23 +1 =-23+1 =-53,故答案为:-53.(2)解:(-2)※[0※(-1)]=-2 ※+1=-1+2=-3.(3)∵1-a ※b -3 =0,∴1-a +b -3 =0,。
数学中考答题技巧及套路
数学中考答题技巧及套路
数学中考答题技巧及套路:
1. 认真审题:仔细审题并理解题目中给出的信息,确定好解题的步骤,不要匆忙作答。
2. 建立数学模型:将题目中给出的信息构建成一个数学模型,有助于快速找到解题途径。
3. 计算准确:认真计算,避免粗心大意,确保计算结果正确。
4. 有条理地答题:在答题过程中,要注意有条理地排列解题步骤,使得答案更加清晰明了。
5. 注意细节:在解题过程中,要注意细节,例如符号的运算、单位的统一等,避免产生遗漏和错误。
6. 格式规范:考试过程中,要注意答题格式的规范性,按照中考
要求的格式进行书写,以便检查和评卷。
7. 抓住得分点:要尽可能地抓住得分点,突出重点,在解题过程
中要注意细节和单位等问题。
8. 检查纠错:在考试结束后,要注意检查和纠错答题,避免遗漏和错误。
数学中考答题技巧及套路主要包括认真审题、建立数学模型、计算准确、有条理地答题、注意细节、格式规范、抓住得分点、检查纠错等。
在解题过程中,要注意思路的清晰和严密,答题时要突出重点,注意细节和单位等问题,以确保答案的准确性和严谨性。
中考数学答题规范
2023中考数学答题规范1、先易后难,关键词标注出来,避免审错题(多看、少看、错看条件)。
2、计算步骤要详细,切不可跳步,保证结果的准确性。
3、选择题常见的方法有排除法、特值法、度量法。
4、填空题:①科学计数法:注意指数是正还是负;②二次函数的实际应用:理解要求的是什么,顶点横坐标−2,顶点纵坐标4a−24,或与x轴的交点的横坐标③反比例函数:实际问题注意不等号方向,是否取等;面积问题注意k的正负④求概率:列举或画树状图⑤注意分类讨论的思想:(函数还是二次函数;方程还是一元二次方程;与x轴的交点还是坐标轴的交点;圆中弦所对的圆周角;两条平行线之间的距离;有公共端点两条弦的夹角;高在内部或内部等等)⑥填空最后一题,注意相似的基本图形,①折叠:角平分线和垂直平分线,②旋转:关注手拉手相似,③折叠、旋转前后的线段、角的关系。
5、化简求值:分两步,注意约分、去括号,结果化成最简形式(完全平方除外)。
6、统计:①不要漏掉补全条形统计图、扇形统计图的计算过程;②看清楚a还是a%。
③求中位数:一要排顺序,二要看奇偶。
④用样本估计总体:是分开计算,还是整体计算7、小几何(角平分线、垂线、垂直平分线、平行线)①尺规作图用2B铅笔✏作图,图要画清楚;②特殊四边形的证明应该注意过程书写,不要堆积条件直接得出结论,证明的依据必须是书本上的判定8、一元二次方程小综合:①求参数取值范围:注意△,二次项系数≠0;②分式方程要检验;③用根的定义进行整体代入。
;9、三角函数实际问题:①一般最后一步四舍五入,看清楚结果保留到哪一位;②解答过程写清楚在哪个直角三角形中;③若所列方程是分式,注意检验;④若需要证明矩形,别忘记写过程;⑤千万别忘记写答。
10、圆的相关问题:切线的判定:①连半径,证垂直;②作垂直,证半径。
①求长度常用的方法:构造直角三角形(垂径定理)②圆外有直角注意构造矩形③注意求的是半径还是直径④扇形面积公式和弧长公式记准确⑤求特殊角:三角函数、等边三角形、设未知数表示角之间的关系11、一次函数应用:①第一问看清字母表示的实际意义;②看清每一问自变量的取值范围(是否需要分段)③k含参:关注参数自身的取值范围,是否需要分类讨论;④折扣、利润率公式,超过的部分还是全部打折,折扣是售价还是进价⑤注意写一问答一问。
中考数学做题技巧及方法3篇
中考数学做题技巧及方法3篇有些同学天天趴在那里做题,但解出的题量多,花的时间却很多。
这到底是什么原因呢?其中的原因之一,就是解题速度太慢。
下面是小编给大家带来的中考数学做题技巧及方法,欢迎大家阅读参考,我们一起来看看吧!中考数学备考:中考数学做题技巧及方法中考数学做题技巧一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。
解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。
解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。
有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。
这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。
三、熟悉基本的解题步骤和解题方法。
解题的过程,是一个思维的过程。
对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
否则,走了弯路就多花了时间。
四、认真做好归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
五、先易后难,逐步增加习题的难度。
中考数学答题技巧总结
中考数学答题技巧总结中考数学对于许多同学来说是一场重要的挑战。
掌握有效的答题技巧,不仅能够提高答题的准确性和效率,还能增强考试时的自信心。
以下是为大家总结的一些中考数学答题技巧。
一、考前准备1、复习基础知识中考数学的大部分题目都是基于基础知识进行考查的。
因此,在考前要对数学的基本概念、公式、定理等进行系统的复习,确保熟练掌握。
2、整理错题将平时练习和模拟考试中的错题整理出来,认真分析错误的原因,总结解题的方法和思路,避免在中考中犯同样的错误。
3、进行模拟考试按照中考的时间和要求进行模拟考试,提前适应考试的节奏和氛围,提高答题的速度和准确性。
二、答题过程中的技巧1、认真审题审题是解题的关键。
在拿到题目后,要仔细阅读题目,理解题目的意思,找出题目中的关键信息和条件,明确解题的要求和方向。
对于一些比较复杂的题目,可以多读几遍,边读边思考。
2、合理安排答题时间中考数学考试时间有限,要合理安排答题时间。
一般来说,选择题和填空题应该控制在 30 分钟左右,解答题应该控制在 90 分钟左右。
在答题过程中,如果遇到不会做的题目,不要浪费太多时间,可以先跳过,等做完其他题目后再回头思考。
3、选择合适的解题方法在解题时,要根据题目的特点选择合适的解题方法。
对于选择题和填空题,可以采用排除法、特殊值法、代入法等快速解题;对于解答题,可以采用分析法、综合法、数形结合法等进行解题。
4、注意书写规范答题时要注意书写规范,字迹清晰,步骤完整。
尤其是解答题,要按照考试的要求写出解题的过程和答案,不要省略关键步骤,以免扣分。
5、认真检查在做完题目后,要认真检查。
检查的内容包括题目是否都做完了、答案是否正确、书写是否规范等。
对于一些比较容易出错的地方,如计算、单位等,要重点检查。
三、不同题型的答题技巧1、选择题(1)直接法:直接从题设条件出发,通过计算、推理或判断,得出结论。
(2)排除法:逐一排除不符合条件的选项,从而得出正确答案。
中考数学试题解题技巧归纳
中考数学试题解题技巧归纳很多初中生在学习数学时感到非常的困难,而且数学成绩也一直不好,其实数学的解题是有技巧的。
下面是小编为大家整理的关于中考数学试题解题技巧,希望对您有所帮助!中考数学解答难题技巧方法方法一:一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
方法二:确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。
所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
方法三:调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法四:“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
中考数学解题方法及技巧最新5篇
中考数学解题方法及技巧最新5篇中考数学常见解题技巧方法总结篇一1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。
2.数学家存在的主要理由就是解决问题。
因此,数学的真正的组成部分是问题和解答。
“问题是数学的心脏”。
3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。
问题就是矛盾。
对于学生而言,问题有三个特征:(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。
(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。
(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。
4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。
5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:(1)问题解决是心理活动。
面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。
(2)问题解决是一个探究过程。
把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。
这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。
(3)问题解决是一个学习目的。
“学习数学的主要目的在于问题解决”。
因而,学习怎样解决问题就成为学习数学的根本原因。
此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。
(4)问题解决是一种生存能力。
重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。
6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。
中考数学注意事项及答题技巧
中考数学注意事项及答题技巧一、考试时要达到最大限度得分的目的。
①试卷发下后,不要急于做题,应先按要求在指定位置填写准考证号、姓名、学校等,然后仔细阅读考试说明及注意事项,接着浏览一下试卷的页码、题数和题型和答题卡,避免试卷缺页缺题,答题卡不规范不完整等,做到心中有“卷”。
②遇到不会做的题,就先跳过去,通过先做会做的题,稳定情绪,建立信心。
如果复习得比较好,那些一时不会做的题实际是会做的,一定能答上。
即使回头发现真的不会做,也要把能想到的都答到卷子上。
一定要做到,会的题都得分。
③不要把答案写在答题卡方框外。
④理化生综合卷题量较大,许多学生心慌是因为不知道自己能否做完,所以做题时不认真思考,怕耽误了时间做不了后面的题,于是没看清题就匆忙作答,结果造成能得分的题没得到分,所以一定不要毛躁,要静下心来,先求准,再求快。
⑤切不可为省时间对一看就会的题草草作答,这样容易使会做的题丢分,不会做的题也得不到分。
二、要认真审题它是快速,准确解答试题的重要环节。
仔细研读题目,把题目中的关键字眼做记号。
审题时要统观全局,看完整个题,找全已知条件再答。
有时问题里也隐含已知条件,不要漏审。
审题时咬文嚼字、弄清楚语意,不要错审,如问“能源”,却答成“资源”;“防锈方法”答成“除锈方法”。
关键字往往是解题的切入口,它可以在题干中,也可以在问题中。
关键字多与化学学科有关,也有看似与化学无关的。
选择题目中的关键词有:物质(包括化学式等),数据(包括等质量),化学反应方程式,微粒符号(包括示意图),及要求选择的选项是正确的是,不正确的是,错误的是……,而选项中注意的关键词有:足量的xx、过量的xx,适量的xx,或一定是、不一定是……等。
填空题中的关键词有:足量的、过量的,适量的,充分反应(不等于恰好完全反应),恰好完全反应;而答题要求中的关键词有:填写物质化学式,物质名称(使溶液一定要写溶液名称),溶质化学式,溶质名称,元素符号,元素名称,序号,及阴、阳离子符号、从小到大、从大到小等。
中考数学考前注意事项及答题技巧
中考数学考前注意事项及答题技巧考前本卷须知以下这些细节大家考试的时候一定要注意!1.注意单位、设未知数、答题的完整。
求字母系数时,注意检验判别式〔否那么要被扣分〕。
2.要多读题目,注意认真分析,到题目中寻找等量关系,获取信息,不放过任何一个条件〔包括括号里的信息〕,且注意解答完整。
答题技巧1.选择题答题技巧〔1〕注意选择题要看完所有选项,做选择题可运用各种解题的方法,常见的方法:直接法、特殊值法、排除法、验证法、图解法、假设法〔即反证法〕、动手操作法〔比如折一折,量一量等方法〕。
〔2〕有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,要注意分类思想的运用。
〔3〕如果选项中存在多种情况的,要思考是否适合题意;找规律题可以多写一些情况,或对原式进行变形,以找出规律,也可用特殊值进行检验。
对于选择题中有〝或〞和〝且〞的选项一定要警惕,看看要不要取舍。
2.填空题答题技巧〔1〕注意一题多解的情况。
〔2〕注意题目的隐含条件,比如二次项系数不为0,实际问题中的整数等。
〔3〕要注意是否带单位,表达格式一定是最终化简结果。
〔4〕求角、线段的长,实在不会时,可以尝试猜测或度量法。
3.简答题答题技巧〔1〕先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。
〔2〕解分式方程一定要检验,应用题中也是如此。
〔3〕解直角三角形问题,注意交代辅助线的作法,解题步骤。
关注直角、特殊角。
取近似值时一定要按照题目要求。
〔4〕实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式〔组〕或函数关系式。
注意题目当中的等量关系,是为了构造方程,不等量关系是为了求自变量的取值范围。
求出方程的解后,要注意验根,是否符合实际问题,要记着取舍。
〔5〕概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率。
〔6〕方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。
中考数学复习策略及建议
中考数学复习策略及建议从《中考说明》来看,中考数学试题一般包括“数与代数”,“空间与图形”,“统计与概率”,“实践与综合应用”四个知识领域。
其中分值比例约为40%、40%、12%、8%左右,考查分布在填空,选择和解答题中.试题难度分布为容易题,较易题,较难题和难题,分值比约为4:3:2:1.整卷难度系数约为0.65.作为数学教师,要仔细研究中考,善于把握中考试题新特点,新变化,新趋势,这样才能胸有成竹,以不变应万变.一、复策略复是非常重要的环节,学生在不同的阶段得到的知识往往是局部的。
只有在整体复时才能看到局部知识的意义和作用,以及局部知识与其他知识的区别与联系.把局部知识按照某种观点和方法组成知识网络,才便于储存,提取和应用。
梳理和构建知识网络,是复的主要目的。
因此,中考复时应特别注意指导原则是否科学,复策略是否完善,命题趋势是否把握准确.1、研究《中考说明》,吃透考纲在温时我们要研读《中考说明》中的考试内容及要求,掌控知识的重点及难点,温时教师担负着教学和教研的双重任务,只有不竭研究,吃透考纲,才干达到事半功倍的效果.2、立足课本,落实“四基”从积年中考试卷来看,只要数学基本功扎实,获得基天职还是不难的.但是确实有一部分考生得分率较低,这不能不引发我们的重视和反思.所以我们在温中,肯定要立足课本,真正落实四基,即让学生能切实加强基础知识的温,基本技能的训练,基本方法的感悟,基本活动经验的积累.温课的讲授强调重视课本,因为有相当一部分中考题是直接起原于教材题.由课本的例题,题改编而成.因此,在温时对课本典型例题应多引申,多拓展,加强变式教学,切实做到陈题新解,难题简解,佳题巧解,名题多解,悬题获解。
重视课本的另外一点,还体现在知识的系统化方面.温时肯定要引导学生梳理课本上的全部知识,必要时将重点的考点涉及的基本概念,公式,定理等单印成册,分发给学生。
同时给学生提供符合的题让学生去独立思考,去尝试,去发现,进而形成和发展自己的能力,这样可以起到查漏补缺的作用.然而,由于时间紧,任务重,在复时我们按知识大块进行归纳,按课本逐节复的可能性较小。
中考数学核心26题答题技巧
中考数学核心26题答题技巧1.有理数的加法运算同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
2.合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3.去、添括号法则去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4.一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5.平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
6.完全平方公式完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
7.因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
8.单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
9.一元一次不等式解题的一般步骤去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
10.一元一次不等式组的解集大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
11.分式混合运算法则分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
12.分式方程的解法步骤同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊。
13.最简根式的条件最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点。
初三数学复习攻略答题技巧与解题思路
初三数学复习攻略答题技巧与解题思路初三数学复习攻略——答题技巧与解题思路一、写在前面初三数学复习是为了备战中考,为了顺利完成数学试卷中的各种题型,我们需要掌握一些答题技巧并培养解题思路。
本文将为大家介绍几种常见题型的解题技巧,并提供一些建议来帮助大家在初三数学考试中取得更好的成绩。
二、选择题选择题是初三数学试卷中的常见题型,正确率往往是决定最终得分的重要因素。
下面是几种常见的选择题解题技巧:1. 仔细审题:通读题目,理解问题的意思。
注意关键词和条件限制,避免因为粗心而出错。
2. 排除法:先排除明显错误的选项,缩小范围后再仔细比较。
常见的排除方法有比较法、代入法等。
3. 过滤法:根据各选项的特点和条件,筛选出符合题意的选项。
常见的过滤方法有奇偶性判断、单位换算等。
三、填空题填空题要求我们根据条件填写适当的数值或运算符号,下面是几种常见的填空题解题技巧:1. 利用已知条件:仔细阅读题目,寻找已知条件,并根据条件进行推导和计算,找到合适的答案。
2. 变量代换:将未知数用字母表示,建立方程,通过解方程求解出未知数的数值。
3. 利用特殊性质:填空题中经常涉及到数的性质和规律,我们可以利用这些性质和规律来求解。
比如利用等差数列或等比数列的性质。
四、解答题解答题是初三数学试卷中的较为复杂的题型,需要综合运用所学的知识和解题技巧。
下面是几种常见的解答题解题思路:1. 分析问题:仔细阅读题目,理解问题的要求。
结合已知条件,分析问题的性质和特点,并采取相应的解题思路。
2. 建立模型:将问题抽象为数学模型,利用已知条件和题目要求建立等式或方程,进行求解。
常见的模型有几何模型、代数模型等。
3. 逻辑推理:通过观察和逻辑推理寻找问题的规律和解题思路。
例如利用归纳法、演绎法等进行推理,帮助我们找到解题的方法和步骤。
五、巩固练习在提高数学解题能力的过程中,巩固练习是非常重要的。
通过大量的练习,我们可以更好地掌握解题技巧和思路,提高解题能力。
中考数学备考技巧
中考数学备考技巧中考数学备考技巧(10篇)中考数学备考技巧1【一、概念理解】老师们发现,新初一出现的最严重的问题之一,是概念理解。
很多新初一的孩子喜欢用以前的概念理解数学问题,对新概念有一些排斥,对绕一点弯的概念理解起来有一定困难。
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
那么概念理解出问题该如何加强呢?首先,要帮助孩子建立起重视概念理解的意识。
因为很多问题的产生,都是理解不到位引起的。
其次,注意孩子理解的情况,是与哪一种他以前学习的概念或者相似概念混淆的,比如把乘法和乘方弄混,要仔细讲解这二者从形式上到计算结构上的差别。
帮助孩子建立,看到什么形式要用什么样处理方法的“条件反射”。
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
再者,因为这个时候孩子还不能很好地自己做总结,所以我们要帮着孩子总结课本上的重要概念,及概念运用的经典案例,发现错误及时纠正,引导孩子及时复习,直到最终在脑海中建立正确的概念。
因为刚上初中,新的概念还不多,所以一开始家长能盯得紧一点,孩子进入正轨之后,就能够比较好了。
【二、习惯】老师们发现,新初一出现的最严重的问题之一,是概念理解。
很多新初一的孩子喜欢用以前的概念理解数学问题,对新概念有一些排斥,对绕一点弯的概念理解起来有一定困难。
中考数学答题技巧和注意事项
中考数学应试技巧和注意事项一、应试技巧1、认真审题,不慌不忙,先易后难,不能忽视题目中旳任何一种条件。
做题次序:一般按照试题次序做,实在做不出来,可先放一放,先做别旳题目,不要在一道题上花费太多旳时间,而影响其他题目;做题慢旳同学,要掌握好时间,力争一次成功率;做题速度快旳同学要注意做题旳质量,要细心,不要马虎。
2、考虑多种简便措施解题。
选择题、填空题更是如此。
选择题-----注意选择题要看完所有选项,做选择题可运用多种解题旳措施,常见旳措施如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(例如折一折,量一量等措施)。
采用淘汰法和代入检查可节省时间。
有些判断几种命题对旳个数旳题目,一定要谨慎,你认为错误旳最佳能找出反例,要注意分类思想旳运用;假如选项中存在多种状况旳,要思索与否适合题意;找规律题可以多写某些状况,或对原式进行变形,以便找出规律,也可用特殊值进行检查。
对于选择题中有“或”和“且”旳选项一定要警惕,看看要不要取舍。
填空题-----1.注意一题多解旳状况。
2.注意题目旳隐含条件,例如二次项系数不为0,实际问题中旳正数、整数等;3.要注意与否带单位,体现形式一定是最简成果;4.求角、线段旳长,实在不会时,可以尝试猜测或度量法。
解答题-----(1)注意规范答题,过程和结论都要书写规范。
(2)计算题一定要细心,最终答案要最简,要保证绝对对旳。
(3)先化简后求值问题,要先化到最简,再代入求值。
这时要注意:分母不为零;合适考虑技巧,如整体代入。
(4)解分式方程一定要检查,应用题中也是如此。
注意两种检查旳区别。
(5)解直角三角形问题,注意交代辅助线旳作法,解题环节。
关注直角、特殊角。
取近似值时一定要按照题目规定,还要注意单位名称。
(6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。
注意题目当中旳等量关系,是为了构造方程,不等量关系是为了求自变量旳取值范围,求出方程旳解后,要注意验根,与否符合实际问题,要记得取舍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ
凯斯娱乐
[单选]从业者能够继承职业的职业道德中的()。A.各项内容B.生产方式C.某些过程D.重要内容 [单选]按临床分类,重度吸入性损伤指()A.伤及鼻道B.伤及咽部以上C.伤及细支气管D.伤及气管以上E.伤及喉部以上 [单选,A2型题,A1/A2型题]患者,女,30岁。神志不宁,虚烦不得眠,并见五心烦热,盗汗,舌红,脉细数。其病机是()A.心气不足B.心血不足C.心阴不足D.心血瘀阻E.心神不足 [单选]以下哪项不属于专业建筑工程设计服务包括工程设计基本服务。()A.编制专业建设工程初步设计文件B.施工图设计文件服务C.采用标准设计和复用设计服务D.参加试车(试运行)考核和竣工验收等服务 [单选]被电击的非创伤心脏骤停患者中最常见的心律为()A.心脏停搏B.有脉性室性心动过速C.心室颤动D.无脉性电活动E.心动过缓 [单选,A2型题,A1/A2型题]造成右心功能不全呼吸困难的原因是()。A.上呼吸道感染B.支气管狭窄及阻塞C.毛细血管阻力增加D.体循环静脉淤血E.过度劳累 [单选]对临时存款账户实行有效期管理,有效期最长不得超过()年。A.1B.2C.3D.4 [单选]抢救大咯血窒息时患者的体位是()A.仰卧位B.俯卧位C.俯卧头低足高位D.平卧位E.头高足低位 [单选]英国经济学家庇古于20世纪初在其《福利经济学》书中建立了一种()模型,这一模型讨论了劳动关系双方关于工资的集体谈判范围。A.收入分配幅度B.短期工资决定C.效率合约D.帕累托改进 [单选]采用新工艺、新方法、新材料等无定额可循的工程项目应选用的持续时间计算方法是()。A.经验估计法B.定额计算法C.定性分析法D.定量分析法 [单选]根据企业所得税法律制度的规定,下列关于企业提供劳务确认收入的表述中,不正确的是()。A.为特定客户开发软件的收费,应根据开发的完工进度确认收入B.包含在商品售价内可区分的服务费,在提供服务的期间分期确认收入C.广告制作费,应在相关的广告或商业行为出现于公众面前 [单选]铜可溶于()A、硝酸B、盐酸C、稀硫酸D、浓硫酸 [填空题]氨区着火后在()灭火。切断()。若不能切断(),则不允许()泄漏处的()。喷水冷却容器,尽可能将容器从火场移至()。 [填空题]脱硫吸着剂应为()。 [单选]免疫接种后易引起局部持久溃疡和形成肉芽肿的佐剂是()A.福氏完全佐剂B.福氏不完全佐剂C.细胞因子佐剂D.内毒素E.多聚核苷酸 [多选]甲氧氯普胺的临床应用包括()A.药物引起的呕吐B.消化不良和恶心C.晕车D.用于十二指肠插管E.糖尿病性胃瘫 [填空题]拆卸防喘阀、燃油截止阀等带有弹簧的阀门时,应根据其构造使用(),均衡地(),以()出伤人。禁止将手插入阀门与阀座之间。 [多选]《中国人民银行法》第32条规定,中国人民银行对金融机构以及其他单位和个人的下列()行为有权进行检查监督。A.代理中国人民银行经理国库的行为B.与中国人民银行特种贷款有关的行为C.执行有关人民币管理规定的行为D.执行有关反洗钱规定的行为E.执行有关银行间债券市场管理规 [单选]关于细菌性肝脓肿的处理错误的是()A.非手术治疗适用于多发性肝小脓肿B.大剂量、联合应用抗生素C.经皮肝穿刺脓肿置管引流术适用于多发性肝小脓肿D.全身营养支持治疗E.经皮肝穿刺脓肿置管引流术适合于已液化的单个较大脓肿 [单选]关于类风湿结节的特点错误的是()。A.直径数毫米至数厘米B.质硬C.有压痛D.常出现在关节伸侧受压部位的皮下组织E.对称性 [单选]对航海员来讲,下列那种导航方法比较直观()。A.雷达导航B.目视导航C.VTS导航D.GPS导航 [填空题]农药的科学使用原则是()、()、() [单选]不孕症中,女方因素占()A.40%B.50%C.60%D.70%E.80% [单选]WAIS-RC适用于()岁以上的受测者。A.15B.16C.17D.18 [单选]变压器做短路试验,当所加电压所产生的短路电流为额定电流时,这个电压就叫做()。A.理想电压B.额定电压C.短路电压D.空载电压 [单选,A2型题,A1/A2型题]椎间孔由()A.椎体和椎弓围成B.椎弓根和椎弓板围成C.所有椎孔连接而成D.由所有横突孔连接而成E.相邻椎骨的上、下切迹围成 [单选]提高()是实现职业道德维护公德的手段A、专业B、知识C、理论D、专业技能 [名词解释]免疫自稳(immunologichomeostasis) [名词解释]高度结构化决策 [单选,A2型题,A1/A2型题]下列描述的微生物特征中不正确的是()A.分布广泛B.体积微小C.种类繁多D.需借助光学显微镜或电子显微镜观察E.只能在活细胞内生长繁殖 [单选,A1型题]颈部淋巴结结核的临床治疗,不恰当的是()A.可不给予全身抗结核药物B.形成窦道的可行刮除术C.液化的可穿刺D.没液化的可切除E.口服抗结核药物 [单选]下列关于乳痈威因的论述,哪项是正确的?()A.邪壅经络,郁闭不通B.气血两虚,邪毒内陷C.营卫不和,火毒内生D.肝气郁结,胃热壅滞E.以上都不是 [问答题,案例分析题]背景: [单选]()是指上级管理者所直接领导下级人员的数量。A.管理幅度B.组织构成C.组织规模D.组织形成 [判断题]为了查明换热器管子的泄漏情况,首先要作气压试验。A.正确B.错误 [填空题]量体时被测者应()姿式。 [单选,A4型题,A3/A4型题]女性,30岁,因月经量增多,经期延长一年就诊。如近一周出现接触性出血,此时最合适的检查是()A.染色体检查B.阴道内取分泌物做镜检C.取后穹隆处白带做细菌培养+药敏试验D.宫颈黏液涂片看其结晶情况E.宫颈刮片细胞学检查 [单选]总监理工程师在签发《工程变更单》之前,应就工程变更引起的工期改变及费用的增减与()进行协商,力求达到双方都能同意的结果。A.咨询单位和设计单位B.承建单位和设计单位C.建设单位和设计单位D.建设单位和承建单位 [名词解释]黄帝 [问答题,案例分析题]某建设项目的一期工程基坑土方开挖任务委托给某机械化施工公司。该场地自然地坪标高-0.60m,基坑底标高-3.10m,无地下水,基坑底面尺寸为20×40(m2)。经甲方代表认可的施工方案为:基坑边坡1:m=1:0.67(Ⅲ类土),挖出土方量在现场附近堆放。挖土采用