2019-2020年高考数学专题练习——圆锥曲线
2020高考数学圆锥曲线试题(含答案)
2020高考虽然延期,但是每天练习一定要跟上,加油!圆锥曲线一. 选择题:1.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为BA.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A )A. (41,-1) B. (41,1)C. (1,2)D. (1,-2)3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是BA. ①③B. ②③C. ①④D. ②④4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1(0,]2C.(0,2 D.,1)26.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) AB .3 CD .927.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( B )A. B. C .(25), D.(28.(山东卷(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为ABCD-26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为A(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x9.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )ABC D10.(四川卷12)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK AF =,则AFK ∆的面积为( B )(A)4 (B)8 (C)16 (D)3211.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为B(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y += 12.(浙江卷7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D(A )3 (B )5 (C )3 (D )5 13.(浙江卷10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是B(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线14.(重庆卷(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e 5k ,则双曲线方程为C(A )22x a -224y a =1(B)222215x y a a -= (C)222214x y b b-=(D)222215x y b b-=二. 填空题:1.(海南卷14)过双曲线221916x y -=的右顶点为A ,右焦点为F 。
2019年高考数学理试题分类汇编:圆锥曲线(含答案)
2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。
(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。
已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。
【新】2019-2020学年度新课标Ⅱ高考数学总复习专题09圆锥曲线分项练习含解析文
B.y=或y=
C.y=或y=
D.y=或y=
【答案】:C
设|AM|=|AF|=3t(t>0),|BN|=|BF|=t,|BK|=x,而|GF|=2,
在△AMK中,由,得,
解得x=2t,则cos∠NBK=,
∴∠NBK=60°,则∠GFK=60°,即直线AB的倾斜角为60°.
∴斜率k=tan 60°=,故直线方程为y=.
8.【2015新课标2文数】已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为.
【答案】
【解析】
【考点定位】本题主要考查双曲线几何性质及计算能力.
【名师点睛】本题是求双曲线的标准方程,若设标准形式,需先判断焦点是在x轴上,还是在y轴上,而此题解法通过设共渐近线的双曲线的方程,就不需要判断双曲线焦点是在x轴上,还是在y轴上.一般的结论是:以为渐近线的双曲线的方程可设为.
(A) (B) (C) (D)
【答案】A
【解析】双曲线的一条渐近线方程为,与相同,∴,
∴.
5.【2005全国3,文9】已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为()
A.B.C.D.
【答案】C
∴.
6.【2017新课标2,文12】过抛物线的焦点,且斜率为的直线交于点(在的
轴上方),为的准线,点在上且,则到直线的距离为
7.【2016新课标2文数】设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=
(A)(B)1(C)(D)2
【答案】D
【解析】
试题分析:因为是抛物线的焦点,所以,
又因为曲线与交于点,轴,所以,所以,选D.
【考点】抛物线的性质,反比例函数的性质
高考数学专题练习——圆锥曲线(一)
两渐近线于 A, B 两点, 且与双曲线在第一象限的交点为 P, 设 O 为坐标原点, 若
uuur uur uuur
OP OA OB ( , R) ,
3 16 , 则双曲线的离心率为( )
A. 2 3 3
B. 3 5 5
C. 3 2 2
9 D.
8
x2 y 2
24.设 F 为双曲线 C: a2
b2
1(a
OF
点在以原点 O 为圆心,
为半径的圆上, 则直线 PF 的斜率是 _______.
2
40.设抛物线 y 2 px( p 0) 的焦点为 F ,已知 A, B 为抛物线上的两个动点, 且满足
AFB
60 ,过弦 AB 的中点 M 作抛物线准线的垂线
| MN | MN ,垂足为 N,则 | AB | 的最大值
构成以 A1A2 为斜边的直角三角形, 则双曲线离心率 e 的取值范围是( )
61
A . ( 2,
)
2
61
C. (1,
)
2
51
B. ( 2,
)
2
51
D. (
,)
2
6.已 知过 抛物 线 y2 2 px( p 0) 的 焦点 F 的 直线 与抛 物线 交于 A , B 两点 , 且 uuur uuur AF 3FB , 抛物线的准线 l 与 x 轴交于点 C, AA1 l 于点 A1, 若四边形 AA1CF 的面
①曲线 C恰好经过 6个整点(即横、纵坐标均为整数的点);
②曲线 C上任意一点到原点的距离都不超过 ③曲线 C所围成的 “心形 ”区域的面积小于 3. 其中 , 所有正确结论的序号是( )
2;
A. ①
最新2019-2020年高考数学大题专题练习——圆锥曲线(二)
2019-2020年高考数学大题专题练习——圆锥曲线(二)121.椭圆C 1:()22210x ya b a b +=>>的离心率为3,椭圆C 1截直线y x =所得的弦长为3410.过椭圆C 1的左顶点A 作直线l 与椭圆交于另一点M ,直线l 与圆C 2:4 ()()22240x y r r -+=>相切于点N .5 (Ⅰ)求椭圆C 1的方程;6(Ⅱ)若43AN MN =,求直线l 的方程和圆C 2的半径r . 7 8 9 10 11 12 13 1415 2.已知椭圆C :1121622=+y x 左焦点F ,左16 顶点A ,椭圆上一点B 满足x BF ⊥轴,且点B 在x17 轴下方,BA 连线与左准线l 交于点P ,过点P 任意18 引一直线与椭圆交于C ,D ,连结AD ,BC 交于点Q ,19 若实数21,λλ满足:CQ BC 1λ=,DA QD 2λ=. 20 (1)求21λ⋅λ的值;21 (2)求证:点Q 在一定直线上.2225 26 27 28 29 3031 3.已知椭圆C :)0(12422>>=+b a y x 上顶点为D ,右焦点为F ,过右顶点A 作直线DF l //,32 且与y 轴交于点),0(t P ,又在直线t y =和椭圆C 上分别取点Q 和点E ,满足OE OQ ⊥(O 33 为坐标原点),连接EQ .34 (1)求t 的值,并证明直线AP 与圆222=+y x 相切;35 (2)判断直线EQ 与圆222=+y x 是否相切?若相切,请证明;若不相切,请说明理由. 36 37 38 39 40 41 42 43 44 45 4647 4.如图,△AOB 的顶点A 在射线)0(3:>=x x y l 上,A ,B 两点48 关于x 轴对称,O 为坐标原点,且线段AB 上有一点M 满足3||||=•MB AM ,当点A 在l 上49 移动时,记点M 的轨迹为W . 50 (1)求轨迹W 的方程;51 (2)设)0,(m P 为x 轴正半轴上一点,求||PM 的最小值)(m f . 525356 57 58 59 60 61 6263 5.已知点P 是椭圆C 上任一点,点P 到直线1l :2x =-的距离为1d ,到点(10)F -,的距离为64 2d ,且2122d d =.直线l 与椭圆C 交于不同两点A 、B (A 、B 都在x 轴上方),且65 180OFA OFB ∠+∠=︒.66 (1)求椭圆C 的方程;67 (2)当A 为椭圆与y 轴正半轴的交点时,求直线l 方程;68 (3)对于直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若存69 在,求出该定点的坐标;若不存在,请说明理由. 70 71 72 73 74 75 76 7778 6.在平面直角坐标系xOy 中,已知椭圆C :22116x y m m +=+(m >0)的离心率为45,A ,B 分79 别为椭圆的左、右顶点,F 是其右焦点,P 是椭圆C 上异于A 、B 的动点. 80 (1)求m 的值及椭圆的准线方程;81 (2)设过点B 且与x 轴的垂直的直线交AP 于点D ,当直线AP 绕点A 转动时,试判断以82 BD 为直径的圆与直线PF 的位置关系,并加以证明. 838485 86 87 88 89 90 9192 7.如图,在平面直角坐标系xOy ,已知椭圆()222210x y a b a b+=>>93 的离心率为12,且过点31,2⎛⎫⎪⎝⎭.F 为椭圆的右焦点,A ,B 为椭圆上关于原点对称的两点,连接94 AF ,BF 分别交椭圆于C ,D 两点. 95 (1)求椭圆的标准方程; 96 (2)若AF FC =,求BFFD的值; 97 (3)设直线AB ,CD 的斜率分别为12,k k ,是否存在实数m ,使得21k mk =,若存在,求出98 m 的值;若不存在,请说明理由. 99 100 101 102 103 104 105106 8.如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的焦距为2,且过点107 6(2,)2. 108 (1)求椭圆E 的方程;109 (2)若点A ,B 分别是椭圆E 的左右顶点,直线l 经过点B 且垂直与轴,点P 是椭圆上异于110 A ,B 的任意一点,直线AP 交l 于点M .111①设直线OM 的斜率为k 1,直线BP 的斜率为k 2,求证:k 1k 2为定值;112 ②设过点M 垂直于PB 的直线为m ,求证:直线m 过定点,并求出定点的坐标. 113 114 115 116 117 118 119 120121 9.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于AB 两点,交122 C 的准线于P ,Q 两点.123 (1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;124 (2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 125 126 127 128 129 130 131 132 133 134135 10.已知椭圆C :22221x y a b+=(0a b >>)的右焦点在直线l :330x y --=上,且椭圆上任意两136 个关于原点对称的点与椭圆上任意一点的连线的斜率之积为14-. 137 (1)求椭圆C 的方程;138 (2)若直线t 经过点(10)P ,,且与椭圆C 有两个交点A ,B ,是否存在直线0l :0x x =(其中139 02x >)使得A ,B 到0l 的距离A d ,B d 满足||||A B d PA d PB =恒成立?若存在,求出0x 的值,若不存140 在,请说明理由.141144 145 146 147 148 149 150 151152 11.已知点11(,)A x y ,22(,)(D x y 其中12)x x <是曲线24(0)y x y =≥上的两点,A ,D 两点在x 轴153 上的射影分别为点B ,C ,且||2BC =.154 (I )当点B 的坐标为(1,0)时,求直线AD 的斜率;155 (II )记△OAD 的面积为1S ,梯形ABCD 的面积为2S ,求证:1214S S <. 156 157 158 159 160 161 162 163 164 165166 12.已知点C 在圆()22116x y ++=上,A ,B 的坐标分别为(-1,0),(1,0),线段BC 的垂直平167 分线交线段AC 于点M . 168 (1)求点M 的轨迹E 的方程;169 (2)设圆222x y r +=与点M 的轨迹E 交于不同的四个点D ,E ,F ,G ,求四边形DEFG 的170 面积的最大值及相应的四个点的坐标. 171172175 176 177 178 179 180 181 182 18313.已知椭圆C1:2214xy+=,曲线C2上的动点(),M x y满足:18416=.185(1)求曲线C2的方程;186(2)设O为坐标原点,第一象限的点A,B分别在C1和C2上,2OB OA=,求线段|AB|的187长.18818919019119219319419519619719814.已知中心在原点O,焦点在x轴上的椭圆E过点122⎛⎫⎪⎪⎝⎭,离心率为.199(1)求椭圆E的方程;200(2)直线l过椭圆E的左焦点F,且与椭圆E交于A,B两点,若△OAB的面积为23,求直201线l 的方程. 202 203 204 205 206 207 208 209 210 211 21221315.已知椭圆C :12222=+b y a x (0>>b a )的左、右焦点分别为F 1,F 2,过点F 2作直线l 与椭214 圆C 交于M ,N 两点.215(1)已知M ,椭圆C 的离心率为12,直线l 交直线4x =于点P ,求1F MN ∆的周长及216 1F MP ∆的面积;217 (2)当224a b +=且点M 在第一象限时,直线l 交y 轴于点Q ,11F M FQ ⊥,证明:点M 在218 定直线上. 219 220 221 222 223 224 225 226 227228 16.已知离心率为22的椭圆C : 22a x +22by =1(a >b >0)过点P (﹣1,22).229 (1)求椭圆C 的方程;230 (2)直线AB :y =k (x +1)交椭圆C 于A 、B 两点,交直线l :x =m 于点M ,设直线P A 、231PB、PM的斜率依次为k1、k2、k3,问是否存在实数t,使得k1+k2=tk3?若存在,求出实数t 232的值以及直线l的方程;若不存在,请说明理由.23323423523623723823924024124224317.已知椭圆2222:1(0)x yE a ba b+=>>的右焦点为(1,0),F左顶点为(2,0).A-244(1)求椭圆E的方程;245(2)过点A作两条相互垂直的直线分别与椭圆E交于(不同于点A的)M,N两点.试判断直246线MN与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.247248参考答案249250 1.(Ⅰ)由题意知,c a =,即22234a b a-=,∴224a b =,∵由椭圆1C 截直线y x =所得的弦长为251 5,∴弦在第一象限的端点的坐标为⎝⎭,∴2244155a b +=,将224a b =代入上式,解252得2,1a b ==.∴椭圆1C 的方程为2214x y +=. 253 (Ⅱ)由(Ⅰ)知,()2,0A -,设()()1122,,,M x y N x y ,∵43AN MN =,∴14AM AN =,254∴214y y =,设直线l 的方程为()20x y =-≠λλ,联立22214x y x y =-⎧⎪⎨+=⎪⎩λ,得()22440y y +-=λλ,255 ∴1244y =+λλ;联立()22224x y x y r=-⎧⎪⎨-+=⎪⎩λ,得()222112360y y r +-+-=λλ,∵0∆=,256∴22361r =+λ,且2261y =+λλ;∴2264414=+⋅+λλλλ,解得245=λ,∴220r =,257∴:5100,l x r ±+==258 259260 2.(1)因为)0,2(-F ,由x BF ⊥轴,由对称轴不妨设)3,2(--B ,则直线)4(23:+-=x y AB 261 又左准线8:-=x l ,所以)6,8(-P , 262 又CQ BC 1λ=,所以111λλ++=PQPB PC263同理:由2λ=,得:221λλ++=PAPQ264又23=,所以11123λλ++=PQPA265又//,比较系数得:12312λλ=,所以2321=•λλ266 (2)证明:设点),(11y x C ,),(22y x D ,),(00y x Q267由CQ BC 1λ=,得101112λλ++-=x x ,11113λλ++-=y y268 代入椭圆方程484322=+y x ,得:48)13(4)12(321012101=++-+++-λλλλy x ,269 整理得:0)962412()4843(100212020=++--+λλy x y x270 显然01≠λ,所以48439624122020001-+++=y x y x λ 271 同理:由DA QD 2λ=,得:220214λλ+-=x x ,221λ+=y y272 代入椭圆方程484322=+y x ,得:48)1(4)14(32202220=+++-λλλyx273同理可得:96244843020202+-+=x y x λ274 又由(1)2321=λλ,所以2396244843484396241202020202000=+-+•-+++x y x y x y x 275 整理得:0200=+-y x 276 即点Q 在定直线02=+-y x 上.277278279280 3.(1)由题设)2,0(D ,)0,2(F ,)0,2(A , 281 又DF AP //,所以DF AP k k =,可得:2=t , 282 所以122:=+yx AP ,即2=+y x , 283 所以22|2|=-=d ,为圆222=+y x 的半径, 284 所以直线AP 与圆222=+y x 相切.285286 (2)设)2,(0x Q ,),(11y x E ,287 由OE OQ ⊥,则⊥,可得02110=+y x x , 288 而EQ :0)(2)2()()2(0101011=-+-----x x x y y x x x y289 20121101201210101)()2(|2|)()2(|)(2)2(-|x x y x x y x x y x x x y d -+--=-+--+-=290由02110=+y x x 得1102x y x -=代入上式, 291得42))(4(||2)2()2(||221212122121212121212121212121++=+++=++-+=x x y y x x x y y x y x x y d292 又422121=+y x ,212124y x -=,代入上式得:2=d293 所以直线EQ 与圆222=+y x 相切. 294 295296 4.(1)因为B A ,两点关于x 轴对称, 297 所以AB 边所在直线与y 轴平行,298 设),(y x M ,由题意,得)3,(x x A ,)3,(x x B -, 299 所以y x AM -=3||,x y MB 3||+=, 300 因为3||||=•MB AM ,301 所以3)3)(3(=+-x y y x ,即1322=-y x , 302 所以点M 的轨迹W 的方程为1322=-y x )1(≥x 303 (2)设),(y x M ,则22)(||y m x MP +-=,304 因为点M 在1322=-y x )1(≥x ,所以3322-=x y , 305所以32433)(||2222-+-=-+-=m mx x x m x MP 343)4(422-+-=m m x306 若14<m,即4<m ,则当1=x 时,|1|||min -=m MP ; 307 若14≥m ,即4≥m ,则当4m x =时,12321||2min -=m MP 308所以,||PM 的最小值⎪⎩⎪⎨⎧≥-<<-=4,1232140|,1|)(2m m m m m f . 309 310311 5.解:设()P x y ,,则1|2|d x =+,2d21d d ==,312 化简得:2212x y +=.313 ∴椭圆C 的方程为:2212x y +=314 (2)解:∵(01)A ,,(10)F -,, 315 ∴1010(1)AF k -==--,180OFA OFB ∠+∠=︒,316 ∴1BF k =-,BF :1(1)1y x x =-+=--317 代入2212x y +=,得:2340x x +=,318∴0x =,或43x =-,代入1y x =--得01x y =⎧⎨=-⎩(舍),或4313x y ⎧=-⎪⎪⎨⎪=⎪⎩319∴4133B ⎛⎫- ⎪⎝⎭,32011134203ABk -==⎛⎫-- ⎪⎝⎭,∴AB :112y x =+ 321(3)证明:由于180OFA OFB ∠+∠=︒,所以B 关于x 轴的对称点B 1在直线AF 上.设11()A x y ,,322 22()B x y ,,122()B x y -,323 设直线AF 方程:(1)y k x =+,代入2212x y +=,得:222212102k x k x k ⎛⎫+++-= ⎪⎝⎭,3242122212k x x k +=-+,2122112k x x k -=+,1212AB y y k x x -=-,AB :121112()y y y y x x x x --=--,325令0y =,得122112111212x x x y x y x x y y y y y --=-=--, 326 11(1)y k x =+,22(1)y k x =+,327()22222112211212122121212212211(1)(1)22222(1)12212k k k k x y x y x k x x k x x x x x x k y y k x k x x x k -⨯-++-⨯++⨯+++=====--+++++-+328∴直线l 总经过定点(20)M -,329330331332 6.解:(1)因为椭圆的离心率为45.所以16161625m =+,解得9m =. 333 所以椭圆的方程为221259x y += ……3分334 准线方程为254x =±……5分335 (2)由题可知()()()5,0,5,0,4,0A B F -,设()00,P x y .由椭圆的对称性,不妨设00y > 336 ①若04x =,则94,5P ⎛⎫ ⎪⎝⎭,PF 方程为4x =, 337 AP 方程为15xy =+,()5,2D 338 以BD 为直径的圆的圆心(5,1),半径为1与直线PF 相切; ……8分339 ②若04x ≠,则AP 方程为()0055y y x x =++ 340令5x =,得00105y y x =+,则00105,5y D x ⎛⎫ ⎪+⎝⎭341以BD 为直径的圆的圆心0055,5y M x ⎛⎫ ⎪+⎝⎭,半径为0055y x + ……11分 342 直线PF 方程为()0044y y x x =--,即()000440y x x y y ---= 343圆心M 到直线PF 的距离d =……13分344==()00002545455x y x x -+=-=055y x + 345所以圆M 与直线PF 相切 ……15分346 综上所述,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.347 …………16分348 349350 7.(1)设椭圆方程为22221(0)x y a b a b +=>>,由题意知:22121914c a a b ⎧=⎪⎪⎨⎪+=⎪⎩351解之得:2a b =⎧⎪⎨⎪⎩22143x y +=352 (2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --, 353 此时直线BF 方程为3430x y --=,354 由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去),355故1(1)713317BF FD --==-. 356(3)设00,)A x y (,则00(,)B x y --,357 直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 358 2220000(156)815240x x y x x ---+=,359因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,360 又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 361 同理,D 点坐标为0085(52x x ++,3)52y x +, 362所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,363即存在53m =,使得2153k k =. 364 365366 8.解:(1)由题意椭圆2222:1(0)x y E a b a b+=>>的焦距为2,且过点2, 367所以223221,1c a b =+=,解得2,a b ==,368 所以椭圆E 的标准方程为22143x y +=. 369 (2)①设000(,)(0)P x y y ≠,则直线AP 的方程为00(2)2y y x x =++, 370 令2x =得004(2,)2y M x +,因为01022y k x =+,因为0202y k x =-, 371所以212202y k k x =-,因为000(,)(0)P x y y ≠在椭圆上,所以2200143x y +=, 372 所以1232k k =-为定值, 373 ②直线BP 的斜率为1212y k x =-,直线m 的斜率为112m x k y -=, 374 则直线m 的方程为1111011112242(2)(2)(1)2x x y x y x y x x y y x y ---=-+=-+=++, 375 所以直线m 过定点(1,0)-. 376 3773789.由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且379 22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---. 380 记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分 381 (1)由于F 在线段AB 上,故01=+ab . 382 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=, 383 所以ARFQ . ......5分384 (2)设l 与x 轴的交点为)0,(1x D , 385 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 386 由题设可得221211ba x ab -=--,所以01=x (舍去),11=x . 387 设满足条件的AB 的中点为),(y x E . 388 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 389 而y ba =+2,所以)1(12≠-=x x y . 390 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分 391 392393 10.解:(1)设椭圆焦距为2c (0c >),右焦点 为(0)c ,, 394∵直线l 与x 轴的交点坐标为0)∴c =.395 设椭圆上任意一点()Q x y ,和关于原点对称的两点()M m n ,,()N m n --,,396 则有22221m n a b +=,22221x y a b +=∴2222220x m y n a b --+= 397 又∵14y n y n x m x m -+⋅=--+即222214y n x m -=--∴2214b a = 398 又2223c a b =-=,∴24a =,21b =.399 ∴椭圆的方程为2214x y +=.400 (2)存在04x =符合题意,理由如下:401当直线t 的斜率存在时,设直线t 的方程为(1)y k x =-,设11()A x y ,,22()B x y ,联立22(1)44y k x x y =-⎧⎨+=⎩,得402 2222(41)8440k x k x k +-+-=403 2222(8)4(41)(44)0k k k =--+->△恒成立404 2122841k x x k +=+,21224441k x x k -=+ 405 不妨设121x x >>,406∴012021||||||1||||1|]A B d PB d PA x x x x x x -=-⋅---⋅-407 001212(1)()2]0x x x x x x =-+++=408 ∴2200228(1)8(1)204141x k k x k k +--+=++,整理得0280x -=,即04x =满足条件409 当直线t 的斜率不存在时,显然04x =满足条件 410 综上,04x =时符合题意. 411 412413 11.解:(Ⅰ)因为(1,0)B ,所以1(1,),A y 代入24y x =,得到12y = …………………1分 414 又||2BC =,所以212x x -=,所以23x = …………………2分 415 代入24y x =,得到1y =…………………3分 416所以21211AD y y k x x -===- …………………4分417 (Ⅱ)法一:设直线AD 的方程为y kx m =+.418 则1211|()|||.2OMD OMA S S S m x x m ∆∆=-=-=…………………6分 419 由24y kx my x=+⎧⎨=⎩, 得222(24)0k x km x m +-+=,420所以2221222122(24)41616042km k m km km x x k m x x k ⎧⎪∆=--=->⎪-⎪+=⎨⎪⎪=⎪⎩…………………8分 421所以21221121214()()2S y y x x y y kx m kx m k =+-=+=+++=,…………………10分 422 又1204kmy y =>,所以0,0k m >>,所以12124S m km S y y ==+, 423因为16160km ∆=->,所以01km <<,所以12144S km S =<.…………………12分 424 法二:设直线AD 的方程为y kx m =+.425 由24y kx my x=+⎧⎨=⎩, 得222(24)0k x km x m +-+=, 426所以2221222122(24)41616042km k m km km x x k m x x k ⎧⎪∆=--=->⎪-⎪+=⎨⎪⎪=⎪⎩…………………6分 4272221212||1|1|21AD k x x k x x k =+-=+-=+428 点O 到直线AD 的距离为21d k =+, 所以||||211m d AD S ==…………8分 429 所以21221121214()()2S y y x x y y kx m kx m k =+-=+=+++= …………………10分 430 又1204kmy y =>,所以0,0k m >> 431 因为16160km ∆=->,所以01km << 432 所以12124S m km S y y ==+41<…………………12分 433 434435 12.解:(1)由已知得:4MA MB AC +==,而24AB =<,436所以点M 的轨迹是以A ,B 为焦点,长轴长24a =的椭圆,437 设(,)M x y ,所以点M 的轨迹E 的方程:22143x y +=.………4分438 (2)由对称性可知,四边形DEFG 为矩形,不妨设()11,D x y 为椭圆E 上第一象限的点, 439 则11=4DEFG S x y 矩形,440 而10x >,10y >,且2211143x y +=,441所以22111111=443243432433DEFG x x y S x y ⎫=⋅≤+=⎪⎭矩形 442 当且仅当1123x =12x =, 162y =时,取“=”, 443所以矩形DEFG的面积的最大值为444四个点的坐标为:,⎭,,⎭,,⎛⎝⎭,,⎛-⎝⎭.………12分44544644713.解:(1)由已知,动点M到点()0,-P,()0,Q的距离之和为8,448且8<PQ,所以动点M的轨迹为椭圆,而4=a,=c,所以2=b,449故椭圆2C的方程为221164y x+=.………3分450(2)解:,A B两点的坐标分别为()(),,,A AB Bx y x y,由2OB OA=及(1)知,,,O A B三点共线且点451,A B不在y轴上,因此可设直线AB的方程为y kx=.452将y kx=代入2214xy+=中,得()22144k x+=,所以22414Axk=+,453将y kx=代入221164y x+=中,得()22416k x+=,所以22164Bxk=+,454又由2OB OA=,得224B Ax x=,即22164414k k=++,455解得21,=易得k A B,456故||==AB分45745845914.解:(1)设椭圆E的方程为:22221x ya b+=(0)a b>>,460由已知:222221261144⎧-=⎪⎪⎨⎪+=⎪⎩a baa b得:22a=,21b=,461所以,椭圆E的方程为:2212xy+=. ………3分462(2)由已知直线l过左焦点()1,0F-.463①当直线l与x轴垂直时,1,A⎛-⎝⎭,B⎛-⎝⎭,此时AB=464则1122OABS∆==,不满足条件.465②当直线l与x轴不垂直时,设直线l的方程为:()1y k x=+466由()22112=++⎧⎨⎪⎩=⎪y k xxy得()2222124220k x k x k+++-=467所以2122412kx xk+=-+,21222212kx xk-=+,468而12121122OABS OF y y y y∆=⋅-=-,469由已知23OABS∆=得1243y y-=,470所以()22222441612912k kkk+=++,则4220k k+-=,所以1k=±,471所以直线l的方程为:10x y-+=或10x y++=.………12分47247347415.(1)由题设知:12ba⎧==⎩得2a=,∴椭圆C的方程为22143x y+=……2分475∴1F MN∆的周长11122148;F M MN NF F M MF F N NF a=++=+++==……………3分476由12(1,0),(1,0)F F-知直线l的方程为1x+=,得(4,P-,477∴1F MP∆的面积121(2F F=-=分478(2)【证明】设(,),0,(0,),M x y x y Q y c>=且,由题设知:12(,0),(,0)F c F c-. 479由2,,M F Q l∈知22//F M F Q,220(,),(,)F M x c y F Q c y=-=-,则有0()y x c cy-=-;480由11F M FQ⊥知11FM FQ⊥,110(,),(,)FM x c y FQ c y=+=,则有0()0c x c y y++=;481∴两式联立消去y点得(,)M x y满足2()()x c x c y+-=,即222x y c-=;……………9分482又点M 在椭圆C 上,即有12222=+b y a x , 即222222b x a y a b +=, 483∴两式联立得44222222,a b x y a b a b ==++; 又224a b +=,即22,22a b x y ==………11分 484∴点(,)M x y 满足222a b x y ++=,即点M 在定直线2x y +=上. ……………………12分 48548648716.解:(1)由椭圆的离心率e==,则a=c , 488b 2=a 2﹣c 2=c 2,将P 代椭圆方程:,则,解得:c=1, 489则a=,b=1, 490∴椭圆的方程:; 491(2)由题意可知:k 显然存在且不为0,设A (x 1,y 1),B (x 2,y 2),y 1=k (x 1+1),y 2=k (x 2+1), 492则,整理得:(1+2k 2)x 2+4k 2x+2k 2﹣2=0, 493 x 1+x 2=﹣,x 1x 2=, 494当x=m 时,y=k (m+1), 495则k 1=,k 2=,则k 3=, 496则497k 1+k 2=+==498 =2k+, 499 由k 1+k 2=tk 3,2k+=t×=tk ﹣,则当t=2,m=﹣2, 500∴当直线l :x=﹣2,存在实数t=2,使得k 1+k 2=tk 3成立.50150250317.解:(1)由已知得1,2,c a ==222 3.b a c =-=…………(3分) 504所以椭圆E 的方程为22 1.43x y +=…………(4分) 505(2)①当直线MN 与x 轴垂直时,直线AM 的方程为2,y x =+ 506联立2223412y x x y =+⎧⎨+=⎩得271640,x x ++=解得22().7x x =-=-或舍去 507此时直线MN 的方程为2.7x =-直线MN 与x 轴的交点为2(,0).7- …………(6分) 508②当直线MN 不垂直于x 轴时,设直线MN 的方程为.y kx m =+ 509 联立223412y kx m x y =+⎧⎨+=⎩得222(43)84120.k x kmx m +++-= 510 设1122(,),(,),M x y N x y 则2221212122228412312,,,434334km m m k x x x x y y k k k --+=-==+++ 511且222(8)4(43)(412)0,km k m ∆=-+->即224 3.m k <+…………(8分) 512而1122(2,),(2,),AM x y AN x y =+=+由题意知,,AM AN ⊥ 513 即22121212271642()40,43m km k AM AN x x x x y y k -+⋅=++++==+ 514 解得27m k =或2().m k =舍去…………(10分) 515 当27m k =时,满足224 3.m k <+直线MN 的方程为2(),7y k x =+此时与x 轴的交点为2(,0).7-故直线516MN 与x 轴的交点是定点,坐标为2(,0).7-…………(12分) 517518519。
圆锥曲线全国卷高考真题解答题(含解析))
圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。
2019-2020年高考数学专题练习——圆锥曲线
该双曲线的离心率为( )24.已知抛物线 y 2 4x 的焦点为 F ,准线为 l ,P 是 l 上一点,直线 PF 与抛物线交于 M ,N 两 uuur 点, 若 PF uuuur 3MF,则 MN()16 A . 3B .8C .16D .83 35.知双曲线 2x2 a 2b y 2 1(ab0,b 0) , A 1、A 2 是实轴顶点, F 是右焦点,B (0,b ) 是虚轴端点,若在线段 BF 上(不含端点)存在不同的两点 P i i 1,2 ,使得 P i A 1A 2 i 1,2 构成 以 A 1A 2为斜边的直角三角形,则双曲线离心率e 的取值范围是( )2019-2020 年高考数学专题练习圆锥曲线(一)、选择题 2 x 1.设双曲线 C: 2 a 2 y 2 1 a 0,b b 10 的左、右焦点分别为 F 1,F 2,过点 F 1 且斜率为3的直线与双曲线的两渐近线分别交于点 A ,B ,并且 F 2A F 2B ,则双曲线的离心率为A . 52B . 2 D .2 x 2.设 F 1,F 2 分别为双曲线 C : 2 a 2 b y 2 1(ab 0,b 0) 的左、右焦点, A 为双曲线的左顶点,以 F 1F 2 为直径的圆交双曲线某条渐近线于 M 、N 两点,且满足:MAN 120o ,则 7A .3B . 19 321 C .3D . 7333.双曲线 2x2a 2y2 1 a 0,bb0 的左、右焦点分别为 F 1,F 2,过 F 1 作倾斜角为 60°的直线与y 轴和双曲线的右支分别交于 A , B 两点,若点 A 平分线段F 1B ,则该双曲线的离心率是 A . 3B . 2+ 3 C. 2 D . 2 1B .( 2, 52 1) 51D . ( 52 126.已知过抛 物线 y 2 2px(p 0)的 焦点 F 的 直线与 抛物线 交于 A ,B 两点,且 uuur uuurAF 3FB ,抛物线的准线 l 与 x 轴交于点 C , AA 1 l 于点 A 1,若四边形 AA 1CF 的面积 为12 3 ,则准线 l 的方程为A . x2 B . x 2 2 C . x 2 D . x 17.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90 °的正角 .已知双曲线22 E: a x 2 b y 21(a ab0,b 0) ,当其离心率e [ 2,2] 时,对应双曲线的渐近线的夹角的取值范围为( )A .[0, 6]B . [ , ]63C .[ 4, 3]D .[3, 2]8.已知直角坐标原点22xy O 为椭圆 C : 2 2ab 1(a b 0) 的中心,F 1,F 2 为左、右焦点,在区间 (0,2)任取一个数 e ,则事件 “以 e 为离心率的椭圆 C 与圆 O : x 2 y 2 a 2 b 2 没有 交点 ”的概率为( )A .2442 B . 4C .2 2 D .22 29.已知直线 y 1x 与双曲线 ax 2 by 21(a 0, b 0 )的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为3, a则()2b23 A .3 B .C . 93D . 2327223210.过双曲线 x 22 y1的右焦点且与 x 轴垂直的直线交该双曲线的两条渐近线于 A ,B 两3点,则AB)A.4 33B.2 3 C.6 D.4 311.已知抛物线C:4x的焦点为F,过F的直线交C于A,B 两点,点A在第一象限,P(0,6),O 为坐标原点,则四边形OPAB面积的最小值为(7 A.4 13B.4C.3D.412.若双曲线2x3m1的一条渐近线方程为2x 3y 0 ,则m 的值为()233C.2213.已知双曲线a x2 b y2 1 的左右焦点分别为F1,F2,O 为双曲线的中心,P 是双曲线的右支上的点,PF1F2的内切圆的圆心为I,且圆I 与x 轴相切于点A,过F2作直线PI 的垂线,垂足为B,若 e 为双曲线的离心率,则()A.|OB | e|OA| C.|OB| |OA| B.|OA| e|OB|D.|OA|与|OB |关系不确定14.已知 F 是椭圆C:2y1 的左焦点,5P为C上一点,A(1,4),则|PA| |PF |的3最小值为()10 A.3 11B.3C.4 D.13315.已知F1,F2 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且F1PF2 3,则椭圆和双曲线的离心率的倒数之和的最大值为A.4 3 B.2 3C.3 D.22216.双曲线x2y21(a a2b2A(. 1,2)b 0)离心率的范围是()B(. 1,)C(. 2,)D(. 1,22)17.如图,过抛物线 y 2px(p 0)的焦点 F 的直线 l 交抛物线于点 A ,B ,交其准线于点8 C . 3为( )2x 2 2 py 的焦点,点 F 2为抛物线 C 的对称轴与其准线的交点,过 F 2 作抛物线 C 的切线,切点为 A ,若点 A 恰好在以 F 1,F 2 为焦点的双曲线上,则双曲线 的离心率为( ▲ )两点, MN 中点的横坐标为 1,则此椭圆的方程是( )2A . y32 B. 2 x32 2y1 522yx C. 1 36 92 xD . 362y1 921. 已知双曲线 C :2 x 2 ay 2 b 21a 0,b 0 的虚轴长为 8 ,右顶点 (a ,0)到双曲线的一16D .318.已知过椭圆 2x 2a2y2 1(a b 0)b 2的左焦点且斜率为 a 的直线 l 与椭圆交于 A ,B 两点 .若椭圆上存在一点 P ,满足 OA OB OP 0 (其中点O 为坐标原点),则椭圆的离心率A . 22B .C. 321D .219.已知点 F 1 是抛物线 C :A .6 22B . 2 1C . 2 1D .6 2220.已知椭圆中心在原点,且一个焦点为 F(0 ,3 3) ,直线 4x3y 13 0 与其相交于 M 、N34,则 p 为(条渐近线的距离为 12,则双曲线 C 的方程为(2 x A . 9 2 y 216 x 2C. 25 y 2 16 22. 已知圆C : x 2 y 2 2x 2 3y 线相切,则双曲线的离心率为( ) A . 2 6 3 B .23323.设双曲线2 x 2 a 2 y b 2 1(a 0, b 0) 2x 2y2 16 92 2xy 216 2522yx2ab 243 F , 过点 B. D.1(a C . 的右焦点为0,b 0) 的一条渐近D . 7 作与 x 轴垂直的直线 l 交 且与双曲线在第一象限的交点为P , 设 O 为坐标原点,若 uu ur OP uur OA uuur OB( , R), A . 23B . 3 5 35 两渐近线于 A ,B 两点, 2 x 2 y3 16 ,则双曲线的离心率为( C.3 2 2 9 D . 8 2 24.设 F 为双曲线 C : ab 21(a 0,b 0) 的右焦点, O 为坐标原点,以 OF 为直径的圆与圆 x y a 交于 P ,Q 两点.若 PQ OF ,则 C 的离心率为( A . 2 B . 3.C 2)25.数学中有许多形状优美、寓意美好的曲线,曲线 22C : x 2 y 21 |x| y 就是其中之一 (如图) .给出下列三个结论: ① 曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点);② 曲线 C 上任意一点到原点的距离都不超过 2 ; ③ 曲线 C 所围成的 “心形 ”区域的面积小于 3. 其中,所有正确结论的序号是( ) A. ① B. ② C. ①②D.①②③、填空题26.过点Mx20,1 的直线l交椭圆x81于A,B两点,F为椭圆的右焦点,当△ABF的周长最大时,△ABF的面积为27.已知F1,F2 分别为双曲线2C:x242 y12 1的左、右焦点,点P在双曲线C上,G,I 分别为F1PF2的重心、内心,若GI∥x 轴,则F1PF2 的外接圆半径R=2 28.已知点P在离心率为2 的双曲线x2 a2y2 1(a 0,b 0) 上,F1,F2为双曲线的两个buuur 焦点,且PF1uuuurPF20 ,则PF1F2的内切圆半径r 与外接圆半径R之比为29.已知双曲线2C:x2a2yb2 1 a 0,b 0 的实轴长为16,左焦点为F,M 是双曲线 C 的一条渐近线上的点,且OM MF ,O为坐标原点,若S OMF 16 ,则双曲线C的离心率2 x 30.设点M 是椭圆2 a 2 yb2 1(a b 0) 上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F,圆M 与y 轴相交于不同的两点P、Q,若PMQ 为锐角三角形,则椭圆的离心率的取值范围为2 31. 平面直角坐标系xOy 中,椭圆x2 a2by2 1( a b 0 )的离心率e23,A1,A2分别是椭圆的左、右两个顶点,圆A1的半径为a,过点A2 作圆A1的切线,切点为P,在x 轴的上方交椭圆于点Q.则P P A Q232.如图所示,椭圆中心在坐标原点,为椭圆的右顶点和上顶点,当FB515 1,此类椭圆被称为“黄金椭圆”2算出“黄金双曲线 ”的离心率 e 等于 .22C: x 2 y 21(a b 0)33.已知椭圆 a b,A ,B 是 C 的长轴的两个端点,点 M 是 C 上的一点,满足 MAB 30 , MBA 45 ,设椭圆 C 的离心率为 e ,则 e 2 ________________________ .234.已知抛物线 y 2 2px(p 0)的焦点为 F ,O 为坐标原点,点 M ,N 为抛物线准线上相 异的两点,且 M ,N 两点的纵坐标之积为 - 4,直线 OM , ON 分别交抛物线于 A , B 两点,若A , F ,B 三点共线,则 p ______________ .235.已知抛物线 y 2 8x 上有一条长为 9 的动弦 AB ,则 AB 中点到36.如图:以等边三角形两顶点为焦点且过另两腰中点的椭圆的离心率 e= .等腰三角形,则 M 的坐标为 __________22x 2y 2 139.已知椭圆 9 5 的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是 ________ .240. 设抛物线 y 2px(p 0)的焦点为 F,已知 A , B 为抛物线上的两个动点,且满足| MN |AFB60,过弦 AB 的中点 M 作抛物线准线的垂线 MN,垂足为 N,则 |AB| 的最大值为41. 已知 F 为抛物线 C: y 2 4x 的焦点, E 为其标准线与 x 轴的交点,过 F 的直线交抛物线37.已知双曲线 C :2x2 a的两条渐近线分别交于2y21(a 0,b 0) 的左、右焦点分别为 F 1,F 2,过 F 1 的直线与 C buuur uuur uuur uuuurA ,B 两点.若 F 1A AB , F 1B F 2B 0,则C 的离心率为38.设 F 1,F 2 为椭圆1的两个焦点,M 为 C 上一点且在第一象限 .若△MF 1F2为C:36 20C 于 A ,B 两点, M 为线段 AB 的中点,且 |ME | 20,则|AB|参考答案0,易知F (1,0),设直线AB : x my 1x my 1 2由 2y 2 4my 4 0, 所以 y 1 y 2 4 y 2y 2 4x易知 f (x) 在 0,1 上为减函数,所以当12. A22双曲线 x y1的一条渐近线方程为 2x 3y 0 ,可得3 m m 1(3 m)(m 1) 0 ,解得 m ( 1,3),因为 m 1x 3 m y3 解得 m ,故选A.13,内切圆与 x 轴的切点是A ,∵ ,由圆切线长定理有 , 设内切圆的圆心横坐标为x ,则,即3y 12 4 1 2y 12( y 1 0) y1f (x) 3 x2 1 2 3x3 x 2 24 ( x 1)(3x 24x 4)2 x 2 2x 22x 2设A(x 1, y 1), B(x 2,y 2)且x 1,y 1S OPABS OPASOFA SOFB32 1 2f ( x) x x (x 0)4 2 x4y 1y 1 1时, ( S OPAB )min 13,故选4B0 是双曲线的渐近线方程,所以∴ ,即 A 为右顶点,在中,由条件有,在中,有∴.设椭圆的右焦点为,由,则,根据椭圆的定义可得,所以22e2 ,由焦点三角形面积公式得b12 3b22,即设椭圆离心率e1 ,双曲线离心率a12 3a22 4c2,即1232e12 e22 4 ,设1 12 2 m ,n 即m 3n 4 ,e1 e2由柯西不等式得m n最大值为43 3设的中点,由题意知两式相减得,而,所以所以直线的方程为,联立,解得又因为,所以所以点代入椭圆的方程,得,所以,故选 A.,易得:∴此椭圆的方程是 故选: C∵ |PQ| |OF | c ,∴ POQ 90o , 又|OP| |OQ | a ,∴a 2 a 2 c 2 解得 c 2,即 e 2.a由题意,得 ,设过 的抛物线 的切线方程为 ,联立,令,解得 , 即 ,不妨设 ,由双曲线的定义得.故选 C.,则该双曲线的离心率为设椭圆方程为联立方程: ,整理得:, ,则,即 ,化简得:1,0),(-1,1)六个整点,结论① 正确.22由x2y21 x y 得,x2y2, 1x y,解得x2点的距离都不超过2 . 结论② 正确.如图所示,易知A 0, 1 ,B 1,0 ,C 1,1, ,D心形”区域的面积大于3,说法③ 错误.由x2y21 x y得,y2x y 1 x2, |x|y234x2 ,1423x2 2 4厔0,x243所以x可为的整数有0,-1,1,从而曲线C:x2y21 x y 恰好经过(0,1),(0,-1),(1,0),(1,1), (-4 1026.3628.229. 526230.2 , 所以曲线C 上任意一点到原0,1 ,四边形ABCD 的面积S ABCD 11 123,很明显2心形”区域的面积大于2 S ABCD ,即231.37如图所示,设,,椭圆方程为圆的方程为,直线与圆相切,则:,直线是斜率为,直线方程为:联立直线方程与椭圆方程:整理可得:即,由弦长公式可得:,在中,,故5132.2“黄金椭圆”的性质是,可得“黄金双曲线”也满足这个性质.如图,设“黄金双曲线”的方程为,22则,,∵, ∴, ∴, ∴,解得 或 (舍去),∴黄金双曲线 ”的离心率 e 等于1333. 35 35.2易知抛物线 的准线方程为 ,设 ,且 的中点为 ,分别 过点 作直线 的垂线,垂足分别为 ,则 ,由抛物线定义,得 (当且仅当 三点共线时取等号),即 中点 到 轴的最短距离为 .36. 3 1OA 为中位线且 OA BF 1 ,所以 OB OF 1 ,因此 F 1OA BOA ,又根据两渐近线对uuur uuur uuur uuuur由F 1A AB, F 1B F 2B 0知 A 是 BF 1的中点, uuu r F Buuuur F 2B ,又 O 是 F 1, F 2的中点,所称, F 1OA F 2OB ,所以 F 2OB 60 , e1 (b )21 tan2 60 2.39. 15方法 1:由题意可知 |OF|=|OM |= c = 2,由中位线定理可得 PF 1 2|OM | 4,设 P(x,y)可得 (x 2)2 y 2 16,2联立方程 xy 2519 可解得 x32,x 21 2 (舍),点 P 在椭圆上且在 x 轴的上方,1515求得 P3, ,所以 k P F 2152 2F 138. (3, 15)22已知椭圆 C :x y36 20 1可知, a 6,c 4,由 M 为 C 上一点且在第一象限,故等腰三角形 MF 1F 2中 MF 1 F 1F 2 8,MF 2 2a MF 1 4 , sin F 1F 2M4 , y MMF 2 sin F 1F 2 M 15 ,22代入C :3x6 2y0 1可得 x M3.故 M 的坐标为 (3, 15 ) .82方法 2:焦半径公式应用解析 1:由题意可知 |OF |=|OM |= c= 2 , 由中位线定理可得 PF 1 2|OM | 4 ,即 aex p 4 x p15求得 P 3, 15 ,所以 k PF215 . 2 2 PF 12F (1,0)为抛物线 C :y 2=4x 的焦点,E (-1,0)为其准线与 x 轴的交点, 设过F 的直线为 y=k (x-1), 代入抛物线方程 y 2=4x ,可得 k 2x 2-( 2k 2+4) x+k 2=0,设 A ( x 1, y 1), B (x 2,y 2),解得k 2=1,则 x 1+x 2=6,由抛物线的定义可得 |AB|=x 1+x 2+2=8.。
最新精选2020高考数学《圆锥曲线方程》专题训练完整考题(含参考答案)
2019年高中数学单元测试卷圆锥曲线与方程学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2000全国11)过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( ) A .2a B .a21 C .4a D .a4 2.(2006)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .43.在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )(2003京春文9,理5)二、填空题4.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab ⋅=,则双曲线的离心率是 ☆5.椭圆5x 2-ky 2=5的一个焦点是(0,2),那么k = .(2002天津理,14)6. 抛物线过直线 0x y += 与圆 2240x y y ++= 的交点,且关于y 轴对称,则此抛物线的方程为 .B7.设12F F ,分别是椭圆22221x y a b +=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是;分析:椭圆的基本量的应用,利用条件建立不等关系.3.8. 如图,在ABC ∆中, 30=∠=∠CBA CAB ,AC 、BC 边上的高分别为BD 、AE ,则以A 、B 为焦点,且过D 、E 的椭圆与双曲线的离心率的倒数和为 ▲ .9.若双曲线经过点,渐近线方程是13y x =±,则这条双曲线的方程是 ▲ .10.设双曲线x 2-y 2=1的两条渐近线与直线x =22所围成的三角形区域(包括边界)为E ,P (x ,y )为该区域内的一动点,则目标函数z =x -2y 的最小值为________. 解析:由题知,双曲线的渐近线方程为x ±y =0,则其与直线x =22的交点为⎝⎛⎭⎫22,22和 ⎝⎛⎭⎫22,-22,所以可求得目标函数z =x -2y 的最小值为-22.11.命题p :已知椭圆)0(12222>>=+b a by a x ,1F ,2F 是椭圆的两个焦点,P 为椭圆上的一个动点,过2F 作21PF F ∠的外角平分线的垂线,垂足为M ,则OM 的长为定值.类比此命题,在双曲线中也有命题q :已知双曲线)0(12222>>=-b a by a x ,1F ,2F 是双曲线的两个焦点,P 为双曲线上的一个动点,过2F 作21PF F ∠的的垂线,垂足为M ,则OM 的长为定值.12.点M 是椭圆12222=+by a x )0(>>b a 上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P,Q ,若△PQM 是锐角三角形,则椭圆离心率的取值范围是_▲_.13.已知椭圆22221(0)x y a b a b+=>>的中心、右焦点、右顶点分别为O 、F 、A ,右准线与x 轴的交点为H ,则FAOH的最大值为 14.已知直线l 1:4x -3y +11=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是15.椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1,F 2的连线互相垂直,则△PF 1F 2的面积为 2416.椭圆7x 2+16y 2=112的焦点坐标是________________.(3,0)±17.已知F 1、F 2是双曲线-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为1时,·的值为________________.【答案】 18.1.已知双曲线的左、右焦点分别为、,过点的动直线与双曲线相交于两点.(I )若动点满足(其中为坐标原点),求点的轨迹方程;(II )在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.19.命题甲:动点P 到两定点A ,B 的距离之和|P A |+|PB |=2a (a >0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的________条件.20.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于B A ,两点,且(OA OB O ⊥为坐标原点),若椭圆的离心率]22,21[∈e ,则a 的最大值为 . 21.经过点(30),的直线l 与抛物线22x y =两个交点处的切线相互垂直,则直线l 的斜率k 等于________22.已知点(02)A ,,抛物线22(0)y px p =>的焦点为F ,准线为l ,线段FA 交抛物线与点B ,过B 做l 的垂线,垂足为M ,若AM ⊥MF ,则p =_________23.如图,F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的左、右两支分别交于A ,B 两点.若 | AB | : | BF 2 | : | AF 2 |=3:4 : 5,则双曲线的离心率为____________24.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为_________. 三、解答题25.已知椭圆中心在原点,上顶点为(0,1)A ,右焦点为(1,0)F ,右准线为l ,l 与x 轴交于P 点,直线AF 交椭圆与点B .(1)求椭圆的方程;(2)求证:PF 是APB ∠的平分线;(3)在l 上任意取一点Q ,求证:直线,,AQ FQ BQ 的斜率成等差数列.xy O ABF 1F 2 (第11题第19题图26.在平面直角坐标系xOy 中, 椭圆22221(0)x y a b a b +=>>,右顶点为A ,直线BC 过原点O ,且点B 在x 轴上方,直线AB 与AC 分别交直线:1l x a =+于点,E F .(1)若点B ,求ABC ∆的面积;(2)若点B 为动点,设直线AB 与AC 的斜率分别为12,k k . ①试探究12k k ⋅是否为定值.若为定值,请求出值;若不为定值,请说明理由.②求AEF ∆的面积的最小值.27.(10分)如图,已知椭圆+=1(a >b >0)的右焦点为F (c ,0),下顶点为A(0,﹣b ),直线AF 与椭圆的右准线交于点B ,与椭圆的另一个交点为点C ,若F 恰好为线段AB 的中点. (1)求椭圆的离心率;(2)若FC=,求椭圆的方程.28. (16分)椭圆22221(0)x y a b a y+=>>上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,且它的长轴端点A 及短轴端点B 的连线//AB OM (1)、求椭圆的离心率e ;(2)、设Q 是椭圆上任意一点,2F 是右焦点,1F 是左焦点,求12FQF ∠的取值范围29.(本小题满分14分)已知椭圆1:C 22+=143x y ,其左准线为1l ,右准线为2l ,抛物线2C 以坐标原点O 为顶点,2l 为准线,2C 交1l 于,A B 两点.(1) 求抛物线2C 的标准方程; (2) 求线段AB 的长度.30.已知中心在原点,焦点在坐标轴上的椭圆过(M N 两点; (1)求椭圆的方程;(2)在椭圆上是否存在点P (x,y ),使P 到定点A (a ,0)(其中9<a <3)的距离的最小值为1?若存在,求出a 的值及点P 的坐标;若不存在,请给予证明(本小题满分14分)。
精编新版2020高考数学《圆锥曲线方程》专题训练完整考试题(含答案)
2019年高中数学单元测试卷圆锥曲线与方程学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(1996全国文9)中心在原点,准线方程为x =±4,离心率为21的椭圆方程是( ) A .3422y x +=1 B .4322y x +=1C .42x +y 2=1 D .x 2+42y =12.椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =13.(2004安徽春季理)(3)已知F 1、F 2为椭圆22221x y a b+=(0a b >>)的焦点;M 为椭圆上一点,MF 1垂直于x 轴,且∠F 1MF 2=600,则椭圆的离心率为( ) (A )21(B )22 (C )33 (D )234.双曲线方程为2221x y -=,则它的右焦点坐标为A 、,02⎛⎫⎪ ⎪⎝⎭B 、2⎛⎫⎪ ⎪⎝⎭C 、,02⎛⎫⎪ ⎪⎝⎭D 、)二、填空题5.以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线; ②过定圆C 上动点A 作水平直径所在直线的垂线AB ,垂足为点B ,若1,2AM AB =则点M 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 .6.已知双曲线2222(0)mx my m -=≠的一条准线方程是1y =,则实数m = .7.(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___.8.直线x t =过双曲线22221x y a b -=(0,0)a b >>的右焦点且与双曲线的两条渐近线分别交于A ,B 两点,若原点在以AB 为直径的圆外,则双曲线离心率的取值范围是 ▲ .9.如图,1F ,2F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线C 的两支分别交于点A ,B ,若2ABF ∆为等边三角形,则双曲线的离心率为 .10.过抛物线)0(2>=a ax y 的焦点F 作一条直线交抛物线于P Q 、两点,若线段PF 与FQ 的长分别是p 、q ,则=+qp 11 .11.过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF = .12.已知点12,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是 (山东省济南市2011年2月高三教学质量调研理科) 关键字:求离心率的取值范围;特殊法;解不等式 答案.D13.已知曲线C 1方程为x 2-y 28=1(x ≥0,y ≥0),圆C 2方程为(x-3)2+y 2=1,斜率为k (k >0)的直线l 与圆C 2相切,切点为A ,直线l 与曲线C 1相交于 点B ,AB =3,则直线AB 的斜率为________.解析:如图,由题意可知,C 2为双曲线的右焦点,BA 为圆C 2 的切线,于是,AC 2=1,AB =3,所以BC 2=2,易知B 为双 曲线的右顶点,故可设直线AB 的方程为y =k (x -1),由直线 AB 与圆C 2相切得|3k -k |k 2+1=1,又k >0,所以k =33.14.已知椭圆的短半轴长为1,离心率e 满足02e <≤,则长轴长的最大值等于________15.已知椭圆19822=++y a x 的离心率21=e ,则a 的值等于16.设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 . (1998全国,16)17.双曲线16922y x -=1的两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为 . (2001全国,14)18.直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是_____.(2003上海春,4)三、解答题19.设椭圆C 1:)0(12222>>=+b a by a x 的左、右焦点分别是F 1、F 2,下顶点为A ,线段OA 的中点为B (O 为坐标原点),如图.若抛物线C 2:12-=x y 与y 轴的交点为B ,且经过F 1,F 2点.(Ⅰ)求椭圆C 1的方程; (Ⅱ)设M (0,45-),N 为抛物线C 2上的一动点,过点N 作抛物线C 2的切线交椭圆C 1于P 、Q 两点,求MPQ ∆面积的最大值.答案: (Ⅰ)22154x y +=(Ⅱ)5试题分析:(Ⅰ)解:由题意可知B (0,-1),则A (0,-2),故b=2. 令y=0得210x -=即1x =±,则F 1(-1,0),F 2(1,0),故c=1.所以2225a b c =+=.于是椭圆C 1的方程为22154x y +=.…………4分 (Ⅱ)设N (2,1t t -),由于'2y x =知直线PQ 的方程为:2(1)2()y t t x t --=-. 即221y tx t =--.……………………………5分代入椭圆方程整理得:222224(15)20(1)5(1)200t x t t x t +-+++-=,222222400(1)80(15)[(1)4]t t t t ∆=+-++-=4280(183)t t -++,21225(1)15t t x x t ++=+ , 221225(1)204(15)t x x t +-=+,故12PQ x =-==.………………………………7分设点M 到直线PQ 的距离为d,则d ==9分所以,MPQ ∆的面积S 12PQ d =⋅21t +===5≤=………………11分 当3t =±时取到“=”,经检验此时0∆>,满足题意. 综上可知,MPQ ∆.…………………………12分 20.在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a by a x 的焦点为 )0,1(1-F ,)0,1(2F , 左、右顶点分别为A ,B ,离心率为33,动点P 到1F ,2F 的距离的平方和为6.(1)求动点P 的轨迹方程;(2)若),(3,3C ,),(3,3D -,Q 为椭圆上位于x 轴上方的动点,直线AQ ,BQ分别交直线CD 于点M ,N . (i)当直线AQ 的斜率为21时,求AMN ∆ 的面积; (ii)求证:对任意的动点Q ,CN DM ⋅为定值.21.(本题满分16分) 已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. ⑴ 求椭圆C 的方程;⑵ 设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶ 在⑵的条件下,证明直线ME 与x 轴相交于定点.22.(本题满分15分)椭圆)0(12222>>=+b a by a x 的两个焦点为21,F F ,点P 在椭圆上,且211F F PF ⊥,314,3421==PF PF . (1)求椭圆的标准方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线l 的方程.23.(本题满分14分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点为21,A A ,上下顶点为21,B B , 左右焦点为21,F F ,若211F B F ∆为等腰直角三角形 (1)求椭圆的离心率(2)若211A B A ∆的面积为62,求椭圆的方程24.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P . (Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.25.已知焦点在x 轴上,中心在坐标原点的椭圆C 的离心率为45,且过点 (1)求椭圆C 的方程;(2)直线l 分别切椭圆C 与圆222:M x y R +=(其中35R <<)于A 、B 两点,求|AB|的最大值。
2019年高考理数——圆锥曲线(解答)
2019年高考理数——圆锥曲线1.(19全国一理19.(12分))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB u u u r u u u r,求|AB |.2.(19全国二理21.(12分))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.3.(19全国三理21.)已知曲线C:y=22x,D为直线y=12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.4.(19北京理(18)(本小题14分))已知抛物线C:x2=−2py经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.设椭圆22 221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为55.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||ON OF=(O为原点),且OP MN⊥,求直线PB的斜率.6.(19浙江21.(本小题满分15分))如图,已知点(10)F,为抛物线22(0)y px p=>的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得ABC△的重心G在x轴上,直线AC交x轴于点Q,且Q 在点F的右侧.记,AFG CQG△△的面积分别为12,S S.(1)求p的值及抛物线的准线方程;(2)求12SS的最小值及此时点G的坐标.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.参考答案:1.解:设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-.所以l 的方程为3728y x =-. (2)由3AP PB =u u u r u u u r 可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||3AB =.2.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =22||2PG k=+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.3.解:(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y - 设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE的面积为3或4.解:(Ⅰ)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =.(Ⅱ)抛物线C 的焦点为(0,1)F -.设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=.设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =.令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-.设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,21212(1)x x DA DB n y y ⋅=++u u u r u u u r 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭21216(1)n x x =++24(1)n =-++ 令0DA DB ⋅=u u u r u u u r ,即24(1)0n -++=,则1n =或3n =-.综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.5. (Ⅰ)解:设椭圆的半焦距为c ,依题意,24,5c b a ==,又222a b c =+,可得a =, 2,b =1c =.所以,椭圆的方程为22154x y +=. (Ⅱ)解:由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P kx k=-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k -=-.在2y kx =+中,令0y =,得2M x k =-.由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =所以,直线PB或.6.(1)由题意得12p=,即p =2.所以,抛物线的准线方程为x =−1. (2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得 ()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故 220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t -=-,得()21,0Q t -. 由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,1221222134324S m S m m m m =-=-=+++++….当m =12S S取得最小值1+,此时G (2,0).7.解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E是线段BF2与椭圆的交点,所以32 y=-.因此3(1,)2E--.11。
2019-2020年高考数学大题专题练习——圆锥曲线(一)
2019-2020年高考数学大题专题练习——圆锥曲线(一)1.设F 1,F 2为椭圆22143x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与椭圆交于A ,B 两点.(1)求F 1,F 2的坐标;(2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值.2.已知椭圆2214x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B .(1)求△P AB 面积的最大值;(2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围.3.已知椭圆()2222:10x y C a b a b +=>>,定点()2,0M ,椭圆短轴的端点是1B ,2B ,且21MB MB ⊥.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.4.已知椭圆C 的标准方程为2211612x y +=,点(0,1)E .(1)经过点E 且倾斜角为3π4的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由.5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率e ,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是(1)求椭圆1C 与2C 的方程;(2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点.(i)求证:直线PA ,PB 斜率之积为常数;(ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.6.椭圆C 一个焦点为(1,0)F ,离心率e .(Ⅰ)求椭圆C 的方程式.(Ⅱ)定点(0,2)M ,P 为椭圆C 上的动点,求||MP 的最大值;并求出取最大值时P 点的坐标求.(Ⅲ)定直线:2l x =,P 为椭圆C 上的动点,证明点P 到(1,0)F 的距离与到定直线l 的距离的比值为常数,并求出此常数值.7.如图,已知椭圆2222:1(0)x y C a b a b+=>>的右准线l 的方程为x =(1)求椭圆C 的方程;(2)过定点(1,0)B 作直线l 与椭圆C 交于点,P Q (异于椭圆C 的左、右顶点12,A A )两点,设直线1PA 与直线2QA 相交于点M .①若(4,2)M ,试求点,P Q 的坐标; ②求证:点M 始终在一条直线上.8.设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围.9.已知椭圆22:11612x y C +=的右焦点为F ,右顶点为A ,离心离为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值.(Ⅱ)设过点F 的直线l 与椭圆C 相交于M 、N 两点,记PMF △和PNF △的面积分别为1S 、2S ,求证:12||||S PM S PN =.10.已知常数0m >,向量(0,1)a =,(,0)b m =经过点(,0)A m ,以a b λ+为方向向量的直线与经过点(,0)B m -,以4b a λ-为方向向量的直线交于点P ,其中λ∈R . (1)求点P 的轨迹方程,并指出轨迹E .(2)若点(1,0)C,当m =M 为轨迹E 上任意一点,求||MC 的最小值.11.已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F 与x 轴不垂直的直线交椭圆于P ,Q 两点. (Ⅰ)求椭圆的方程.(Ⅱ)当直线l 的斜率为1时,求POQ △的面积.(Ⅲ)在线段OF 上是否存在点(,0)M m ,使得经MP ,MQ 为领边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.12.已知椭圆C 的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好在抛物线28x y =的准线上.Ⅰ求椭圆C 的标准方程.Ⅱ点P,(2,Q 在椭圆上,A ,B 是椭圆上位于直线PQ 两侧的动点. (i )若直线AB,求四边形APBQ 面积的最大值. (ii )当A ,B 运动时,满足APQ BPQ =∠∠,试问直线AB 的斜率是否为定值,请说明理由.13.已知椭圆2222:1(0)x y M a b a b=>>+过点(0,1)A -,且离心率e .(Ⅰ)求椭圆M 的方程.(Ⅱ)若椭圆M 上存在点B 、C 关于直线1y kx =-对称,求k 的所有取值构成的集合S ,并证明对于k S ∀∈,BC 的中点恒在一条定直线上.14.已知椭圆2222:1(0)x y C a b a b =>>+的离心率为12,且过点31,2⎛⎫ ⎪⎝⎭.若点00(,)M x y 在椭圆C上,则点00,x y N a b ⎛⎫⎪⎝⎭称为点M 的一个“椭点”.(1)求椭圆C 的标准方程.(2)若直线:l y kx m =+与椭圆C 相交于A ,B 两点,且A ,B 两点的“椭点”分别为P ,Q ,以PQ 为直径的圆经过坐标原点,试判断AOB △的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.15.已知椭圆C 的标准方程为22221(0)x y a b a b +=>>,离心率e ,且椭圆经过点(0,1).过右焦点F 的直线l 交椭圆C 于A ,B 两点.(Ⅰ)求椭圆C 的方程.(Ⅱ)若||3AB =,求直线l 的方程. (Ⅲ)在线段OF 上是否存在点(,0)M m ,使得以MA ,MB 为邻边的四边形MATB 是菱形,且点T 在椭圆上.若存在,求出m 的值,若不存在,请说明理由.16.已知一个动圆与两个定圆41)2(22=+-y x 和449)2(22=++y x 均相切,其圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点F (0,2)做两条可相垂直的直线l 1,l 2,设l 1与曲线C 交于A ,B 两点, l 2与曲线 C 交于C ,D 两点,线段AC ,BD 分别与直线2=x 交于M ,N 两点。
新版精选2020高考数学《圆锥曲线方程》专题训练完整题(含参考答案)
2019年高中数学单元测试卷圆锥曲线与方程学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2004重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A43 B 53 C 2 D 732.(2007浙江文)已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为F 1、F 2,P是准线上一点,且PF 1⊥PF 2,|PF 1|⋅|PF 2 |=4ab ,则双曲线的离心率是( )A B C .2 D .33.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为( )()A 2()B ()C 2 ()D4.已知双曲线22221(0b 0)x y a a b -=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为________________.22154x y -= 5.过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( )A .2aB .a21 C .4a D .a4(2000全国,11)二、填空题6. 已知抛物线P x y 上的点42=到抛物线的准线距离为d 1,到直线0943=+-y x 的距离为d 2,则d 1+d 2的最小值是 ▲7.中心在坐标原点,一个顶点为(4,0),且以直线y 为渐近线的双曲线方程为_________.8.双曲线221416x y -=的渐近线方程为 。
9.若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 (2011年高考江西卷理科14)10.以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为 ________________.解析:∵抛物线y 2=4x 的焦点为(1,0),∴满足题意的圆的方程为(x -1)2+y 2=1,整理得 x 2+y 2-2x =0.11.若直线y =kx +1(k ∈R)与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是________.解析:由于直线y =kx +1过定点(0,1),故点(0,1)恒在椭圆内或椭圆上,所以m ∈[1,+ ∞).又因为m ≠5,所以实数m 的取值范围应为[1,5)∪(5,+∞).12.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,3).点P 在抛物线上且满足→AP =12→PF ,则P 到该抛物线准线的距离为 .13.如果椭圆191622=+y x 上一点P 到它的右焦点是3,那么点P 到左焦点的距离为: 关键字:已知椭圆方程;定义14.抛物线22x y -=的准线方程为______▲________15. 已知双曲线的渐近线方程为34y x =±,则双曲线的离心率 . 16.双曲线221916x y -=的右焦点是抛物线的焦点,则抛物线的标准方程是x y 202= .17.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为__ ▲. 18.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P.若△F 1F 2P 为等腰直角三角形,则椭圆的离心率为____________.19.如图,设F 2为椭圆12222=+by a x 的右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是 ▲20.过抛物线y 2=2px(p >0)的焦点的直线坐标原点)的面积为,则m 6+m 4【答案】【解析】∵直线x-my+m=0过焦点,∴m=.∴直线方程为2x+py-p=0.解方程组消去x,得y 2+p 2y-p 2=0.设A 、B 的纵坐标为y 1、y 2,y 1、y 2为方程的两根,∴|y 1-y 2|=.∴S=×|y 1-y 2|=.∴p 6+4p 4=16×8.又p=-2m, ∴26m 6+26m 4=27.∴m 6+m 4=2.21.已知,A B 是椭圆22221(0)x y a b a b+=>>长轴的两个端点,D C ,是椭圆上关于x 轴对称的两点,直线BD AC ,的斜率分别为12,k k ,且12120,||||k k k k ≠+若的最小值为3,则椭圆的离心 率为 .22.如图,双曲线x 2a 2-y 2b2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1, B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D ,则双曲线的离心率e = ▲ .23.过点F (1,0)且与直线l :x =-1相切的动圆圆心的轨迹方程是________.y 2=4x 三、解答题24.(16分)已知椭圆具有性质:若A ,B 是椭圆C :=1(a >b >0且a ,b 为常数)上关于原点对称的两点,点P 是椭圆上的任意一点,若直线PA 和PB 的斜率都存在,并分别记为k PA ,k PB ,那么k PA 与k PB 之积是与点P 位置无关的定值.试对双曲线=1(a >0,b >0且a ,b 为常数)写出类似的性质,并加以证明.25.(本题满分10分)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0),下顶点为A (0,-b ),直线AF 与椭圆的右准线交于点B ,若F 恰好为线段AB 的中点. (1)求椭圆C 的离心率;(2)若直线AB 与圆x 2+y 2=2相切,求椭圆C 的方程.26.(本小题14分)设命题p :方程17622=-++a y a x 表示双曲线,命题q :圆9)1(22=-+y x 与圆16)1()(22=++-y a x 相交. 若“p ⌝且q ”为真命题,求实数a 的取值范围.27.在平面直角坐标系xOy 中,已知三点1(1,0)C -,2(1,0)C,(P -,以1C 、2C 为焦点的椭圆W 经过点P . (1)求椭圆W 的方程;(2)设,M N 是椭圆W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若 122OM ON OC +=,O 为坐标原点,求直线MN 的斜率k ;(3)过点1(0,)3S -且斜率为k 的动直线...l 交椭圆W 于,A B 两点,求证:以AB 为直径的圆 必过y 轴上的一定点(其坐标与k 无关).28.已知12,F F 是椭圆()222210x y a b a b+=>>的左右焦点,过1F 的直线与椭圆相交于,A B 两点,若2ABF 为正三角形,则椭圆的离心率是(第18题)29.在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上。
精编2020高考数学《圆锥曲线方程》专题训练完整考题(含答案)
2019年高中数学单元测试卷圆锥曲线与方程学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2008重庆理)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为(A )22x a -224y a =1(B)222215x y a a-=(C)222214x y b b-=(D)222215x y b b-=2.(2010浙江文数)(10)设O 为坐标原点,1F ,2F 是双曲线2222x y 1a b-=(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠1F P 2F =60°,∣OP ∣,则该双曲线的渐近线方程为( )(A )x (B ±y=0(C )x =0 (D ±y=03.(2000上海春13)抛物线y =-x 2的焦点坐标为( ) A .(0,41) B .(0,-41)C .(41,0) D .(-41,0) 4.(2009全国卷Ⅱ理)已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜C 于A B 、两点,若4AF FB =,则C 的离心率为 ( ) m A .65 B. 75 C. 58 D. 95【解析】设双曲线22221x y C a b-=:的右准线为l ,过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , BD AM D ⊥于,由直线AB 的斜率为,知直线AB 的倾斜角16060,||||2BAD AD AB ︒∴∠=︒=, 由双曲线的第二定义有1||||||(||||)AM BN AD AF FB e -==-11||(||||)22AB AF FB ==+.又15643||||25AF FB FB FB e e =∴⋅=∴= .5.已知椭圆2222:1(0)x y C a b a b+=>>双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y +=二、填空题6.已知双曲线1922=-my x 的一个焦点在圆05422=--+x y x 上,则双曲线的渐近线方程为 ▲ .7.椭圆22221(0)x y a b a b+=>>的右焦点为F 2,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则此椭圆的离心率e 的取值范围是 .8.设圆C 位于抛物线22y x =与直线3x =所组成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为 (2011年高考重庆卷理科15)9.抛物线24x y =的焦点坐标是 .10.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 作斜率为1的直线,与椭圆的另一个交点为M ,与y 轴的交点为B ,若AM =MB ,则该椭圆的离心率为________. 解析:A 点坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐 标为⎝⎛⎭⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,∴c 2=2b 2,∴e =63.11.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是直角三角 形,则该双曲线的离心率是________.解析:将x =-c 代入双曲线方程得A ⎝⎛⎭⎫-c ,±b 2a .由△ABE 是直角三角形得b2a =a +c ,即 a 2+ac =b 2=c 2-a 2,整理得c 2-ac -2a 2=0,∴e 2-e -2=0,解得e =2(-1舍去).12.设平面区域D 是由双曲线1422=-x y 的两条渐近线和抛物线28y x =-的准线所围成的三角形(含边界与内部).若点D y x ∈),(,则目标函数y x z +=的最大值为_______.13. 椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为,M N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 .14.中心在原点,对称轴为坐标轴的双曲线的渐近线方程为y x =,且该双曲线与椭圆13622=+y x 有共同的焦点,则双曲线的方程为 .15.在平面直角坐标系xOy 中,抛物线24y x =的焦点为F ,点P 在抛物线上,且位于x轴上方.若点P 到坐标原点O 的距离为F 、O 、P 三点的圆的方程是 ▲ .16. 已知双曲线的渐近线方程为34y x =±,则双曲线的离心率 . 17.如右图:设椭圆()012222>>=+b a by a x 的左,右两个焦点分别为21,F F ,短轴的上端点为B ,短轴上的两个三等分点为Q P ,,且Q PF F 21为正方形,若过点B 作此正方形的外接圆的切线在x 轴上的一个截距为423-,则此椭圆方程的方程为 ▲ .18.圆锥曲线G 的一个焦点是F ,与之对应的准线是l ,过F 作直线与圆锥曲线G 交于A 、B 两点,以AB 为直径作圆M ,圆M 与l 的位置关系决定G 是何种曲线之间的关系是:19.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=没有公共点,则双曲线离心率的取值范围是 .20.过点M(p,0)任作一条直线交抛物线y 2=2px(p >0)于P 、Q 两点,则+的值为A. B. C.D.【答案】21.若椭圆1422=+y m x 的焦距为2,则m 的值是 ▲_ 22.椭圆22132x y +=的焦点坐标为 ▲ . 23.如图,双曲线x 2a 2-y 2b2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1, B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D ,则双曲线的离心率e = ▲ .24.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点A 作斜率为-1的直线l ,直线l 与双曲线的两条渐近线的交点分别为B ,C ,若AB →=12BC →,则双曲线的离心率是 ▲ . 答案: 5 三、解答题25.(1)已知圆222:(0)S x y a a +=>,直线11:l y k x p =+交圆S 于C 、D 两点,交直线22:l y k x =于E 点,若121k k ⋅=-,证明:E 是CD 的中点;(2)已知椭圆2222:1(0)x y T a b a b+=>>,直线11:l y k x p =+交椭圆T 于C 、D 两点,交直线22:l y k x =于E 点,若2122b k k a⋅=-.问E 是否是CD 的中点,若是,请给出证明;若不是,请说明理由.26.如图,已知椭圆2222:1x y C a b+=(0)a b >>的左顶点,右焦点分别为,A F ,右准线为m .圆D :02322=--++y x y x .(1)若圆D 过,A F 两点,求椭圆C 的方程; (2)若直线m 上不存在点Q ,使AFQ ∆为等腰三角形,求椭圆离心率的取值范围;(3)在(1)的条件下,若直线m 与x 轴的交点为K ,将直线m 绕K 顺时针旋转4π得直线l ,动点P 在直线l 上,过P 作圆D 的两条切线,切点分别为M 、N ,求弦长MN 的最小值.27.设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(1)若090=∠BFD ,ABD ∆的面积为24,求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.28.(本小题满分16分)已知椭圆()222210x y a b a b+=>>的左右两焦点分别为12,F F ,P 是椭圆上一点,且在x 轴上方,212,PF F F ⊥ 2111,,32PF PF λλ⎡⎤=∈⎢⎥⎣⎦.(1)求椭圆的离心率e 的取值范围;(2)当e 取最大值时,过12,,F F P 的圆Q 的截y 轴的线段长为6,求椭圆的方程; (3)在(2)的条件下,过椭圆右准线l 上任一点A 引圆Q 的两条切线,切点分别为,M N .试探究直线MN 是否过定点?若过定点,请求出该定点;否则,请说明理由.29.平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, 设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由. (2011年高考湖北当10m -<<时,曲线C 的方程为22221x y a ma +=-,C 是焦点在x 轴上的椭圆;当0m >时,曲线C 的方程为22221x y a ma-=,C 是焦点在x 轴上的双曲线. (Ⅱ)由(Ⅰ)知,当1m =-时,C 1的方程为222x y a +=; 当(1,0)(0,)m ∈-+∞时,C 2的两个焦点分别为1(F -,2(F . 对于给定的(1,0)(0,)∈-+∞m ,C 1上存在点000(,)(0)≠N x y y 使得2=S m a 的充要条件是22200020,0, 12 2x y a y m a ⎧+=≠⎪⎨⋅=⎪⎩①②由①得00y a <≤,由②得0y =,当0a <≤,即102m ≤<,或102m +<≤时, 存在点N ,使2S m a =:a >,即112m -<<,或12m +>时,不存大满足条件的点N.当150,m ⎫⎛+∈⎪ ⎪ ⎣⎭⎝⎦时,由100(,)NF x y =--,200(,)NF x y =-, 可得22221200(1)NF NF x m a y ma ⋅=-++=- 令1122,NF r NF r ==,12F NF θ∠=,则由21212cos NF NF rr ma θ⋅==-,可得212cos ma r r θ=-, 从而22121sin 1sin tan 22cos 2ma S r r ma θθθθ==-=-,于是由2S m a =, 可得221tan 2ma m a θ-=,即2tan m m θ=-, 综上可得:当1,02m ⎡⎫∈⎪⎢⎪⎣⎭时,在C 1上,存在点N ,使得2S m a =,且12tan 2F NF =;当10,2m ⎛+∈ ⎝⎦时,在C 1上,存在点N ,使得2S m a =,且12tan 2F NF =-;当15,m ⎡⎛⎤+∈-+∞ ⎢⎥ ⎣⎭⎝⎦时,在C 1上,不存在满足条件的点N. 30.已知椭圆如图8—11,162422y x +=1,直线L :812yx +=1,P 是L 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在L 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. (1995全国理,26)。
2020年高考理数母题题源系列(全国Ⅰ专版) 圆锥曲线综合(解析版)
专题 圆锥曲线综合【母题来源一】【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程;(2)若,求|AB |.【答案】(1)3728y x =-;(2【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =u u u r u u u r可得123y y =-. 由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.323AP PB =u u u r u u u r故||AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.【母题来源二】【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)2y x =-2y x =-;(2)见解析. 【解析】(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为或(1,,所以AM 的方程为2y x =-+2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以21221222422,2121x x x k k k x k -+==++, 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.【母题来源三】已知椭圆C :22221()0x y a b a b +=>>,四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1)2214x y +=;(2)见解析. 【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩,故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t),(t,.则1222122k k t t +=-=-,得2t =,不符合题设,从而可设l :y kx m =+(1m ≠). 将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=,由题设可知2216(41)0k m ∆=-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=,即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++,解得12m k +=-, 当且仅当1m >-时0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.【命题意图】(1)了解椭圆或抛物线的实际背景,了解椭圆或抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握椭圆或抛物线的定义、几何图形、标准方程及简单性质. (3)了解圆锥曲线的简单应用. (4)理解数形结合的思想. 【命题规律】解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识相结合,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养. 【方法总结】(一)求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. (二)用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程. (三)直线与圆锥曲线的弦长问题有三种解法:(1)过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(2)将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(四)圆锥曲线中的定点、定值问题定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.【河北省保定市2019届高三第二次模拟考试数学试题】已知抛物线E :28y x =,直线l :4y kx =-. (1)若直线l 与抛物线E 相切,求直线l 的方程;(2)设(4,0)Q ,0k >,直线l 与抛物线E 交于不同的两点()11,A x y ,()22,B x y ,若存在点C ,使得四边形OACB 为平行四边形(O 为原点),且AC QC ⊥,求2x 的取值范围. 【答案】(1)142y x =--;(2)201)x <≤. 【解析】(1)由248y kx y x=-⎧⎨=⎩得228(1)160k x k x -++=,由0k ≠及2264(1)640k k ∆=+-=,得12k =-. ∴所求的切线方程为142y x =--. (2)由248y kx y x=-⎧⎨=⎩得228(1)160k x k x -++=, 2264(1)640,k k ∆=+->Q 且0k ≠,12k ∴>-,1228(1),k x x k+∴+= ∴12128()8y y k x x k+=+-=, ∵四边形OACB 为平行四边形,1212=(,)OC OA OB x x y y ∴+=++u u u r u u u r u u u r 28(1)8(,)k kk+=,即C 28(1)8(,)k kk+, ∵AC QC ⊥,0QC AC ∴⋅=u u u r u u u r,又222228(1)8(4,),(,)(,4)k QC AC OB x y x kx k k +=-===-u u u r u u ur u u u r 2228(1)8[4](4)0k QC AC x kx k k +∴⋅=-+-=u u u r u u u r ,即2822k x k =++, ∵0k >,∴2821)x ≥=,当且仅当k =此时,201)x <≤.【名师点睛】本题考查了直线与抛物线的位置关系,根与系数关系的应用,也考查平行四边形的性质、数量积和不等式的运算,属于中档题.(1)由248y kx y x =-⎧⎨=⎩得228(1)160k x k x -++=,由题意得00k ≠⎧⎨∆=⎩,解出k 即可.(2)由四边形OACB 为平行四边形,得1212=(,)OC OA OB x x y y +=++u u u r u u u r u u u r,利用根与系数的关系得点C ,又由AC QC ⊥,0QC AC ⋅=u u u r u u u r,通过数量积和不等式的运算,求出2x 的范围即可.2.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C,且离心率为2. (1)求椭圆E 的方程; (2)若直线1:3l y kx =-与椭圆E 相交于A ,B 两点,线段AB 的中点为M ,是否存在常数λ,使∠∠AMC ABC =⋅λ恒成立,并说明理由.【答案】(1)2212x y +=;(2)存在. 【解析】(1)由题意知1b =,2c a =. 又因为222a b c =+,所以解得a =所以椭圆方程为2212x y +=.(2)存在常数λ,使∠∠AMC ABC =⋅λ恒成立. 理由如下:由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩得()2291812160k x kx +--=,且>0∆. 设()11,A x y ,()22,B x y ,则1221221291816918k x x k x x k ⎧+=⎪⎪+⎨⎪=-⎪+⎩,又因为()11,1CA x y =-u u u r ,()22,1CB x y =-u u u r,()()()()2121212121212444161113339CA CB x x y y x x kx kx k x x k x x ⎛⎫⎛⎫⋅=+--=+--=+-++⎪⎪⎝⎭⎝⎭u u u r u u u r ()22216412161091839189k k k k k -=+-⋅+=++, 所以CA CB ⊥u u u r u u u r . 因为线段AB 的中点为M ,所以MC MB =, 所以2AMC ABC ∠=∠.所以存在常数2=λ,使∠∠AMC ABC =⋅λ恒成立.【名师点睛】本题主要考查求椭圆的方程以及椭圆的应用,熟记椭圆的标准方程与椭圆的简单性质即可,属于常考题型.(1)根据题意得到1b =,2c a =,求出a = (2)先由题意判断出结果,再证明,联立直线与椭圆方程,设()11,A x y ,()22,B x y ,根据根与系数的关系,以及向量数量积运算,得到0CA CB ⋅=u u u r u u u r,进而可得出结果.3.【山西省晋城市2019届高三第三次模拟考试数学试题】已知△ABC 的周长为6,B ,C 关于原点对称,且(1,0)B -,点A 的轨迹为Γ. (1)求Γ的方程;(2)若(2,0)D -,直线l :(1)(0)y k x k =-≠与Γ交于E ,F 两点,若1DE k ,k λ,1DFk 成等差数列,求λ的值.【答案】(1)()221243x y x +=≠±;(2)2. 【解析】(1)依题意,(1,0)B -,(1,0)C ,故2BC =, 则42AB AC BC +=>=,故点A 的轨迹是以B ,C 为焦点的椭圆(不含左、右两顶点),故Γ的方程为221(2)43x y x +=≠±.(2)依题意,112DE DF kk k ⋅=+λ,故2DE DFk kk k =+λ. 联立22(1)34120y k x x y =-⎧⎨+-=⎩,整理得()22223484120k x k x k +-+-=. 设11(,)E x y ,22(,)F x y ,则2122834k x x k+=+,212241234k x x k -=+. 故()()121222DE DF k x k x k kk k y y +++=+ ()()()()12122211k x k x k x k x ++=+--1233211x x =++-- ()()()121232211x x x x +-=+--()()1212123221x x x x x x +-=+-++222222832342412813434k k k kk k ⎛⎫- ⎪+⎝⎭=+--+++ ()2222238682412834k k k k k--=+--++2242=+==λ,则2=λ.【名师点睛】本题考查椭圆的方程、直线与椭圆的综合性问题,考查运算求解能力、推理论证能力. (1)由椭圆定义得轨迹方程即可; (2)依题意得112DE DF kk k ⋅=+λ,得2DE DF k k k k =+λ,联立22(1)34120y k x x y =-⎧⎨+-=⎩消去y ,整理()()121222DE DF k x k x k kk k y y +++=+结合根与系数关系得λ的值即可. 4.【安徽省泗县第一中学2019届高三高考最后一模数学试题】已知椭圆M :22221(0)x y a b a b +=>>的离心率为2,且椭圆上一点P的坐标为2⎫⎪⎪⎭. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625. 【解析】(1)由已知c e a ==又222a b c =+,则2a b =.∴椭圆方程为222214x y b b +=,将)2代入方程得1b =,2a =,故椭圆的方程为2214x y +=.(2)不妨设直线AB 的方程为x ky m =+,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=.设11(,)A x y ,22(,)B x y ,则有12224km y y k -+=+,212244m y y k -⋅=+,①又以线段AB 为直径的圆过椭圆的右顶点(2,0)C , ∴0CA CB ⋅=u u u r u u u r,由11(2,)CA x y =-u u u r ,22(2,)CB x y =-u u u r得()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式得()()2212121(2)(2)0k y y k m y y m ++-++-=,将①代入上式求得65m =或2m =(舍), 则直线l 恒过点6(,0)5D .∴1211||22△ABCS DC y y =-== 设211(0)44t t k=<≤+,则△ABC S =1(0,]4t ∈上单调递增, 当14t =时,△ABC S 取得最大值1625. 【名师点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆相交的弦长公式,考查直线和椭圆的位置关系,考查三角形面积最大值的求法,运算量较大,属于中档题.(1)将P 点坐标代入椭圆方程,结合椭圆的离心率列方程,解方程求得,a b 的值,由此求得椭圆方程. (2)设直线AB 的方程为x ky m =+,联立直线AB 的方程和椭圆的方程,消去x ,得到关于y 的一元二次方程,写出根与系数关系,根据0CA CB ⋅=u u u r u u u r列方程,解方程求得m 的值.由此判断出直线l 过定点6,05⎛⎫ ⎪⎝⎭,由121||2△ABC S DC y y =-求得三角形面积的表达式,利用换元法,结合二次函数的单调性,求得三角形面积的最大值.5.【江西省南昌市江西师范大学附属中学2019()2222:10x y C a b a b+=>>过点2⎫⎪⎪⎭,,A B 分别为椭圆C 的右顶点和上顶点,点P 在椭圆C 上且不与四个顶点重合. (1)求椭圆C 的标准方程;(2)若直线PA 与y 轴交于N ,直线PB 与x 轴交于M ,试探究AM BN ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)AM BN ⋅是定值,定值为4. 【解析】(1)由题意得:2222222112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2241a b ⎧=⎨=⎩,∴椭圆C 的标准方程为:2214x y +=. (2)Q 点P 不与四个顶点重合,∴直线,PA PB 的斜率存在且不为0,设()00,P x y ,且()2,0A ,()0,1B ,∴直线PA 的方程为:()0022y y x x =--,则0020,2y N x ⎛⎫- ⎪-⎝⎭. 直线PB 的方程为:0011y y x x -=+,则00,01xM y ⎛⎫- ⎪-⎝⎭. 2200000000000000244448211222x y x y x y x y AM BN y x x y x y +++--∴⋅=+⋅+=----+,P Q 在椭圆上,220044x y ∴+=.0000000000000000844822442222x y x y x y x y AM BN x y x y x y x y +----+∴⋅==⨯=--+--+.4AM BN ∴⋅=,为定值.【名师点睛】本题考查椭圆标准方程的求解、椭圆中的定值问题的求解.解决定值类问题的关键是将所求量利用变量进行表示,通过变量间的关系进行化简、消元,从而整理出所求的定值.(1)根据离心率、点⎭在椭圆上和222a b c =+建立方程组,解方程求得结果,从而得到椭圆方程;(2)设()00,P x y ,从而可得,PA PB 方程,求得,M N 的坐标,从而可得AM BN ⋅,根据点()00,P x y 在椭圆上得到220044x y +=,代入AM BN ⋅整理可得定值.6.【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】如图,椭圆C :22143x y +=的右焦点为F ,过点F 的直线l 与椭圆C 交于A 、B 两点,直线n :x =4与x 轴相交于点E ,点M 在直线n 上,且满足BM ∥x 轴.(1)当直线l 与x 轴垂直时,求直线AM 的方程; (2)证明:直线AM 经过线段EF 的中点. 【答案】(1)直线AM 的方程为y =-x +52或y =x -52;(2)见解析. 【解析】(1)由c=1,得F (1,0), ∵直线l 与x 轴垂直, ∴x =1,由221143x x y=⎧⎪⎨+=⎪⎩,解得:113322或x x y y ==⎧⎧⎪⎪⎨⎨==-⎪⎪⎩⎩, 当点A 坐标为31,2⎛⎫⎪⎝⎭,则点M 坐标为34,2⎛⎫-⎪⎝⎭, 此时直线AM 的斜率为33()22114--=--,∴直线AM 的方程为31(1)2y x -=-⋅-,即y =-x +52;当点A 坐标为31,2⎛⎫-⎪⎝⎭,则点M 坐标为34,2⎛⎫ ⎪⎝⎭, 此时直线AM 的斜率为33()22141--=-,∴直线AM 的方程为31(4)2y x -=⋅-,即y =x -52. 故直线AM 的方程为y =-x +52或y =x -52.(2)当AB 直线方程为0y =时,直线BM 与x 轴重合,不满足题意; 故可设直线l 的方程为x =my +1,由221143x my x y =+⎧⎪⎨+=⎪⎩,得3(my +1)2+4y 2=12,即(3m 2+4)y 2+6my -9=0,设A (x 1,y 1),B (x 2,y 2), 由根与系数关系可得,y 1+y 2=2634m m -+,y 1y 2=2934m -+, ∵EF 的中点N 502,⎛⎫ ⎪⎝⎭,点M (4,y 2), ∴NA u u u r =11112533,,,,222x y my y NM y ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r ,∵132my ⎛⎫-⎪⎝⎭×y 2-32y 1=my 1y 2-32(y 1+y 2)=2934m m -+-32×2634m m -+=0. ∴∥NA NM u u u r u u u u r, 故A ,N ,M 三点共线,所以直线AM 经过线段EF 的中点.【名师点睛】本题考查了直线与椭圆的位置关系问题,直线与圆锥曲线问题常见解法是借助根与系数的关系,将多元问题转化为少元(单元)问题,属于中档题.(1)由直线l 与x 轴垂直,可得直线l 的方程,从而求解出点、A B 的坐标,由BM ∥x 轴可得M 点坐标,从而得出直线AM 的方程;(2)要证直线AM 经过线段EF 的中点N ,即证A ,N ,M 三点共线,即证∥NA NM u u u r u u u u r,设出、A B 两点,联立直线与椭圆的方程,借助根与系数关系,从而得证.7.【湖南省株洲市2019届高三第二次教学质量检测(二模)数学试题】已知抛物线()2:20E y px p =>经过点()1,2A ,过A 作两条不同直线12,l l ,其中直线12,l l 关于直线1x =对称. (1)求抛物线E 的方程及准线方程;(2)设直线12,l l 分别交抛物线E 于、B C 两点(均不与A 重合),若以线段BC 为直径的圆与抛物线E 的准线相切,求直线BC 的方程.【答案】(1)24y x =;准线方程为1x =-;(2)10x y +-=.【解析】(1)∵抛物线E 过点()1,2A , ∴24p =,解得2p =,∴抛物线的方程为24y x =,准线方程为1x =-.(2)方法一:不妨设B 在C 的左边,从而可设直线AB 的方程为()12(0)x m y m -=->,即21x my m =-+,由2214x my m y x=-+⎧⎨=⎩消去x 整理得24840y my m -+-=. 设(),B B B x y ,则24B y m +=,故42B y m =-,∴2441B x m m =-+,∴点()2441,42B m m m -+-.又由条件得AB 与AC 的倾斜角互补,以m -代替点B 坐标中的m , 可得点()2441,42C m m m ++--.∴BC ==,且BC 中点的横坐标为2412B Cx x m +=+, ∵以线段BC 为直径的圆与抛物线E 的准线相切,∴24112BC m ++==,解得2m =∴()32B --,()32C +-, ∴1BC k =-,∴直线BC 的方程为()(23y x -=--+,即10x y +-=. 方法二:设()()1122,,,B x y C x y , 因为直线12,l l 关于1x =对称,所以AB 与AC 的倾斜角互补, 所以12122212121222224411221144AB AC y y y y k k y y x x y y ----+=+=+=+=--++--, 所以124y y +=-,所以1212221212124144BC y y y y k y y x x y y --====--+-. 设直线BC 的方程为y x m =-+,由24y x m y x=-+⎧⎨=⎩消去y 整理得()22240x m x m -++=, 所以2121224,x x m x x m +=+=,所以12BC x =-=BC 中点D 的横坐标为1222x x m +=+. 因为以线段BC 为直径的圆与抛物线的准线1x =-相切, 所以12122BC x x ++=,即3m +=1m =,所以直线BC 的方程为1y x =-+,即10x y +-=.【名师点睛】由于在解答圆锥曲线问题中需要涉及大量的计算,所以在解题时要注意“设而不求”、“整体代换”等方法的利用,另外还应注意巧设直线的方程,以达到简化运算的目的,考查直线和圆锥曲线的位置关系及计算能力,属于中档题.(1)将点()1,2A 坐标代入曲线方程求出2p =,于是可得曲线方程.(2)方法一:由题意设出直线AB 的方程,与抛物线方程联立消元后,根据根与系数的关系求出点B 的坐标,同理得到点C 的坐标,然后根据以线段BC 为直径的圆与抛物线E 的准线相切可求得点,B C 中的参数,进而可得所求方程.方法二:由题意得AB 与AC 的倾斜角互补,由此可得1BC k =-,于是可设直线BC 的方程为y x m =-+,与曲线方程联立消元后,再根据题意求得参数m ,进而得到直线方程. 8.【河南省开封市2019届高三上学期第一次模拟考试数学试题】已知抛物线2:2(0)C y px p =>的焦点F与椭圆22143x y +=的右焦点重合,抛物线C 的动弦AB 过点F ,过点F 且垂直于弦AB 的直线交抛物线的准线于点M .(1)求抛物线的标准方程; (2)求AB MF的最小值.【答案】(1)24y x =;(2)2.【解析】(1)由椭圆方程得,椭圆的右焦点为()1,0, ∴抛物线的焦点为()1,0F , ∴2p =,∴抛物线的标准方程为24y x =.(2)①当动弦AB 所在直线的斜率不存在时,易得:24AB p ==,2MF =,2AB MF=.②当动弦AB 所在直线的斜率存在时,易知AB 的斜率不为0. 设AB 所在直线方程为()1y k x =-,且()11,A x y ,()22,B x y .联立方程:()241y xy k x ⎧=⎪⎨=-⎪⎩,得()2222220k x k x k -++=,∴()212222k x x k ++=,121x x ⋅=,()21610k ∆=+>,∴12AB x =-=()2241k k +=. ∵FM 所在的直线方程为()11y x k =--,联立方程()111y x kx ⎧=--⎪⎨⎪=-⎩,得点21,M k ⎛⎫- ⎪⎝⎭,∴MF == ∴()22412k AB MF+==>,综上所述:ABMF的最小值为2.【名师点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.。
20192020年高考数学大题专题练习圆锥曲线一
2019-2020年高考数学大题专题练习——圆锥曲线(一)1.设F 1,F 2为椭圆22143x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与椭圆交于A ,B 两点. (1)求F 1,F 2的坐标;(2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值.2.已知椭圆2214x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B .(1)求△P AB 面积的最大值;(2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围.3.已知椭圆2222:10x y C a b a b 的离心率为5,定点2,0M ,椭圆短轴的端点是1B ,2B ,且21MB MB ⊥.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.4.已知椭圆C 的标准方程为2211612x y +=,点(0,1)E . (1)经过点E 且倾斜角为3π4的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由.5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2e ,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程;(2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点.(i)求证:直线PA ,PB 斜率之积为常数;(ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.6.椭圆C 一个焦点为(1,0)F ,离心率2e =.(Ⅰ)求椭圆C 的方程式.(Ⅱ)定点(0,2)M ,P 为椭圆C 上的动点,求||MP 的最大值;并求出取最大值时P 点的坐标求.(Ⅲ)定直线:2l x =,P 为椭圆C 上的动点,证明点P 到(1,0)F 的距离与到定直线l 的距离的比值为常数,并求出此常数值.7.如图,已知椭圆2222:1(0)x y C a b a b+=>>的右准线l 的方程为43x =,焦距为23.(1)求椭圆C 的方程;(2)过定点(1,0)B 作直线l 与椭圆C 交于点,P Q (异于椭圆C 的左、右顶点12,A A )两点,设直线1PA 与直线2QA 相交于点M .①若(4,2)M ,试求点,P Q 的坐标; ②求证:点M 始终在一条直线上.8.设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围.9.已知椭圆22:11612x y C +=的右焦点为F ,右顶点为A ,离心离为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值.(Ⅱ)设过点F 的直线l 与椭圆C 相交于M 、N 两点,记PMF △和PNF △的面积分别为1S 、2S ,求证:12||||S PM S PN =.10.已知常数0m >,向量(0,1)a =,(,0)b m =经过点(,0)A m ,以a b λ+为方向向量的直线与经过点(,0)B m -,以4b a λ-为方向向量的直线交于点P ,其中λ∈R . (1)求点P 的轨迹方程,并指出轨迹E .(2)若点(1,0)C,当m =M 为轨迹E 上任意一点,求||MC 的最小值.11.已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F 与x 轴不垂直的直线交椭圆于P ,Q 两点. (Ⅰ)求椭圆的方程.(Ⅱ)当直线l 的斜率为1时,求POQ △的面积.(Ⅲ)在线段OF 上是否存在点(,0)M m ,使得经MP ,MQ 为领边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.12.已知椭圆C 的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好在抛物线28x y =的准线上.Ⅰ求椭圆C 的标准方程.Ⅱ点P,(2,Q 在椭圆上,A ,B 是椭圆上位于直线PQ 两侧的动点. (i )若直线AB,求四边形APBQ 面积的最大值. (ii )当A ,B 运动时,满足APQ BPQ =∠∠,试问直线AB 的斜率是否为定值,请说明理由.13.已知椭圆2222:1(0)x y M a b a b =>>+过点(0,1)A -,且离心率e .(Ⅰ)求椭圆M 的方程.(Ⅱ)若椭圆M 上存在点B 、C 关于直线1y kx =-对称,求k 的所有取值构成的集合S ,并证明对于k S ∀∈,BC 的中点恒在一条定直线上.14.已知椭圆2222:1(0)x y C a b a b =>>+的离心率为12,且过点31,2⎛⎫ ⎪⎝⎭.若点00(,)M x y 在椭圆C 上,则点00,x y N a b ⎛⎫⎪⎝⎭称为点M 的一个“椭点”.(1)求椭圆C 的标准方程.(2)若直线:l y kx m =+与椭圆C 相交于A ,B 两点,且A ,B 两点的“椭点”分别为P ,Q ,以PQ 为直径的圆经过坐标原点,试判断AOB △的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.15.已知椭圆C 的标准方程为22221(0)x y a b a b +=>>,离心率e ,且椭圆经过点(0,1).过右焦点F 的直线l 交椭圆C 于A ,B 两点.(Ⅰ)求椭圆C 的方程.(Ⅱ)若||AB =,求直线l 的方程. (Ⅲ)在线段OF 上是否存在点(,0)M m ,使得以MA ,MB 为邻边的四边形MATB 是菱形,且点T 在椭圆上.若存在,求出m 的值,若不存在,请说明理由.16.已知一个动圆与两个定圆41)2(22=+-y x 和449)2(22=++y x 均相切,其圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点F (0,2)做两条可相垂直的直线l 1,l 2,设l 1与曲线C 交于A ,B 两点, l 2与曲线 C 交于C ,D 两点,线段AC ,BD 分别与直线2=x 交于M ,N 两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学专题练习——圆锥曲线(一)一、选择题1.设双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为F 1,F 2,过点F 1且斜率为13的直线与双曲线的两渐近线分别交于点A ,B ,并且22F A F B =,则双曲线的离心率为( )A .2BD2.设F 1,F 2分别为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,A 为双曲线的左顶点,以F 1F 2为直径的圆交双曲线某条渐近线于M 、N 两点,且满足:120MAN ∠=o,则该双曲线的离心率为( )A .73B .3C .3D .33.双曲线()22220,01x y a b a b -=>>的左、右焦点分别为F 1,F 2,过F 1作倾斜角为60°的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段F 1B ,则该双曲线的离心率是( )AB . D 14.已知抛物线24y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于M ,N 两点, 若3PF MF =u u u r u u u u r,则MN =( )A .163B .8C .16 D5.知双曲线22221(0,0)x y a b a b-=>>,A 1、A 2是实轴顶点,F 是右焦点,(0,)B b 是虚轴端点,若在线段BF 上(不含端点)存在不同的两点()1,2i P i =,使得()121,2i PA A i ∆=构成以A 1A 2为斜边的直角三角形,则双曲线离心率e 的取值范围是( )A .1)2B .1)2C .D .)+∞6.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =u u u r u u u r,抛物线的准线l 与x 轴交于点C ,1AA l ⊥于点1A ,若四边形1AA CF 的面积为l 的方程为A .x =B .x =-C .2x =-D .1x =-7.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6πB .[,]63ππC .[,]43ππD .[,]32ππ8.已知直角坐标原点O 为椭圆C :22221(0)x y a b a b+=>>的中心,F 1,F 2为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A B C D9.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为2-,则ab=( )A .B .C .D .10.过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A ,B 两点,则AB =( )A .3B .C .6D .11.已知抛物线C :24y x =的焦点为F ,过F 的直线交C 于A ,B 两点,点A 在第一象限,(0,6)P ,O 为坐标原点,则四边形OPAB 面积的最小值为( )A .74B .134C .3D .412.若双曲线22131x y m m -=-+的一条渐近线方程为230x y -=,则m 的值为( ) A .313B .2313C .35D .7513.已知双曲线22221x y a b-=的左右焦点分别为F 1,F 2,O 为双曲线的中心,P 是双曲线的右支上的点,12PF F ∆的内切圆的圆心为I ,且圆I 与x 轴相切于点A ,过F 2作直线PI 的垂线,垂足为B ,若e 为双曲线的离心率,则( ) A .||||OB e OA = B .||||OA e OB =C .||||OB OA =D .||OA 与||OB 关系不确定14.已知F 是椭圆C :22195x y +=的左焦点,P 为C 上一点,4(1,)3A ,则||||PA PF +的最小值为( ) A .103B .113C .4D .13315.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为A .3B .3C .3D .216.双曲线)0(12222>>=-b a by a x 离心率的范围是( )A.),(21B. ),(∞+1C.),(∞+2D. ),(221+17.如图,过抛物线)0(22>=p px y 的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若||3||BF BC =,且4||=AF ,则p 为()A .34B .2C .38 D .31618.已知过椭圆)0(12222>>=+b a b y a x 的左焦点且斜率为a b 的直线l 与椭圆交于A ,B 两点.若椭圆上存在一点P ,满足→→→→=++0OP OB OA (其中点O 为坐标原点),则椭圆的离心率为( ) A .22B .33C.23D .2119.已知点F 1是抛物线C :22x py =的焦点,点F 2为抛物线C 的对称轴与其准线的交点,过F 2作抛物线C 的切线,切点为A ,若点A 恰好在以F 1,F 2为焦点的双曲线上,则双曲线的离心率为( ▲ ) A .622B 21C 21D .62220.已知椭圆中心在原点,且一个焦点为(033)F ,,直线43130x y +-=与其相交于M 、N 两点,MN 中点的横坐标为1,则此椭圆的方程是( )A .221325y x +=B .221325x y += C.221369y x += D .221369x y +=21.已知双曲线C :22221x y a b-=()0,0a b >>的虚轴长为8,右顶点(a ,0)到双曲线的一条渐近线的距离为125,则双曲线C 的方程为( ) A .221916x y -=B .221169x y -= C.2212516x y -=D .2211625x y -=22.已知圆C :2222310x y x y ++++=与双曲线22221(0,0)y x a b a b-=>>的一条渐近线相切,则双曲线的离心率为( ) A .26B .23C .43D .723.设双曲线22221(00)x y a b a b -=>>,的右焦点为F ,过点,λμ作与x 轴垂直的直线l 交两渐近线于A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u r u u r u u u r,316λμ⋅=,则双曲线的离心率为( )A .233B .355C.322D .9824.设F 为双曲线C :22221(0,0)x y a b a b -=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )A .2B .3C .2D .525.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A. ①B. ②C. ①②D.①②③二、填空题26.过点()0,1M 的直线l 交椭圆22184x y +=于A ,B 两点,F 为椭圆的右焦点,当△ABF 的周长最大时,△ABF 的面积为 .27.已知F 1,F 2分别为双曲线22:1412x y C -=的左、右焦点,点P 在双曲线C 上,G ,I 分别为12F PF ∆的重心、内心,若GI ∥x 轴,则12F PF ∆的外接圆半径R = .28.已知点P 在离心率为2的双曲线22221(0,0)x y a b a b-=>>上,F 1,F 2为双曲线的两个焦点,且120PF PF ⋅=u u u r u u u u r,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为 .29.已知双曲线()2222:10,0x y C a b a b -=>>的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若16OMF S ∆=,则双曲线C 的离心率为 .30.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .31.平面直角坐标系xOy 中,椭圆22221x y a b+=(0a b >> )的离心率3e =,1A ,2A 分别是椭圆的左、右两个顶点,圆1A 的半径为a ,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q .则2PQ PA = .32.如图所示,椭圆中心在坐标原点,F 为左焦点,A ,B 分别为椭圆的右顶点和上顶点,当FB AB ⊥时,其离心率为51-,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于 .33.已知椭圆)0(1:2222>>=+b a b y a x C ,A ,B 是C 的长轴的两个端点,点M 是C 上的一点,满足︒︒=∠=∠45,30MBA MAB ,设椭圆C 的离心率为e ,则=2e ______.34.已知抛物线)0(22>=p px y 的焦点为F O ,为坐标原点,点M N ,为抛物线准线上相异的两点,且M N ,两点的纵坐标之积为4-,直线OM ,ON 分别交抛物线于A ,B 两点,若A F B ,,三点共线,则=p _______.35.已知抛物线x y 82=上有一条长为9的动弦AB ,则AB 中点到y 轴的最短距离为 .36.如图:以等边三角形两顶点为焦点且过另两腰中点的椭圆的离心率e = .37.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C的两条渐近线分别交于A ,B 两点.若1F A AB=u u u r u u u r ,120F B F B ⋅=u u ur u u u u r ,则C 的离心率为____________.38.设F 1,F 2为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.39.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF为半径的圆上,则直线PF 的斜率是_______.40.设抛物线)0(22>=p px y 的焦点为F ,已知A ,B 为抛物线上的两个动点,且满足ο60=∠AFB ,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||AB MN 的最大值为 .41.已知F 为抛物线2:4C y x =的焦点,E 为其标准线与x 轴的交点,过F 的直线交抛物线C 于A ,B 两点,M 为线段AB 的中点,且||20ME =,则||AB = .参考答案设A(x ,y ),B(x ,y )1122且x ,y >110,易知)0,1(F ,设直线1:+=my x AB由,0444122=--⇒⎩⎨⎧=+=my y xy my x 所以122144y y y y -=⇒-=21111312(0)42OPAB OPA OFA OFBy S S S S y y y ∆∆∆=++=++>22223222)443)(1(24322123)()0(22143)(x x x x x x x x x x f x x x x x f ++-=-+=-+='⇒>++=易知)(x f 在()1,0上为减函数,所以当11=y 时,min 13()4OPAB S =,故选B12. A双曲线22131x y m m -=-+的一条渐近线方程为230x y -=,可得 (3)(1)0m m -+>,解得(1,3)m ∈-,因为130+--=m x m y 是双曲线的渐近线方程,所以1233m m +=-, 解得313m =,故选A.,内切圆与x 轴的切点是A ,∵,由圆切线长定理有, 设内切圆的圆心横坐标为x ,则,即, ∴,即A 为右顶点, 在中,由条件有,在中,有,∴.设椭圆 的右焦点为,由,则,根据椭圆的定义可得,所以设椭圆离心率1e ,双曲线离心率2e ,由焦点三角形面积公式得22123b b =,即2221234a a c +=,即2212134e e +=,设221211,34m n m n e e ==+=即, 由柯西不等式得m n +最大值为43.设的中点,由题意知,两式相减得,则,而,所以,所以直线的方程为,联立,解得,又因为,所以, 所以点代入椭圆的方程,得,所以,故选A.由题意,得,设过的抛物线的切线方程为,联立,,令,解得,即,不妨设,由双曲线的定义得,,则该双曲线的离心率为.故选C.设椭圆方程为联立方程:,整理得:,设,,则,即,化简得:,又,易得:,∴此椭圆的方程是故选:C∵||||PQ OF c ==,∴90POQ ∠=o,又||||OP OQ a ==,∴222a a c += 解得2ca=2e =由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确. 由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超过2. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.26.3104 28.612- 29.5 30. 625122e --<<31.37 如图所示,设,则,椭圆方程为,圆的方程为,直线与圆相切,则:,,直线是斜率为,直线方程为:,联立直线方程与椭圆方程:,整理可得:,即,由弦长公式可得:,在中,,故.32.215“黄金椭圆”的性质是,可得“黄金双曲线”也满足这个性质.如图,设“黄金双曲线”的方程为,则,, ∵, ∴, ∴, ∴, 解得或(舍去),∴黄金双曲线”的离心率e 等于. 33.331- 35.25 易知抛物线的准线方程为,设,且的中点为,分别过点作直线的垂线,垂足分别为,则,由抛物线定义,得(当且仅当三点共线时取等号),即中点到轴的最短距离为.31由112,0F A AB F B F B =⋅=u u u r u u u r u u u r u u u u r 知A 是1BF 的中点,12F B F B ⊥u u u r u u u u r ,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=︒,221()1tan 602b e a=+=+︒=.38.15)已知椭圆1203622=+y x C :可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形21F MF ∆中8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M ,代入1203622=+y x C :可得3=M x .故M 的坐标为)15,3(. 15方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y += 可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方, 求得315,22P ⎛- ⎝⎭,所以1521512PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,22P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==.F(1,0)为抛物线C:y2=4x的焦点,E(-1,0)为其准线与x轴的交点,设过F的直线为y=k(x-1),代入抛物线方程y2=4x,可得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则中点解得k2=1,则x1+x2=6,由抛物线的定义可得|AB|=x1+x2+2=8.。