带电粒子在平行板电容器中的运动
2019届一轮复习人教版 电容器 带电粒子在电场中的运动 教案
第30讲 电容器 带电粒子在电场中的运动【教学目标】1.理解电容器的基本概念,掌握好电容器的两类动态分析.2.能运用运动的合成与分解解决带电粒子的偏转问题.3.用动力学方法解决带电粒子在电场中的直线运动问题.【教学过程】★重难点一、平行板电容器的动态分析★1.平行板电容器动态变化的两种情况(1)电容器始终与电源相连时,两极板间的电势差U 保持不变。
(2)充电后与电源断开时,电容器所带的电荷量Q 保持不变。
2.平行板电容器动态问题的分析思路3.平行板电容器问题的一个常用结论电容器充电后断开电源,在电容器所带电荷量保持不变的情况下,电场强度与极板间的距离无关。
【特别提醒】解决电容器问题的两个常用技巧1.在电荷量保持不变的情况下,由E =U d =Q Cd =4πkQ εr S知,电场强度与板间距离无关。
2.对平行板电容器的有关物理量Q 、E 、U 、C 进行讨论时,关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是自变量,哪些是因变量,抓住C =εr S 4πkd、Q =CU 和E =U d 进行判定即可。
【典型例题】(多选)美国物理学家密立根通过研究平行板间悬浮不动的带电油滴,比较准确地测定了电子的电荷量。
如图6-3-3所示,平行板电容器两极板M 、N 相距d ,两极板分别与电压为U 的恒定电源两极连接,极板M 带正电。
现有一质量为m 的带电油滴在极板中央处于静止状态,且此时极板带电荷量与油滴带电荷量的比值为k ,则 ( )A .油滴带负电B .油滴带电荷量为mg UdC .电容器的电容为kmgd U 2D .将极板N 向下缓慢移动一小段距离,油滴将向上运动【答案】AC【解析】由题意知油滴受到的电场力方向竖直向上,又上极板带正电,故油滴带负电,设油滴带电荷量为q ,则极板带电荷量为Q =kq ,由于qE =mg ,E =U d ,C =Q U ,解得q =mgd U ,C =kmgd U 2,将极板N 向下缓慢移动一小段距离,U 不变,d 增大,则电场强度E 减小,重力将大于电场力,油滴将向下运动,只有选项A 、C 正确。
带电粒子在平行板电容器极板间的运动知识点
五、带电粒子在平行板电容器极板间的运动带电粒子在平行板电容器极板间的运动主要考查的内容 主标题:带电粒子在平行板电容器极板间的运动副标题:剖析考点规律,明确高考考查重点,为学生备考提供简洁有效的备考策略。
关键词:带电粒子、电容器难度:3重要程度:5内容:考点剖析:带电粒子在平行板电容器极板间的运动和静止问题是高考经常考的问题,这类问题一般给出一个带电粒子(或油滴、小球等)在平行板电容器极板间的运动和静止,要求考生求有关物理量、判断某些物理量的变化情况、大小比较关系等。
在分析这类问题时应当注意:1.平行板电容器在直流电路中是断路,它两板间的电压与它相并联的用电器(或支路)的电压相同。
2.如将电容器与电源相接、开关闭合时,改变两板距离或两板正对面积时,两板电压不变,极板的带电量发生变化。
如开关断开后,再改变两极板距离或两极板正对面积时,两极带电量不变,电压将相应改变。
3.平行板电容器内是匀强电场,可由dU E求两板间的电场强度,从而进—步讨论两极板间电荷的平衡和运动。
典型例题 例1.(2013·全国)一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计)。
小孔正上方d /2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回。
若将下极板向上平移d /3,则从P 点开始下落的相同粒子将( )A.打到下极板上B.在下极板处返回C.在距上极板错误!未找到引用源。
处返回D.在距上极板2d /5处返回【解析】D.根据题述,粒子从静止开始下落,经过小孔进入电容器后电场力做负功。
设粒子带电量为q,电池两极之间的电压为U,由动能定理,mg(d+d/2)-qU=0。
若将下极板向上平移d/3,一定不能打在下极板上。
设粒子在距上极板nd处返回,则电场力做功为-3qnU/2,由动能定理,mg(nd+d/2)- 3qnU/2=0。
电磁场练习题电场与磁场的叠加与相互作用
电磁场练习题电场与磁场的叠加与相互作用电磁场练习题——电场与磁场的叠加与相互作用在物理学中,电磁场是电荷与电流所产生的场,由电场和磁场组成。
电磁场的相互作用以及叠加是电磁学的重要内容。
下面,我们将通过一些实例来解析电场与磁场的叠加与相互作用。
1. 实例一:平行板电容器中的带电粒子假设有一个带正电荷q的质点,位于距离一个平行板电容器距离为d的位置。
平行板电容器的两个平行的金属板分别带上正电荷和负电荷,形成了一个匀强电场。
此时,电场的电势差为ΔV,根据电场的叠加原理,带电粒子所受到的电场力为F1 = qΔV。
假设带电粒子的速度v与电场垂直,则带电粒子还受到一个宽度为d的磁场,根据磁场的叠加原理,粒子在磁场中受到的洛伦兹力为F2 = qvB。
因此,带电粒子所受到的合力为F = F1 + F2 = qΔV + qvB。
2. 实例二:电流通过直导线考虑一个长直导线,导线中有电流I,与导线平行的方向定义为x轴方向。
在导线周围产生一个以导线为轴线的环形磁场。
现在,我们再在导线周围和导线之间施加一个电场,即有一个电场E与导线方向相同。
根据磁场的叠加原理,磁场B和电场E的合力为F1 = qE。
根据电场的叠加原理,导线所带来的电场力为F2 = ILB,其中L为导线的长度,B为导线周围的磁场强度。
所以,导线受到的总合力为F = F1 + F2 = qE + ILB。
3. 实例三:异向电场和磁场中的运动粒子假设有一个粒子,同时存在电场和磁场。
电场E方向为x轴方向,磁场B方向为z轴方向。
粒子的速度v方向既不与电场方向也不与磁场方向垂直,而是与两者夹角θ。
粒子在电场中受到的电场力为F1 = qE。
粒子在磁场中受到的洛伦兹力为F2 = qvBsinθ。
所以,粒子所受到的合力为F = F1 + F2 = qE + qvBsi nθ。
当粒子在电磁场中运动时,合力将改变粒子的运动轨迹。
总结起来,电场与磁场的叠加与相互作用是电磁学中的基本概念。
高中物理电容公式带电粒子在电场中的运动
高中物理电容公式带电粒子在电场中的运动
下面是高中物理电容器常见公式,以及带电粒子在电场中的运动问题
1、带电粒子在电场中的加速公式是):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 其中(Vo=0)
2、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏
转(不考虑重力作用的情况下)
在垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
在平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
带电小球接触后,电量分配3、两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
常见电场的电场线分布要求熟记〔[第二册P98];
电容单位换算:1F=106μF=1012PF;
电子伏(eV)是能量的单位,1eV=1.60×10-19J;。
2021届广东深圳中学高考物理一轮复习专题17 带电粒子在电场中的运动
专题十七——带电粒子在电场中的运动知识点总结一 平行板电容器的动态分析 1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变.(2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变.2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.②根据E =Ud分析场强的变化.③根据U AB =E ·d 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析U 的变化.②根据E =U d =4k πQεr S分析场强变化.二 带电粒子(带电体)在电场中的直线运动 1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动. (2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动. 2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02非匀强电场中:W =qU =E k2-E k1 三 带电粒子(带电体)在电场中的偏转 1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU.(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qU md离开电场时的偏移量:y =12at 2=qUl 22mdv 02.离开电场时的偏转角:tan θ=v yv 0=qUl mdv2.2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 02y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmdv 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后射出,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =Udy ,指初、末位置间的电势差.四 带电粒子在交变电场中的运动 1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等. 2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解). (2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究). 3.思维方法(1)注重全面分析(分析受力特点和运动规律):抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.(2)从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.(3)注意对称性和周期性变化关系的应用.专题练习1.(多选)如图为某一机器人上的电容式位移传感器工作时的简化模型图.当被测物体在左右方向发生位移时,电介质板随之在电容器两极板之间移动,连接电容器的静电计会显示电容器电压的变化,进而能测出电容的变化,最后就能探测到物体位移的变化,若静电计上的指针偏角为θ,则被测物体( )A .向左移动时,θ增大B .向右移动时,θ增大C .向左移动时,θ减小D .向右移动时,θ减小 【答案】 BC 【解析】 由公式C =εr S4πkd,可知当被测物体带动电介质板向左移动时,导致两极板间电介质增大,则电容C 增大,由公式C =QU可知电荷量Q 不变时,U 减小,则θ减小,故A 错误,C 正确;由公式C =εr S4πkd,可知当被测物体带动电介质板向右移动时,导致两极板间电介质减小,则电容C 减少,由公式C =QU可知电荷量Q 不变时,U 增大,则θ增大,故B 正确,D 错误.2.平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变 【答案】 D【解析】 由C =εr S4πkd 可知,当将云母介质移出时,εr 变小,电容器的电容C 变小,因为电容器接在恒压直流电源上,故U 不变,根据Q =CU 可知,当C 减小时,Q 减小,再由E =Ud,由于U 与d 都不变,故电场强度E 不变,选项D 正确.3.研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A .实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B .实验中,只将电容器b 板向上平移,静电计指针的张角变小C .实验中,只在极板间插入有机玻璃板,静电计指针的张角变大D .实验中,只增加极板带电荷量,静电计指针的张角变大,表明电容增大 【答案】 A【解析】 实验前,只用带电玻璃棒与电容器a 板接触,由于静电感应,在b 板上将感应出异种电荷,A 正确;b 板向上平移,正对面积S 变小,由C =εr S 4πkd 知,电容C 变小,由C =QU知,Q 不变,U 变大,因此静电计指针的张角变大,B 错误;插入有机玻璃板,相对介电常数εr 变大,由C =εr S 4πkd 知,电容C 变大,由C =QU知,Q 不变,U 变小,因此静电计指针的张角变小,C 错误;由C =QU知,实验中,只增加极板带电荷量,静电计指针的张角变大,是由于C 不变导致的,D 错误.4.(多选)如图所示,A 、B 为两块平行带电金属板,A 带负电,B 带正电且与大地相接,两板间P 点处固定一负电荷,设此时两极板间的电势差为U ,P 点场强大小为E ,电势为φP ,负电荷的电势能为E p ,现将A 、B 两板水平错开一段距离(两板间距不变),下列说法正确的是( )A .U 变大,E 变大B .U 变小,φP 变小C .φP 变小,E p 变大D .φP 变大,E p 变小【答案】 AC【解析】 根据题意可知两极板间电荷量保持不变,当正对面积减小时,则由C =εr S 4πkd 可知电容减小,由U =QC 可知极板间电压增大,由E =Ud 可知,电场强度增大,故A 正确;设P 与B 板之间的距离为d ′,P 点的电势为φP ,B 板接地,φB =0,则由题可知0-φP =Ed ′是增大的,则φP 一定减小,由于负电荷在电势低的地方电势能一定较大,所以可知电势能E p 是增大的,故C 正确.5.如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A 、B ,间距为d ,中央分别开有小孔O 、P .现有甲电子以速率v 0从O 点沿OP 方向运动,恰能运动到P 点.若仅将B 板向右平移距离d ,再将乙电子从P ′点由静止释放,则( )A .金属板A 、B 组成的平行板电容器的电容C 不变 B .金属板A 、B 间的电压减小C .甲、乙两电子在板间运动时的加速度相同D .乙电子运动到O 点的速率为2v 0 【答案】 C【解析】 两板间距离变大,根据C =εr S4πkd可知,金属板A 、B 组成的平行板电容器的电容C 减小,选项A 错误;根据Q =CU ,Q 不变,C减小,则U 变大,选项B 错误;根据E =U d =Q Cd =4πkQεr S,可知当d 变大时,两板间的场强不变,则甲、乙两电子在板间运动时的加速度相同,选项C 正确;根据e ·E ·2d =12mv 2,e ·E ·d =12mv 02,可知,乙电子运动到O 点的速率v =2v 0,选项D 错误.6.(多选)如图所示,M 、N 为两个等大的均匀带电圆环,其圆心分别为A 、C ,带电荷量分别为+Q 、-Q ,将它们平行放置,A 、C 连线垂直于圆环平面,B 为AC 的中点,现有质量为m 、带电荷量为+q 的微粒(重力不计)从左方沿A 、C 连线方向射入,到A 点时速度v A =1 m/s ,到B点时速度v B= 5 m/s,则( )A.微粒从B至C做加速运动,且v C=3 m/sB.微粒在整个运动过程中的最终速度为 5 m/sC.微粒从A到C先做加速运动,后做减速运动D.微粒最终可能返回至B点,其速度大小为 5 m/s【答案】AB【解析】AC之间电场是对称的,A到B电场力做的功和B到C电场力做的功相同,依据动能定理可得:qU AB=12mv B2-12mv A2,2qU AB=12mv C2-12mv A2,解得v C=3 m/s,A正确;过B作垂直AC的面,此面为等势面,微粒经过C点之后,会向无穷远处运动,而无穷远处电势为零,故在B点的动能等于在无穷远处的动能,依据能量守恒可以得到微粒最终的速度应该与在B点时相同,均为 5 m/s,B正确,D错误;在到达A点之前,微粒做减速运动,而从A到C微粒一直做加速运动,C错误.7.如图所示,竖直面内分布有水平方向的匀强电场,一带电粒子沿直线从位置a向上运动到位置b,在这个过程中,带电粒子( )A.只受到电场力作用B.带正电C.做匀减速直线运动D.机械能守恒【答案】 C【解析】带电粒子沿直线从位置a运动到位置b,说明带电粒子受到的合外力方向与速度在一条直线上,对带电粒子受力分析,应该受到竖直向下的重力和水平向左的电场力,电场力方向与电场线方向相反,所以带电粒子带负电,故A、B错误;由于带电粒子做直线运动,所以电场力和重力的合力应该和速度在一条直线上且与速度方向相反,故带电粒子做匀减速直线运动,故C正确;电场力做负功,机械能减小,故D错误.8.如图所示,在水平向右的匀强电场中,质量为m的带电小球,以初速度v从M点竖直向上运动,通过N点时,速度大小为2v,方向与电场方向相反,则小球从M运动到N的过程A .动能增加212mvB .机械能增加22mvC .重力势能增加232mv D .电势能增加22mv 【答案】B【解析】由动能的表达式2k 12E mv =可知带电小球在M 点的动能为212kM E mv =,在N 点的动能为()21222kN E m v mv ==,所以动能的增量为232k E mv ∆=,故A 错误;带电小球在电场中做类平抛运动,竖直方向受重力做匀减速运动,水平方向受电场力做匀加速运动,由运动学公式有,2y x qEv v gt v v at t m=====,可得2qE mg =,竖直方向的位移2vh t =,水平方向的位移22vx t vt ==,因此有2x h =,对小球由动能定理有232kqEx mgh E mv -==V ,联立上式可解得22qEx mv =,212mgh mv =,因此电场力做正功,机械能增加,故机械能增加22mv ,电势能减少22mv ,故B 正确D 错误,重力做负功重力势能增加量为212mv ,故C 错误。
7电容器、带电粒子在电场中的运动(习题课)解析版-2023年高考物理大一轮复习
7.3电容器、带电粒子在电场中的运动(基础知识过关)1.如图所示,平行板电容器AB两极板水平放置,A在上方,B在下方,现将其和二极管串联接在电源上,已知A和电源正极相连,二极管具有单向导电性,一带电小球沿AB中心水平射入,打在B极板上的N点,小球的重力不能忽略,现通过上下移动A板来改变两极板AB间距(两极板仍平行),则下列说法正确的是()A.若小球带正电,当AB间距减小时,小球打在N的左侧B.若小球带正电,当AB间距增大时,小球打在N的右侧C.若小球带负电,当AB间距减小时,小球可能打在N的右侧D.若小球带负电,当AB间距增大时,小球可能打在N的左侧【参考答案】AC【名师解析】.A极板带正电,B极板带负电,根据二极管具有单向导电性,极板的电荷量只能增加不能减小.若小球带正电,根据E=Ud,C=QU,C=εr S4kπd,得E=4kπQεr S,当d减小时,电容增大,Q增大,知d减小时E增大,所以电场力变大,方向向下,小球做类平抛运动,竖直方向加速度增大,运动时间变短,打在N点左侧,故A 正确;若小球带正电,当d增大时,电容减小,但Q不可能减小,所以Q不变,知E不变,所以电场力不变,小球仍然打在N点,故B错误;若小球带负电,当AB间距d增大时,电容减小,但Q不可能减小,所以Q不变,知E不变,所以电场力不变,小球做类平抛运动竖直方向上的加速度不变,运动时间不变,小球仍然打在N点,故D错误;若小球带负电,当AB间距d减小时,电容增大,则Q增大,知E增大,所以电场力变大,方向向上,若电场力小于重力,小球做类平抛运动,竖直方向上的加速度减小,运动时间变长,小球将打在N 点的右侧,故C正确.2.(2021河北省邢台市上学期期末)如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A、B,间距为d,中央分别开有小孔O、P.现有甲电子以速率v0从O 点沿OP方向运动,恰能运动到P点.若仅将B板向右平移距离d,再将乙电子从P′点由静止释放,则()A.金属板A、B组成的平行板电容器的电容C不变B.金属板A、B间的电压减小C.甲、乙两电子在板间运动时的加速度相同D.乙电子运动到O点的速率为2v0【参考答案】C【名师解析】两板间距离变大,根据C=εr S4πkd可知,金属板A、B组成的平行板电容器的电容C减小,选项A错误;根据Q=CU,Q不变,C减小,则U变大,选项B错误;根据E=Ud=QCd=4πkQεr S,可知当d变大时,两板间的场强不变,则甲、乙两电子在板间运动时的加速度相同,选项C正确;根据e·E·2d=12mv2,e·E·d=12mv02,可知,乙电子运动到O点的速率v=2v0,选项D错误.3.(2021·河南省南阳市上学期期末)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L,板间距离为d,距板右端L处有一竖直屏M.一带电荷量为q、质量为m的质点以初速度v0沿中线射入两板间,最后垂直打在M上,则下列结论正确的是(已知重力加速度为g)()A.两极板间电压为mgd 2qB.板间电场强度大小为2mg qC.整个过程中质点的重力势能增加mg2L2 v02D.若仅增大两极板间距,则该质点不可能垂直打在M上【参考答案】BC【名师解析】据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,质点的轨迹向下偏转,才能最后垂直打在屏M上,前后过程质点的运动轨迹有对称性,如图所示:可见两次偏转的加速度大小相等,根据牛顿第二定律得:qE-mg=ma,mg=ma,解得E=2mgq,由U=Ed得板间电势差U=2mgq×d=2mgdq,故A错误,B正确;质点在电场中向上偏转的距离y=12at2,a=qE-mgm=g,t=Lv0,解得:y=gL22v02,故质点打在屏上的位置与P点的距离为:s=2y=gL2v02,重力势能的增加量E p=mgs=mg2L2v02,故C正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E=Ud=QCd=Qεr S4πkd d=4πkQεr S可知,板间场强不变,质点在电场中受力情况不变,则运动情况不变,故仍垂直打在屏M上,故D错误.4.真空中有一边长为L的正方形区域ABCD,E为AB边中点,该区域内存在匀强电场,电场方向平行于AB边且从A指向B。
2020年江苏高考物理总复习随堂小侧:电容器 带电粒子在电场中的运动
课时跟踪检测(二十二) 电容器 带电粒子在电场中的运动 对点训练:平行板电容器的动态分析1.2018年8月23~25日,第九届上海国际超级电容器产业展览会成功举行,作为中国最大超级电容器展,众多行业龙头踊跃参与。
如图所示,平行板电容器与电动势为E 的直流电源(内阻不计)连接,一带电油滴位于电容器中的P 点且恰好处于平衡状态,在其他条件不变的情况下,现将平行板电容器的两极板非常缓慢地错开一些,那么在错开的过程中( )A .电容器的电容C 增大B .电容器所带的电荷量Q 减小C .油滴将向下加速运动,电流计中的电流从N 流向MD .油滴静止不动,电流计中的电流从M 流向N解析:选B 将两极板缓慢地错开一些,两极板正对面积减小,根据电容的决定式C =εr S 4πkd得知,电容减小,故A 错误。
根据Q =CU ,由于电容器电容减小,因两极板间电压U 不变,那么极板带的电荷量会减小,故B 正确。
将平行板电容器的两极板非常缓慢地水平错开一些,由于电容器两板间电压不变,根据E =U d ,得知板间场强不变,油滴所受的电场力不变,则油滴将静止不动;再由C =Q U 知,电容器带电荷量减小,电容器处于放电状态,电路中产生顺时针方向的电流,则电流计中有N →M 的电流,故C 、D 错误。
2.(2019·盐城中学月考)如图为某位移式传感器的原理示意图,平行金属板A 、B 和介质P 构成电容器,则( )A .A 向上移电容器的电容变大B .P 向左移电容器的电容变大C .A 向上移流过电阻R 的电流方向从N 到MD .P 向左移流过电阻R 的电流方向从M 到N解析:选D A 向上移时,板间距离增大,根据C =εr S 4πkd,知电容器的电容变小,而电容器板间电压不变,由C =Q U ,分析可知电容器的带电荷量减小,通过R 放电,则流过电阻R 的电流方向从M 到N ,A 、C 错误;P 向左移,εr 减小,根据C =εr S 4πkd,知电容器的电容变小,由C =Q U ,分析可知电容器的带电荷量减小,通过R 放电,则流过电阻R 的电流方向从M 到N ,B 错误,D 正确。
高中物理:平行板电容器的动态分析
⾼中物理:平⾏板电容器的动态分析对平⾏板电容器的有关物理量Q、E、U、C进⾏讨论时,关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是⾃变量,哪些是因变量。
这类问题可分为两种情况来分析:⼀、电容器充电后断开电源,电容器所带电量Q保持不变当极板距离d,正对⾯积S变化时,有:对于电场强度变化,我们还可以认为⼀定量的电荷对应着⼀定数⽬的电场线,若电量不变,则电场线数⽬不变,当两板间距离变化时,场强不变;当两板正对⾯积变化时,引起电场线的疏密程度发⽣了变化,如图1所⽰,电容器的电量不变,正对⾯积减⼩时,场强增⼤。
图1这样,越⼤,电场线就越密,E就越⼤,反之就越⼩;不变时,不管极板间距离如何变化,电场线的疏密程度不变,则E不变。
则此式可知,在电量保持不变的情况下,电场强度与板间的距离⽆关。
例1、⼀平⾏板电容器充电后与电源断开,负极接地,在两极板间有⼀正电荷(电量很⼩)固定在P点,如图2所⽰,E表⽰两板间的场强,U表⽰电容器的电压,W表⽰正电荷在P点的电势能,若保持负极板不动,将正极板移到虚线所⽰的位置,则()图2A.U变⼩,E不变B.E变⼤,W变⼤C.U变⼩,W不变D.U不变,W不变解析:电容器充电后与电源断开,说明电容器带电量不变。
正极板向负极板移近,由可知电容增⼤,由可知,U变⼩,⽽,由此可看出,场强E不变。
因E不变,P点与负极板间的距离不变,可知P点的电势U P不变,那么正电荷的电势能就不变,综上所述,A、C选项正确。
例2、平⾏板电容器两极板与静电计的连接如图3所⽰,对电容器充电,使静电计张开某⼀⾓度,撤去电源后以下说法正确的是()图3A.增⼤两板间距离,静电计指针张⾓变⼤B.减⼩两板间距离,静电计指针张⾓变⼤C.将两板错开⼀些,静电计指针张⾓变⼤D.将某电介质插⼊极板间,静电计指针张开⾓度变⼤解:静电计指针的张⾓反映的是两板之间的电势差的⼤⼩。
由题意可知,撤去电源后电容器所带电量不变。
由电容器的电容决定因素知:若增⼤板间距离,则C变⼩,由知U变⼤,故A正确,B错误。
带电粒子在电场中偏转的三个重要结论
带电粒子在电场中偏转的三个重要结论例:如图所示,质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量.解:分解为两个独立的分运动:平行极板的匀速运动(运动时间由此分运动决定),垂直极板的匀加速直线运动,,,.偏角:,得:.穿越电场过程的动能增量是:ΔE K=qEy从例题可以得出结论有三:结论一、不同带电粒子从静止进入同一电场加速后再垂直进入同一偏转电场,射出时的偏转角度总和位移偏转量y是相同的,与粒子的q、m无关。
例1.如图所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是()A.U1变大、U2变大B.U1变小、U2变大C.U1变大、U2变小D.U1变小、U2变小解析:3电子在加速电场中由动能定理得,电子在偏转电场中有:.由以上各式得:,可知要使θ增大必然U2变大,U1变小,故选B.答案:B结论二、粒子垂直进入电场偏转射出后,速度的反向延长线与初速度延长线的交点为粒子水平位移中点。
(粒子好像是从中点直线射出!)例2.证明:在带电的平行金属板电容器中,只要带电粒子垂直电场方向射入(不一定在正中间),且能从电场中射出如图所示,则粒子射入速度v0的方向与射出速度v t的方向的交点O必定在板长L的中点.证明:粒子从偏转电场中射出时偏距,粒子从偏转电场中射出时的偏向角,作粒子速度的反向延长线,设交于O点,O 点与电场边缘的距离为x,则。
可知,粒子从偏转电场中射出时,就好像是从极板间的处沿直线射出似的,即证。
结论三、粒子垂直飞入电场偏转射出时,速度偏转角正切值()等于位移偏转角正切值()的两倍()。
证明:tan β=12at 2v 0=v y 2v 0=12tan θ 所以:。
新教材人教版高中物理 精品资料第3讲 电容器 带电粒子在电场中的运动
第3讲电容器带电粒子在电场中的运动一、电容器及电容1.电容器(1)组成:由两个彼此绝缘又相距很近的导体组成。
(2)带电荷量:一个极板所带电荷量的绝对值。
(3)电容器的充、放电①充电:电容器充电的过程中,两极板所带的电荷量增加,极板间的电场强度增大,电源的能量不断储存在电容器中。
②放电:放电过程中,电容器把储存的能量通过电流做功转化为其他形式的能量。
2.电容(1)定义:电容器所带的电荷量Q与电容器两极板之间的电势差U之比。
(2)定义式:C=QU。
(3)单位:法拉(F)、微法(μF)、皮法(pF)。
1 F=106μF=1012 pF。
(4)意义:表示电容器容纳电荷本领的物理量。
(5)决定因素:由电容器本身物理条件(大小、形状、极板相对位置及电介质)决定,与电容器是否带电及电压无关。
3.平行板电容器的电容(1)决定因素:正对面积,电介质,两极板间的距离。
(2)决定式:C=εr S4πkd。
二、带电粒子在电场中的运动1.带电粒子在电场中的加速(1)在匀强电场中:W=qEd=qU=12m v2-12m v2。
(2)在非匀强电场中:W=qU=12m v2-12m v2。
2.带电粒子在匀强电场中的偏转(1)运动情况:带电粒子以初速度v0垂直电场方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图1所示。
图1(2)处理方法:将带电粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动。
根据运动的合成与分解的知识解决有关问题。
(3)基本关系式:运动时间t=lv0,加速度a=Fm=qEm=qUmd,偏转量y=12at2=qUl22md v20,偏转角θ的正切值tan θ=v yv0=atv0=qUlmd v20。
【自测如图2所示,A、B两个带正电的粒子,所带电荷量分别为q1与q2,质量分别为m1和m2。
它们以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,A粒子打在N板上的A′点,B粒子打在N板上的B′点,若不计重力,则()图2A.q1>q2B.m1<m2C.q1m1>q2m2 D.q1m1<q2m2答案 C解析设粒子垂直电场进入匀强电场的速度为v0,电荷量为q,质量为m,所以加速度a=qEm,运动时间t=xv0,偏转位移为y=12at2,整理得y=qEx22m v20,显然由于A粒子的水平位移小,则有q1m1>q2m2,但A粒子的电荷量不一定大,质量关系也不能确定,故A、B、D错误,C正确。
带电粒子在匀强电场中的运动典型例题与练习(含答案)
专题: 带电粒子在匀强电场中的运动典型题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以压U 。
在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由开始从正极板向负极板运动,速度为多大?【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?二、带电粒子在电场中的偏转(垂直于场射入)⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动.⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解).02102v tat t 垂直于电场方向匀速运动:x=沿着电场方向作初速为的匀加速:y=两个分运动联系的桥梁:时间相等设粒子带电量为q ,质量为如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d .则场强UE d =,加速度qE qUammd, 通过偏转极板的时间:0L t v 侧移量:y22221242LU qUL at dU mdv 偏加偏转角:0tanat v 202LU qULdU mdv 偏加(U 偏、U加分别表示加速电场电压和偏转电场电压)带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2Ly .粒子可看作是从两板间的中点沿直线射出的 M N q U M N qUv 0 v 图6-4-3【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速运动,如图所示,若不计粒子重力,则可求出如下相关量:(1)粒子穿越电场的时间t :(2)粒子离开电场时的速度v(3)粒子离开电场时的侧移距离y : (4)粒子离开电场时的偏角ϕ:(5)速度方向的反向延长线必过偏转电场的中点 解:(1)粒子穿越电场的时间t :粒子在垂直于电场方向以0v v x =做匀速直线运动,t v l 0=,0v l t =; (2)粒子离开电场时的速度v :粒子沿电场方向做匀加速直线运动,加速度mdqUm qE a ==,粒子离开电场时平行电场方向的分速度0mdv qUl at v y ==,所以20222)(mdv qUl v v v v y x +=+=。
高中物理平行板电容器的动态解析
对平行板电容器的有关物理量Q、E、U、C进行讨论时,关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是自变量,哪些是因变量。
这类问题可分为两种情况来分析:一、电容器充电后断开电源,电容器所带电量Q保持不变当极板距离d,正对面积S变化时,有:对于电场强度变化,我们还可以认为一定量的电荷对应着一定数目的电场线,若电量不变,则电场线数目不变,当两板间距离变化时,场强不变;当两板正对面积变化时,引起电场线的疏密程度发生了变化,如图1所示,电容器的电量不变,正对面积减小时,场强增大。
图1这样,越大,电场线就越密,E就越大,反之就越小;不变时,不管极板间距离如何变化,电场线的疏密程度不变,则E不变。
则此式可知,在电量保持不变的情况下,电场强度与板间的距离无关。
例1、一平行板电容器充电后与电源断开,负极接地,在两极板间有一正电荷(电量很小)固定在P点,如图2所示,E表示两板间的场强,U表示电容器的电压,W表示正电荷在P点的电势能,若保持负极板不动,将正极板移到虚线所示的位置,则()图2A.U变小,E不变B.E变大,W变大C.U变小,W不变D.U不变,W不变解析:电容器充电后与电源断开,说明电容器带电量不变。
正极板向负极板移近,由可知电容增大,由可知,U变小,而,由此可看出,场强E不变。
因E不变,P点与负极板间的距离不变,可知P点的电势U P 不变,那么正电荷的电势能就不变,综上所述,A、C选项正确。
例2、平行板电容器两极板与静电计的连接如图3所示,对电容器充电,使静电计张开某一角度,撤去电源后以下说法正确的是()图3A.增大两板间距离,静电计指针张角变大B.减小两板间距离,静电计指针张角变大C.将两板错开一些,静电计指针张角变大D.将某电介质插入极板间,静电计指针张开角度变大解析:静电计指针的张角反映的是两板之间的电势差的大小。
由题意可知,撤去电源后电容器所带电量不变。
由电容器的电容决定因素知:若增大板间距离,则C变小,由知U变大,故A 正确,B错误。
带电粒子在平行板电容器中的运动
带电粒子在平行板电容器中的运动满分:班级:_________ :_________ 考号:_________一、单选题(共1小题)1.如图所示,电子在电势差为的加速电场中由静止开始运动,然后射入电势差为的两块平行极板间的偏转电场中,在满足电子能射出平行极板区的条件下,下述四种情况中,一定能使电子的偏转角变大的是()A.变大,变大B.变小,变大C.变大,变小D.变小,变小二、多选题(共1小题)2.如图所示,平行金属板A、B水平正对放置,分别带等量异号电荷,一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.微粒从M点运动到N点动能一定增加B.微粒从M点运动到N点电势能一定增加C.微粒从M点运动到N点机械能可能增加D.若微粒带正电荷,则A板一定带正电荷三、计算题(共3小题)3.如图甲所示,水平放置的平行金属板A和B的距离为d,它们的右端放着垂直于金属板的靶MN,现在A.B板上加上如图乙所示的方波形电压,电压的正向值为,反向电压值为,且每隔变向1次。
现将质量为m的带正电,且电荷量为q的粒子束从AB的中点O以平行于金属板的方向射入,设粒子能全部打在靶上而且所有粒子在A.B间的飞行时间均为T。
不计重力的影响,试问:(1)定性分析在时刻从O点进入的粒子,在垂直于金属板的方向上的运动情况。
(2)在距靶MN的中心点多远的围有粒子击中?(3)要使粒子能全部打在靶MN上,电压的数值应满足什么条件?(写出、、、、的关系即可)4.如图所示,四分之一光滑绝缘圆弧轨道AP和水平绝缘传送带PC固定在同一竖直平面,圆弧轨道的圆心为O,半径为R;P点离地高度也为R,传送带PC之间的距离为L,沿逆时针方向的传动,传送带速度V=,在PO的左侧空间存在方向竖直向下的匀强电场.一质量为m、电荷量为+q的小物体从圆弧顶点A由静止开始沿轨道下滑,恰好运动到C端后返回.物体与传送带间的动摩擦因数为μ,不计物体经过轨道与传送带连接处P时的机械能损失,重力加速度为g.求:(1)物体由P点运动到C点过程,克服摩擦力做功;(2)匀强电场的场强E为多大;(3)物体返回到圆弧轨道P点,物体对圆弧轨道的压力大小.5.电路如图所示,电源电动势E=28 V,阻r=2 Ω,电阻R1=12 Ω,R2=R4=4 Ω,R3=8 Ω,C为平行板电容器,其电容C=3.0 pF,虚线到两极板距离相等,极板长l=0.20 m,两极板的间距d=1.0×10-2m.求:(1)若开关S处于断开状态,R3上的电压是多少?(2)当开关闭合后,R3上的电压会变化,那么电容器上的电压等于多少?(3)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0 m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取10m/s2)四、解答题(共5小题)6.如图所示,A、B、C为三块水平放置的平行金属板,板的厚度不计,间距均为d.A、B板中央有小孔,电路中三个电阻的阻值均为R,电源阻也为R.现有一滴质量为m电荷量为q 的带正电液滴在距A板小孔正上方为d的P处由静止开始下落,不计空气阻力,当地的重力加速度为,当它达到C板时速度恰为零.试求:(1)液滴从P处到达C板的过程中其电势能变化了多少?是增加还是减少?(2)电源电动势的大小;(3)液滴通过B板中央小孔时的速度大小。
易错点18 电容器 带电粒子在电场中的运动(解析版) -备战2023年高考物理考试易错题
易错点18电容器 带电粒子在电场中的运动例题1. (2022·重庆·高考真题)如图为某同学采用平行板电容器测量材料竖直方向尺度随温度变化的装置示意图,电容器上极板固定,下极板可随材料尺度的变化上下移动,两极板间电压不变。
若材料温度降低时,极板上所带电荷量变少,则( )A .材料竖直方向尺度减小B .极板间电场强度不变C .极板间电场强度变大D .电容器电容变大【答案】A【解析】D .根据题意可知极板之间电压U 不变,极板上所带电荷量Q 变少,根据电容定义式QC U=可知电容器得电容C 减小,D 错误; BC .根据电容的决定式r 4SC kdεπ=可知极板间距d 增大,极板之间形成匀强电场,根据UE d=可知极板间电场强度E 减小,BC 错误; A .极板间距d 增大,材料竖直方向尺度减小,A 正确。
故选A 。
【误选警示】误选BC 的原因:没有结合具体情境,判断出两极板间的距离减小,从而距离电场强度和电势差的关系,判断电场强度的变化情况。
误选D 的原因:没有结合具体情境,判断出两极板间的距离减小,进一步结合平行板电容器电容的因素决定式,判断电容如何变化。
例题2. (多选)(2022·全国·高考真题)地面上方某区域存在方向水平向右的匀强电场,将一带正电荷的小球自电场中Р点水平向左射出。
小球所受的重力和电场力的大小相等,重力势能和电势能的零点均取在Р点。
则射出后,( ) A .小球的动能最小时,其电势能最大 B .小球的动能等于初始动能时,其电势能最大C .小球速度的水平分量和竖直分量大小相等时,其动能最大D .从射出时刻到小球速度的水平分量为零时,重力做的功等于小球电势能的增加量【答案】BD【解析】A .如图所示Eq mg =故等效重力G '的方向与水平成45︒。
当0y v =时速度最小为min 1v v =,由于此时1v 存在水平分量,电场力还可以向左做负功,故此时电势能不是最大,故A 错误; BD .水平方向上0Eq v t m=在竖直方向上v gt =由于Eq mg =,得0v v =如图所示,小球的动能等于末动能。
带电粒子在平行板电容器中的运动------用v-t图像解决
带电粒子在平行板电容器中的运动--------分方向画-v-t 图像解决高亚敏一、带电粒子在恒定电场中(平行板电容器)的运动处理方法:在同一坐标中分方向画x、y 方向的v-t 图像。
利用两个分运动的时间相同。
1、(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列结论正确的是(已知重力加速度为g )()A.两极板间电压为mgd 2qB.板间电场强度大小为2mgqC.整个过程中质点的重力势能增加mg 2L 2v 02D.若仅增大两极板间距,则该质点不可能垂直打在M 上分析:因为在水平方向做匀速直线运动,在电场内和电场外位移一样,所以在电场内和电场外运动时间相等,又因垂直打在M 板上,所以在竖直方向先加速再匀减速,而且加速减速的时间相等,所以在电场中的加速度和在点场外的加速度大小相等。
答案BC解析据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,质点的轨迹向下偏转,才能最后垂直打在屏M 上,前后过程质点的运动轨迹有对称性,如图所示:可见两次偏转的加速度大小相等,根据牛顿第二定律得:qE -mg =ma ,mg =ma ,解得E =2mgq,由U =Ed 得板间电势差U =2mg q d =2mgd q,故A 错误,B 正确;质点在电场中向上偏转的距离y =12at 2,a =qE -mg m =g ,t =L v 0,解得:y =gL 22v 02,故质点打在屏上的位置与P 点的距离为:s =2y =gL 2v 02,重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkdd =4πkQεr S可知,板间场强不变,质点在电场中受力情况不变,则运动情况不变,故仍垂直打在屏M 上,故D 错误.水平放置的平板电容器,极板长为l ,间距为d ,电容为C。
带电粒子在电场中的运动
d2=0.50 cm t=1.5×10-8s.
带电体在匀强电场中做直线运动问题的分析方法
如图所示,绝缘光滑轨
道AB部分为倾角为30°
的斜面,AC部分为竖直
平面上半径为R的圆轨道,
斜面与圆轨道相切.整个装置处于场强为
E、方向水平向右的匀强电场中.现有一个
42
例.如图所示,一带电粒子 在电场中,由M点沿虚线运 动到N点的过程中,请判断:
①电荷的带电性质
②电荷从M运动
N
到N,电势能、 动能如何变化?
M
43
44
45
第3讲 电容器和电容 带电粒子在电 场中的运动
考基自主落实 核心考点透析 思维方法技巧 高考快乐体验 活页限时训练
2.带电粒子在匀强电场中的偏转 (1)研究条件:带电粒子垂直于电场方向进入匀强电场. (2)处理方法:类似于平抛运动,应用运动的_合__成__与__分__解__ 的方法. ①②沿沿初电速场度力方方向向做,做_匀___速匀____直加____线速____直运__线_动_运,动运动时间t=vl0
质量为m的小球,带正电荷量为要使小球能
安全通过圆轨道,在O点的初速度应为多
大?
答案 v≥
10 3gR 3
如图甲所示,在真空中足够大的绝缘水平地面上, 一个质量为m=0.2 kg、带电荷量为q=+2.0×10 -6 C的小物块处于静止状态,小物块与地面间的 摩擦因数μ=0.1.从t=0时刻开始,空间上加一个 如图乙所示的电场.(取水平向右的方向为正方 向,g取10 m/s2)求: (1)4秒内小物块的位移大小; (2)4秒内电场力对小物块所做的功.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在平行板电容器中的运动满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共1小题)1.如图所示,电子在电势差为的加速电场中由静止开始运动,然后射入电势差为的两块平行极板间的偏转电场中,在满足电子能射出平行极板区的条件下,下述四种情况中,一定能使电子的偏转角变大的是()A.变大,变大B.变小,变大C.变大,变小D.变小,变小二、多选题(共1小题)2.如图所示,平行金属板A、B水平正对放置,分别带等量异号电荷,一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.微粒从M点运动到N点动能一定增加B.微粒从M点运动到N点电势能一定增加C.微粒从M点运动到N点机械能可能增加D.若微粒带正电荷,则A板一定带正电荷三、计算题(共3小题)3.如图甲所示,水平放置的平行金属板A和B的距离为d,它们的右端放着垂直于金属板的靶MN,现在A.B板上加上如图乙所示的方波形电压,电压的正向值为,反向电压值为,且每隔变向1次。
现将质量为m的带正电,且电荷量为q的粒子束从AB的中点O以平行于金属板的方向射入,设粒子能全部打在靶上而且所有粒子在A.B间的飞行时间均为T。
不计重力的影响,试问:(1)定性分析在时刻从O点进入的粒子,在垂直于金属板的方向上的运动情况。
(2)在距靶MN的中心点多远的范围内有粒子击中?(3)要使粒子能全部打在靶MN上,电压的数值应满足什么条件?(写出、、、、的关系即可)4.如图所示,四分之一光滑绝缘圆弧轨道AP和水平绝缘传送带PC固定在同一竖直平面内,圆弧轨道的圆心为O,半径为R;P点离地高度也为R,传送带PC之间的距离为L,沿逆时针方向的传动,传送带速度V=,在PO的左侧空间存在方向竖直向下的匀强电场.一质量为m、电荷量为+q的小物体从圆弧顶点A由静止开始沿轨道下滑,恰好运动到C端后返回.物体与传送带间的动摩擦因数为μ,不计物体经过轨道与传送带连接处P时的机械能损失,重力加速度为g.求:(1)物体由P点运动到C点过程,克服摩擦力做功;(2)匀强电场的场强E为多大;(3)物体返回到圆弧轨道P点,物体对圆弧轨道的压力大小.5.电路如图所示,电源电动势E=28 V,内阻r=2 Ω,电阻R1=12 Ω,R2=R4=4 Ω,R3=8 Ω,C为平行板电容器,其电容C=3.0 pF,虚线到两极板距离相等,极板长l=0.20 m,两极板的间距d=1.0×10-2m.求:(1)若开关S处于断开状态,R3上的电压是多少?(2)当开关闭合后,R3上的电压会变化,那么电容器上的电压等于多少?(3)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0 m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取10m/s2)四、解答题(共5小题)6.如图所示,A、B、C为三块水平放置的平行金属板,板的厚度不计,间距均为d.A、B板中央有小孔,电路中三个电阻的阻值均为R,电源内阻也为R.现有一滴质量为m电荷量为q的带正电液滴在距A板小孔正上方为d的P处由静止开始下落,不计空气阻力,当地的重力加速度为,当它达到C板时速度恰为零.试求:(1)液滴从P处到达C板的过程中其电势能变化了多少?是增加还是减少?(2)电源电动势的大小;(3)液滴通过B板中央小孔时的速度大小。
7.相距很近的平行板电容器,在两板中心各开有一个小孔,如图甲所示,靠近A板的小孔处有一电子枪,能够持续均匀地发射出电子,电子的初速度为,质量为m,电量为-e ,在AB 两板之间加上图乙所示的交变电压,其中0<k<1,;紧靠B 板的偏转电场电压也等于U0,板长为L,两板间距为d,距偏转极板右端处垂直放置很大的荧光屏PQ。
不计电子的重力和它们之间的相互作用,电子在电容器中的运动时间可以忽略不计。
(1)试求在0—kT 与kT-T 时间内射出B 板电子的速度各多大?(结果用U0、e、m表示)(2)在0—T 时间内,荧光屏上有两个位置会发光,试求这两个发光点之间的距离。
(结果用L、d 表示,)(3)撤去偏转电场及荧光屏,当k 取恰当的数值时,使在0—T 时间内通过了电容器B 板的所有电子,能在某一时刻形成均匀分布的一段电子束,求k 值。
8.如图所示,在a、b两端有直流恒压电源,输出电压恒为U ab,R2=40Ω,右端连接间距d=0.04m、板长l=10cm的两水平放置的平行金属板,板间电场视为匀强电场。
闭合开关,将质量为m=1.6×10-6kg、带电量q=3.2×10-8C的微粒以初速度v0=0.5m/s沿两板中线水平射入板间。
当滑动变阻器接入电路的阻值为15Ω时,微粒恰好沿中线匀速运动,通过电动机的电流为0.5A。
已知电动机内阻R1=2Ω,取g=10m/s2。
试问:(1)输出电压为U ab是多大?(2)在上述条件下,电动机的输出功率和电源的输出功率?(3)为使微粒不打在金属板上,R2两端的电压应满足什么条件?9.示波器是一种用途十分广泛的电子测量仪器。
它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。
如图所示,图①是示波管的原理图,它是由电子枪、加速电场、竖直偏转电极YY′、水平偏转电极XX′和荧光屏等组成。
电子枪发射的电子打在荧光屏上将出现亮点。
若亮点很快移动,由于视觉暂留,能在荧光屏上看到一条亮线。
(1)质量为m电荷量为e的电子,从静止开始在加速电场中加速。
加速电压为U1,竖直偏转电极YY′之间的电压为U2,YY′之间的距离为d,电极极板的长和宽均为L,水平偏转电极XX′两极板间电压为0。
若电子被加速后沿垂直于偏转电场的方向射入电场,并最终能打到荧光屏上。
① 电子进入偏转电场时的速度大小;② 电子打到荧光屏上时的动能大小;(2)如果只在偏转电极XX′上加上如图②所示的电压,试在答题卡的图①上画出在荧光屏所能观察到的亮线的形状。
(3)如果在偏转电极YY′加上U y=U m sinωt的电压,同时在偏转电极XX′上加上图②所示的电压,试在答题卡的图②上画出所观察到的亮线的形状。
如果在此基础上将扫描范围的频率值减小到原来的一半,在答题卡的图③中画出此时的图像。
10.如图所示,从电子枪射出的电子束(初速度不计)经电压U1=2OOOV加速后,从一对金属板Y和Y’正中间平行金属板射入,电子束穿过两板空隙后最终垂直打在荧光屏上的O点。
若现在用一输出电压为U2=160V的稳压电源与金属板YY’连接,在YY’间产生匀强电场,使得电子束发生偏转。
若取电子质量为9×10-31kg,YY’两板间距d=2.4cm,板长l=6.0cm,板的末端到荧光屏的距离L=12cm,整个装置处于真空中,不考虑重力的影响,试回答以下问题:(1)电子束射入金属板YY’时速度为多大?(2)加上电压U2后电子束打到荧光屏上的位置到O点的距离为多少?(3)如果两金属板YY’间的距离d可以随意调节(保证电子束仍从两板正中间射入),其它条件都不变,试求电子束打到荧光屏上的位置到O点距离的取值范围。
答案部分1.考点:运动的合成与分解带电粒子在匀强电场中的运动试题解析:设电子被加速后获得初速为v0,则由动能定理得:,设极板长为l,则电子在电场中偏转所用时间:,;电子射出偏转电场时,平行于电场方向的速度:v y=at,可得:,故一定能使电子的偏转角变大的是U变小,U2变大,故ACD错误,B正确。
答案:D2.考点:带电粒子在匀强电场中的运动试题解析:以带电微粒为研究对象分析受力可知,微粒同时受到重力和电场力作用,由其运动轨迹的弯曲方向仅可判断出重力与电场力合力向下,而电场力方向可能竖直向上,亦可能竖直向下,故微粒从M点运动到N点合力做正功,其动能增大,机械能可能增加,A板带可能带正电荷,亦可能带负电荷,故AC正确。
故选AC答案:AC3.考点:带电粒子在匀强电场中的运动运动的合成与分解牛顿运动定律、牛顿定律的应用试题解析:(1)在时刻从O点进入的粒子,所受的电场力先向下后向上,则粒子先向下匀加速运动,再向下匀减速运动。
(2)当粒子在时刻进入电场中时,粒子将打在点下方最远点,离最远距离为:当粒子在时刻进入电场时,将打在点上方最远点.所以在距靶MN的中心点到有粒子击中。
(3)要使粒子能全部打在靶上,必须满足,解得:。
答案:(1)先向下匀加速运动,再向下匀减速运动;(2)到(3)4.考点:匀速圆周运动、角速度、线速度、向心加速度牛顿运动定律、牛顿定律的应用动能和动能定理带电粒子在匀强电场中的运动试题解析:(1)物体由P点运动到C点过程,由W f=f•Sf=μN,N=mg可得W f=μmgL(2)从A到C由动能定理:mgR+qER﹣μmgL=0解得:(3)物体从A到P由动能定理:所以:A返回P过程,先加速后匀速运动,返回P的速度为:在P点有牛顿第二定律:解得由牛顿第三定律,物体对圆弧轨道的压力大小F N′=答案:(1);(2);(3)5.考点:运动的合成与分解带电粒子在匀强电场中的运动电阻的串联、并联闭合电路的欧姆定律试题解析:(1)S断开时,电阻R3两端电压为U3==16V(2)S闭合后,外阻为R==6Ω路端电压为U=电容器上的电压等于电阻R3两端电压为(3)设微粒质量为m,电量为q,当开关S断开时有:当开关S闭合后,设微粒加速度为a,则设微粒能从C的电场中射出,则水平方向:t=竖直方向:由以上各式求得:y=6.25×103m>故微粒不能从C的电场中射出。
答案:(1)16V;(2)14V;(3)不能。
6.考点:带电粒子在匀强电场中的运动闭合电路的欧姆定律试题解析:(1)根据能的转化和守恒定律(或动能定理)可知,液滴从P处到达C板的过程中其电势能增加,增加的电势能为(2)根据闭合电路的欧姆定律,电路中的电流大小为间的电势差为间的电势差为,根据动能定理,带电液滴从开始下落到C板的过程中,有,解得(3)带电液滴从开始下落到B板的过程中,根据动能定理,有,联立解得:答案:(1)增加的电势能为(2) (3)7.考点:带电粒子在匀强电场中的运动试题解析:试题分析:(1)电子经过AB之间的电场加速,设在0—kT时间内通过B板后速度为,kT—T 时间内通过B板电子的速度,据动能定理有,①②且③由①②③解得④⑤(2)电子进入偏转电场后做类平抛运动。
在偏转电场中,0—kT时间内射出B板的电子的运动时间⑥侧移量⑦由③④⑥⑦得⑧电子打在荧光屏上的位置P1到屏中心的距离为,由几何关系可知,即⑨在偏转电场中,kT—T时间内射出B板的电子的运动时间⑩侧移量⑪由③⑤⑩⑪得⑫电子打在荧光屏上的位置P2到屏中心的距离为,由几何关系可知,即⑬两个发光点之间的距离⑭(3)形成均匀分布的一段电子束,即前后两段电子束的长度相等。