卫星载荷

卫星载荷
卫星载荷

一、红外成像技术概述

二、国内外卫星载荷研究现状

阿特拉斯-5火箭发射SBIRSGEO-1卫星:

世界协调时2011年5月7日18时10分,美国空军使用联合发射联盟公司(ULA)阿特拉斯-5火箭在卡纳维拉尔角空军基地成功发射首颗天基红外系统(SBIRS)地球同步轨道卫星GEO-1。GEO-1卫星星上载有扫描与凝视(staring sensors)传感器,且其红外敏感度及重访周期均较现役卫星星座有所提高。据该星建造方洛克希德·马丁公司(以下简称“洛·马公司”)消息,SBIRSGEO-1的卫星是目前技术最为先进的军事红外卫星,可大大提高美国的导弹预警能力,星上扫描传感器可进行大范围导弹发射侦察和覆盖全球的自然现象监测。同时,由于星载凝视传感器敏感性绝佳,因此其将用于小范围目标区域观测。

该“宇宙神”-5火箭将“天基红外系统”(SBIRS)“静地轨道”-1(GEO-1)卫星送入轨道。发射43分钟后,星箭分离。卫星距地约185千米,目标是远地点高度约为3.58万千米的轨道位置。美国空军SBIRS项目官员厄姆斯塔德(Ryan Umstattd)中校表示:由6个液体远地点发动机(LAE)组成的发动机组计划点火9天多,将卫星送至距地约3.54万千米的静地轨道上,并进行初始检测与运行。

在该轨道上,卫星将打开其防光设备(设计用于保护传感器有效载荷)、天线以以及有效载荷舱门。预计发射后35天,红外有效载荷(通过“视达地面”能力在短波、中波红外波段收集信息)将被开启,并开始传送来自卫星的原始数据。发射后18个月内会实现全面综合战术预警与攻击评估确认能力,以使卫星能够正式参与导弹防御。

日本ASTRO-F红外成像卫星的观测设备试验成功2004年12月初,日本ASTRO-F红外成像卫星的观测设备在住友重机械工业株式会社的Nihama工厂进行了试验,冷却剂和观测仪使用良好。这是该设备组装完后的首次试验。

此次试验对各种装置的性能进行了一周的测试,所获得的结果与组装前各单元的试验数据相当或更好。数据分析仍在进行中,当所有工作完成之后,将可获得最终的飞行评估结果。ASTRO-F卫星目前正在研制中,它将是日本第一个红外-射线天文卫星,用于对恒星和银河系的观测。

Glory 卫星主要收集地球大气中黑炭和气溶胶含量,以及记录太阳黑子对地球大气的长期影响。

气溶胶主要来自汽车尾气,工厂,海洋,火山喷发等,另外,大面积的森林,海洋浮游生物,土壤微生物都是其来源。

之所以同时探测地球大气中的黑炭与气溶胶,是因为这两者在地球温室效应上起到一定的作用,比如硫酸盐气溶胶和海盐气溶胶,能反射太阳辐射,对降低温室效应有作用,但是黑碳气溶胶和其他类型的碳粒子,就会吸收太阳辐射,对地球温室效应是正贡献。

三、红外探测器的发展

环境卫星有效载荷——红外相机

环境卫星有效载荷——红外相机 红外相机将来自地球表面环境地物的红外反射及辐射信号,经光学系统会聚镜成像到线列探测器上,完成光电信号的转换。探测器输出的电信号进行数字处理形成数字信号,并进行均匀性校正,形成近红外、短波红外、中波红外和长波红外四个红外通道4个通道的红外图像数据。 红外相机有近红外、短波红外、中波红外和长波红外四个红外通道,波段跨越0.75μm~12.5μm,光学口径200mm。红外相机的光路结构如图3.3-4所示,由主光学系统、后光学系统及其光学薄膜元件组成。环境目标信号经双面旋转扫描反射镜反射,进入同轴光学系统,以准平行光出射。分色片D1反射中长波红外波段,透射近红外短波红外波段,分色片D2反射近红外波段,透射短波红外波段。由各通道透镜组将信号会聚成像于各自对应的探测器组件上。各探测器焦平面组件均由探测器线列镶嵌以滤光片构成,以响应各光谱波段的信号,并形成4个光谱通道。中红外、长波红外两个线列探测器集成到同一个焦平面上,由一台斯特林制冷机进行制冷,制冷温度95K。 红外相机主要包括1台红外相机光机扫描头部、1台红外相机信息处理箱和1台斯特林制冷机控制箱。 选择同轴两反的卡塞格林系统作为主光学系统。系统的主镜为抛物面,副镜为双曲面,校正了系统的球差。主镜筒采用材料为殷钢,主镜采用石英材料。望远镜筒与副镜支架为一体化设计,这样加强了主镜与副镜的配合精度。副镜支架的肋板设计成倾斜面。在望远镜系统中,机械保证主镜和副镜安装后的同心度。红外相机成像方式选择多元并扫式。探测器采用多元器件,不同于推扫式的是多元探测器成像不是在穿轨方向而是在沿轨方向同时成像,其优点是在大的刈副宽度下可以有效地提高系统的探测灵敏度。 考虑到滤光片与探测器组合的分光方式在结构上比较紧凑,光学效率高,因此采用分色片先把近红外、短波红外波段与中红外、长波红外波段分离开,再通过各自的后光学系统会聚到滤光片-探测器组件上,形成红外相机所需要的4个探测波段。红外相机4个波段均采用自制的线列探测器,并采用校正黑体来代替冷空间,利用相机底板上参考黑体和侧壁上校正黑体两点,同时实现星上辐射基准和相机在轨的辐射校正。根据卫星系统要求,主要利用红外相机所获得的红外谱段的辐射信息探测陆面、水体和大气的热状况。红外相机具体技术技术性能和指标如下表所示。 项目指标 星下点像元分辨率150m(B1、B2、B3) ; 300m (B4), 刈宽(km)720 扫描视场角± 29° 谱段(μm)0.75~ 1.10 1.55~ 1.75 3.50 ~3.90 10.5 ~12.5 MTF0.280.270.260.25辐射分辨率(Ne△ρ或0.5%0.5%≤ ≤

常见的遥感卫星基本参数(2014最新版)解剖

常见的遥感卫星基本参数(最新版) 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型: (1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光 敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具 体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带 记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、 CBERS中巴资源卫星CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天平均降交点地方时为上午10:30 相邻轨道间隔时间为4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据, 成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 – 0.52(um)B2:0.52 – 0.59(um)B3:0.63 –0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天 底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890

常见遥感卫星的基本参数大全

常见遥感卫星的基本参数大全 1. BERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星。 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天,平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 –1.75(um)B8:2.08 –2.35(um)B9:10.4 –12.5(um)覆盖宽度:119.50公里空间分辨率:B6 –B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 –0.52(um)B2:0.52 – 0.59(um)B3:0.63 –0.69(um)B4:0.77 –0.89(um)B5:0.51 –0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 –0.69(um)B11:0.77 –0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS- 1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS- 1的数据。2002年我国将发射CBERS-2 卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 圈/分101.469轨道周期: 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 –0.59um 20米分辨率B2 0.61 –0.68um B3 0.78 –0.89um SWIR 1.58 –1.75um

常见地遥感卫星地介绍及具体全参数

常见的遥感卫星的介绍及具体参数 遥感卫星(remote sensing satellite )用作外层空间遥感平台的人造卫星。用卫星作为平台的遥感技术称为卫星遥感。通常,遥感卫星可在轨道上运行数年。卫星轨道可根据需要来确定。遥感卫星能在规定的时间覆盖整个地球或指定的任何区域,当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行遥感。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的图像数据通过无线电波传输到地面站,地面站发出指令以控制卫星运行和工作。以下列出较为常见的遥感卫星: 一、Landsat卫星 美国NASA的陆地卫星(Landsat)计划(1975年前称为地球资源技术卫星——ERTS ),从1972年7月23日以来,已发射7颗(第6颗发射失败)。目前Landsat1—4均相继失效,Landsat 5仍在超期运行(从1984年3月1日发射至今)。Landsat 7于1999年4月15日发射升空。其常见的遥感扫描影像类型有MMS影像、TM图像。 (一)、MSS影像 MSS影像为多光谱扫描仪(MultiSpectral Scanner)获取的图像,第一颗至第三颗地球卫星(Landsat)上反光束导管摄像机获取的三个波段摄影相片分别称为第1、2、3波段,多光谱扫描仪有4个波段获取的扫描影像被命名为4、5、6、7波段,两个波段为可见光波段,两个波段为近红外波段,此外,第三颗地球卫星上还供有热红外波段影像,这个影像称为第8波段,但使用不久,就因为一起的问题二关闭了。 表 1 :Landsat上MSS波段参数

(二)、TM影像 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。 影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。 因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更小比例尺专题图,修测比例尺地图的要求。 表 2 :Landsat上TM波段参数 (三)、ETM 1999年4月15日,美国发射了Landsat-7,它采用了增强-加型专题绘图仪(ETM)遥感器来获取地球表层信息,它与TM的区别在于增加了全色波段,分辨率为15米,并改进了热红外波段影像的分辨率。

国内外高分卫星参数

高分一号1 高分一号卫星是中国高分辨率对地观测系统的首 发星,突破了高空间分辨率、多光谱与 宽覆盖相结合的光学遥感等关键技术,设计寿命5 至8 年。高分辨率对地观测系统工程是 《国家中长期科学和技术发展规划纲要(2006~2020 年)》确定的16 个重大专项之一,由国 防科工局、总装备部牵头实施。 “高分一号”是我国高分辨率对地观测卫星系统重大专项(简称“高分专项”)的第一颗 卫星。“高分专项”于2010 年 5 月全面启动,计划到2020 年建成我国自主的陆地、大气和 海洋观测系统。尽管该“专项”主要是民用卫星,但外国专家认为,由于分辨率较高,也具

备相当价值的军事用途,识别飞机、坦克已经不成问题。 GF-1 卫星搭载了两台2m 分辨率全色/8m 分辨率多光谱相机,四台16m 分辨率多光谱相 机。卫星工程突破了高空间分辨率、多光谱与高时间分辨率结合的光学遥感技术,多载荷图 像拼接融合技术,高精度高稳定度姿态控制技术,5 年至8 年寿命高可靠卫星技术,高分辨率数据处理与应用等关键技术,对于推动我国卫星工程水平的提升,提高我国高分辨率数据自给率,具有重大战略意义。 “高分一号”的全色分辨率是2 米,多光谱分辨率为8 米。它的特点是增加了高分辨率 “高分一号”的多光谱相机,该相机的性能在国内投入运行的对地观测卫星中最强。此外,

宽幅多光谱相机幅宽达到了800 公里,而法国发 射的SPOT6 卫星幅宽仅有60 公里。“高分一号”在具有类似空间分辨率的同时,可以在更短的时间内对一个地区重复拍照,其重复周 期只有4 天,而世界上同类卫星的重复周期大多 为10 余天。可以说,“高分一号”实现了高 空间分辨率和高时间分辨率的完美结合。 实际上,“高分专项”是一个非常庞大的遥感技术 项目,包含至少7 颗卫星和其他观测 平台,分别编号为“高分一号”到“高分七号”,它们都将在2020 年前发射并投入使用。“高分一号”为光学成像遥感卫星;“高分二号”也是光学遥感卫星,但全色和多光谱分辨率都提高一倍,分别达到了 1 米全色和 4 米多光谱;“高分三号”为1 米分辨率;“高分四号”为地球同步轨道上的光学卫星,全色分辨率为50 米;“高分五号”不仅装有高光谱相机,而且拥

卫星通信发展趋势分析

卫星通信发展趋势分析 据悉,“十三五”期间,我国将建起一个全天候、安全可靠、自主可控的全球卫星宽带通信系统。在服务于国家“一带一路”战略和海外发展战略的同时,面向国内外航空机载、海事船载和陆地移动业务客户,提供高通量卫星资源和卫星宽带通信服务。 本版邀请中国航天科技集团公司所属单位相关业务专家,谈一谈高通量卫星和卫星宽带通信的那些事儿。 高通量通信卫星也称高吞吐量通信卫星,是相对于使用相同频率资源的传统通信卫星而言的,主要技术特征包括多点波束、频率复用、高波束增益等。 目前,海洋通信、民航通信和火车通信这三个领域,被看作高通量通信卫星系统应用正在进军的蓝海市场。 在宽带卫星通信发展动向方面,高清化、融合化、IP化、星座化是其几个主要趋势。 啥叫“高通量”? HTS可提供比常规通信卫星高出数倍甚至数十倍的容量,传统通信卫星容量不到10吉比特每秒(Gbit/s),HTS容量可达几十吉比特每秒到上百吉比特每秒。 按轨道划分,HTS卫星分为地球同步静止轨道(GEO)和非静止轨道两种类型,当前在轨应用的HTS卫星以GEO居多。 截止到2015年,全球已有48颗HTS卫星发射并在轨运行,主要包括运行在GEO 轨道的Kasat、卫讯-1(Viasat-1)、亚塞特卫星-1A/1B(Yahsat-1A/1B)、回声星-17(Echostar-17)、哈里斯-2(Hyas-2)和国际移动卫星-5(In-marsat-5)星座。 按计划,2016年将陆续发射Viasat-2、Echostar-19等。在未来3年里,还将有33颗HTS载荷卫星发射,届时,全球高吞吐量通信卫星总容量将达到1400Gbit/s。非静止轨道高通量卫星构建的系统较少,以O3b卫星为典型代表。 频率是建设通信卫星的基本要素。对高通量通信卫星而言,频率是影响其吞吐量的重要因素。高通量通信卫星可以工作于Ku或Ka频段,但目前大多数的高通量通信卫星采用的是Ka频段。 鉴于高通量卫星通信经济性方面的优势,电信服务提供商能够提供与地面4G网络服务抗衡的包月服务资费。 有资料统计,目前一颗HTS卫星的总容量超过100Gbit/s,但卫星建造、火箭发射、发射保险的费用与传统卫星持平,每Gbit/s的投资已经降到400万美元~500

常用遥感数据的遥感卫星基本参数大全

常用遥感数据的遥感卫星基本参数大全

常用遥感数据的遥感卫星基本参数大全 常用, 遥感数据, 遥感卫星, 基本参数, 大全 1、CBERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数: 4波谱范围:B6:0.50 –1.10(um)B7:1.55 –1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米 CCD相机:波段数: 5波谱范围:B1:0.45 –0.52(um)B2:0.52 –0.59(um)B3:0.63 –0.69(um)B4:0.77 –0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数: 2波谱范围:B10:0.63 –0.69(um)B11:0.77 –0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS-1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。 CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS-1的数据。 2002年我国将发射CBERS-2卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度: 60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围:

《气象数据元 卫星气象》编制说明

气象行业标准《气象数据元卫星气象》编制说明 一、工作简况 1. 任务来源 本标准由全国气象基本信息标准化技术委员会(SAC/TC 346)提出并归口。2019年4月22日由中国气象局下达国家气象信息中心(气法函[2019]25号),项目编号QX/T-2019-87。 2. 协作单位 无。 3. 主要起草人及所做工作 本标准主要起草人为国家卫星气象中心崔鹏、肖萌、贾中辉、亓永刚、张海真、高昂,其分工如下: 崔鹏,负责标准的起草,资料的汇总,对标准进行修改完善; 肖萌,负责本标准中数据元属性信息的调研和修改; 贾中辉,负责本标准格式和内容的检查; 亓永刚, 负责本标准中风云资料的收集、汇总 张海真,负责本标准内容的检查、意见的收集和汇总。 高昂,负责本标准意见的收集和汇总。 4. 主要工作过程 (1)成立起草组 2019年05月,编制单位成立了标准起草组,并制定了实施计划。起草组按计划进行了资料收集、工作分工。 (2)组织起草 2019年6月,认真学习《气象数据元:总则》、《气象要素分类与编码》(QX/T 133-2011)等相关标准,并查阅风云二号、风云三号、风云四号三个系列的极轨和静止气象卫星现有数据和产品的相关信息。 (3)完成初稿

2019年7月到9月,按照《气象数据元:总则》规定的数据元要求,完成卫星气象数据元的提取和总结,形成了标准草稿。标准编制组经过多次深入的讨论和充分的论证,不断进行修改完善,尤其是其中涉及的标准内容、技术方法等进行确认,形成初稿。 (4)征求意见 2019年10月到11月,起草组认真学习《气象数据元:总则》报批稿,对卫星气象数据元进行完善修改添加同义编码、关系、特征值等气象数据元属性,并进行了内部讨论,形成行标征求意见稿。 二、标准编制原则和确定标准主要内容的论据 1. 编制原则 本标准以QX/T-2018-33 气象行业标准《气象数据元总则》为基础,在编制过程中遵循总则气象数据元确定规则、数据元类型与描述方法等规定。同时依据卫星气象数据特点,按照总则确定的15个数据元属性,规定卫星气象相关数据元。为保持气象信息业务的延续性,同时还参考了行标《气象要素分类与编码》(QX/T 133-2011)、《气象卫星数据分类与编码规范》 (QX/T327-2016)中卫星气象产品分类和代码等相关信息。标准编制还参考了出版行业的相关编写规定,遵照中国气象局相关法律、法规、规章、技术政策、标准及其规范,以及气象行业标准的特点,本着简明、规范、实用的原则进行编制。 2.主要内容及确定依据 本标准按照《气象数据元总则》的要求,规定卫星气象相关数据元的编制原则和数据元,本标准适用于气象数据元中卫星气象相关数据元的采集、加工、应用和服务等业务环节。 本标准以风云二号、风云三号、风云四号三个系列的极轨和静止气象卫星现有数据和产品为研究对象。整理汇总国家卫星气象中心地面应用系统中现有数据和产品,分类提取数据集描述信息和属性信息,作为数据元分析的基础。对汇总的数据集描述信息和属性信息进行分析和整理,依照数据元规则进行分解,形成以现有风云气象卫星数据为基础的统一、规范、无歧异的卫星气象数据元。 首先,根据总则的分类要求,识别卫星观测要素是否可用其他要素类型定义,对无法用其他要素类型定义的数据元进行定义和进一步编制。对收集汇总的数据元与《气象要素分类与编码》和《气象卫星数据分类与编码规范》进行比对,对已定义且仍适用的数据元概念沿用其代码和中文名称,继承已有标识类属性,与现有气象标准保持一致性和连贯性;对未定义或已定义但不适用的数据元概念重新编码和定义。

常见遥感卫星基本参数

常见遥感卫星基本参数 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型: (1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光 敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具 体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带 记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、 CBERS中巴资源卫星CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天平均降交点地方时为上午10:30 相邻轨道间隔时间为4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据, 成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 – 0.52(um)B2:0.52 – 0.59(um)B3:0.63 –0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天 底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890

卫星载荷

一、红外成像技术概述 二、国内外卫星载荷研究现状 阿特拉斯-5火箭发射SBIRSGEO-1卫星: 世界协调时2011年5月7日18时10分,美国空军使用联合发射联盟公司(ULA)阿特拉斯-5火箭在卡纳维拉尔角空军基地成功发射首颗天基红外系统(SBIRS)地球同步轨道卫星GEO-1。GEO-1卫星星上载有扫描与凝视(staring sensors)传感器,且其红外敏感度及重访周期均较现役卫星星座有所提高。据该星建造方洛克希德·马丁公司(以下简称“洛·马公司”)消息,SBIRSGEO-1的卫星是目前技术最为先进的军事红外卫星,可大大提高美国的导弹预警能力,星上扫描传感器可进行大范围导弹发射侦察和覆盖全球的自然现象监测。同时,由于星载凝视传感器敏感性绝佳,因此其将用于小范围目标区域观测。 该“宇宙神”-5火箭将“天基红外系统”(SBIRS)“静地轨道”-1(GEO-1)卫星送入轨道。发射43分钟后,星箭分离。卫星距地约185千米,目标是远地点高度约为3.58万千米的轨道位置。美国空军SBIRS项目官员厄姆斯塔德(Ryan Umstattd)中校表示:由6个液体远地点发动机(LAE)组成的发动机组计划点火9天多,将卫星送至距地约3.54万千米的静地轨道上,并进行初始检测与运行。 在该轨道上,卫星将打开其防光设备(设计用于保护传感器有效载荷)、天线以以及有效载荷舱门。预计发射后35天,红外有效载荷(通过“视达地面”能力在短波、中波红外波段收集信息)将被开启,并开始传送来自卫星的原始数据。发射后18个月内会实现全面综合战术预警与攻击评估确认能力,以使卫星能够正式参与导弹防御。 日本ASTRO-F红外成像卫星的观测设备试验成功2004年12月初,日本ASTRO-F红外成像卫星的观测设备在住友重机械工业株式会社的Nihama工厂进行了试验,冷却剂和观测仪使用良好。这是该设备组装完后的首次试验。 此次试验对各种装置的性能进行了一周的测试,所获得的结果与组装前各单元的试验数据相当或更好。数据分析仍在进行中,当所有工作完成之后,将可获得最终的飞行评估结果。ASTRO-F卫星目前正在研制中,它将是日本第一个红外-射线天文卫星,用于对恒星和银河系的观测。 Glory 卫星主要收集地球大气中黑炭和气溶胶含量,以及记录太阳黑子对地球大气的长期影响。 气溶胶主要来自汽车尾气,工厂,海洋,火山喷发等,另外,大面积的森林,海洋浮游生物,土壤微生物都是其来源。 之所以同时探测地球大气中的黑炭与气溶胶,是因为这两者在地球温室效应上起到一定的作用,比如硫酸盐气溶胶和海盐气溶胶,能反射太阳辐射,对降低温室效应有作用,但是黑碳气溶胶和其他类型的碳粒子,就会吸收太阳辐射,对地球温室效应是正贡献。 三、红外探测器的发展

《卫星通信技术》完全

《卫星通信技术》 卫星通信:是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信 通信卫星:由一颗或多颗通信卫星组成,在空中对发来的信号起中继放大和转发作用。每颗通信卫星都由收发天线、通信转发器、跟踪遥测指令、控制和电源等分系统。 卫星轨道按卫星离地面的高度分为: ●HEO P14.高椭圆轨道,最近点为1000-21000km,最远点为39500-50600km ●MEO P14.中轨道,h≈10000km ●LEO P14.低轨道,700-1500km ●GEO P14.地球同步轨道,h≈35786km ●EIRP :(P115)把卫星和地球站发射天线在波束中心轴向上辐射的功率称为发送设备 的有效全向辐射功率(EIRP),即天线发射功率PT与天线增益GT的乘积,表征地球站或转发器的发射能力的重要指标 ●S-ALOHA:(P108)是以卫星转发器的输入端为参考点的埋在时间上等间隔的划分为 若干时隙,而每个站多发射的分组就必须进入指定的时隙,每个分组的持续时间将占满一个时隙。 ●P-ALOHA:(P107)纯ALOHA方式,在该系统中,各个地球站共用一个卫星转发器 的频段,各站在时间上随机地发射其数据分组。在发生碰撞,就会使数据分组丢失,各站将随机延迟一定时间后,再重发这个数据分组。 ●VSAT:即甚小口径天线终端,指一类具有甚小口径天线的小型地球站与一个大站协调 工作构成的卫星通信网 ●G/T :(P118)地面站性能指数(G:接收天线增益、T:等效噪声温度) ●GNSS :P213,即全球导航卫星系统,它是所有在轨工作的卫星导航定位系统的总称。 ●GMDSS:全球海上遇险与安全系统。该系统主要由卫星通信系统— INMARSAT (海事 卫星通信系统) 和COS-PAS/SARSAT(极轨道卫星搜救系统)、地面无线电通信系统(即海岸电台)以及海上安全信息播发系统三大部分构成 ●INMARSAT-A:(INMARSAT是国际移动通信卫星系统)P194,它属于模拟系统,其 终端通过直径大约为1m的抛物面天线提供话音,数据,电传,传真以及高速数据。提供一个话音和电传信道,可连接电传机或小型交换机等外设。

计算机网络原理 卫星通信系统

计算机网络原理卫星通信系统 卫星通信是航天技术和电子技术相结合而产生的一种重要通信方式。它是在19世纪60年代迅速发展起来的。通常卫星通信是以空间轨道中运行的人造卫星作为中继站,地球站作为终端站,来实现两个或者多个地球站之间的长距离大容量的区域性通信及至全球通信。1.卫星通信 通常,我们把用作通信的卫星叫通信卫星,这种卫星在地球赤道上空约36000公里的轨道上从西向东转动,方向和速度恰好与地球自转同步,在地面上看来是静止不动的,所以又称同步静止卫星。它为军事、政府、私人和商业用户等消费者提供通信服务,图12-8所示就为一个典型的卫星微波系统。 号,卫星使用的频率实质上与微波系统相同。卫星中继器称为发射机应答器,一个卫星可以有许多发射机应答器。一个卫星系统包括一个或多个卫星空间飞行器、地面控制站,以及为传输、接收和处理通过该卫星系统的陆地通信量而提供的地面站用户网络。进出卫星的传输被分为总线或有效负载。总线包括支持有效负载操作的控制机制。有效负载是实际的用户信息。 虽然卫星系统的类型很多,但是最流行的系统是用于通信、监视、天气和导航的系统。通信系统由政府、军队和商业通信公司广泛应用于在全世界各地的用户之间传输语音、数据和视频信息。天气和监视卫星主要由政府和军事机构使用,而导航卫星则几乎是每个人都会用到的,这包括政府、军队、市民和商业公司。 卫星通信系统按照卫星高度一般分为低轨道(LEO)、MEO(中轨道)或地球同步轨道(GEO)卫星。大多数LEO卫星的工作频率范围是1.0GHz至2.5GHz。如Motolora公司的基于卫星的移动电话系统Iridium就是一个LEO系统,它使用67个卫星星座在地球表面上大约480英里的轨道上运行。MEO卫星在1.2GHz至1.67GHz的频段内工作。如美国国防部的基于卫星的全球定位系统NAVSTAR就是一个MEO系统,其星座包括在地球表面上大约9500英里的轨道上运行的21个工作卫星和6个或更多的备用卫星。GEO是高空地球轨道卫星,其工作频率范围是2GHz至18GHz,运行轨道在地球表面以上的22300英里处。 另外,卫星通信系统按照其使用的空间轨道位置,还可以分为对地静止轨道(GEO)和非对地静止轨道(Non-GEO);按照其业务提供的范围可以分为全球卫星通信系统和区域卫

卫星通信系统复习纲要--个人辛苦总结

卫星通信系统复习纲要 第一章概述 1、卫星通信定义:是指利用人选地球卫星作为中继站转发或反射无线电信号,在两个或多个地球站之间进行的通信 2、静止卫星通信 静止卫星是指以赤道平面内的圆形轨道为运行轨道,运行方向与地球自转方向相同,公转周期和地球的自转周期同为24小时,与地球同步运行的卫星。在两个或多个以静止卫星作为中继站所进行的通信就称为静止卫星通信。 3、最少三颗卫星就可实现全球通信 若以120度的等间隔在静止轨道上配置三颗卫星,刚地球表面除了两极区未被卫星波束覆盖外,其他区域均在覆盖范围之内,而且其中部分区域为两个静止卫星波束的重叠地区,因此借助于在重叠区内地球站的中继(称之为双跳),可以实现在不同卫星覆盖区内地球站之间的通信。由此可见,只要用三颗等间隔配置的静止卫星就可以实现便于通信。 4、星蚀 静止卫星围绕地球赤道面旋转,当卫星、地球和太阳共处在一条直线上时,地球挡住了阳光对卫星的照射,卫星进入地球的阴影区,造成了卫星的日蚀——星蚀 5、日凌:静止卫星围绕地球赤道面旋转,当卫星、地球和太阳共处在一条直线上,这里地球站天线对准卫星的同时也就对准太阳,强大的太阳噪声进入地球站将造成通信中断-日凌中断 简要回答 6、卫星通信的优点和不足是什么? 优点:1)通信距离远,且费用与通信距离无关;2)覆盖面积大,可进行多址通信; 3)通信频带宽,传输容量大,适于多种业务传输;4)通信线路稳定可靠,通信质量高; 5)通信电路灵活;6)机动性好;7)可以自发自收进行监测 不足:1)卫星通信具有广播特性,一般来讲较易被窃听; 2)由于传播距离远产生较长时延,将带来回波干扰和话音重叠问题 3)受星蚀、日凌中断影响 7、卫星通信系统的组成包括什么? 主要由通信卫星、卫星通信地球站、测控系统和监测管理系统组成。 8、卫星通信的工作频段有哪些? 有:1、UHF波段400/200MHz 2、L波段1.6/1.5GHz 3、C波段6.0/4.0GHz 4、X波段8.0/7.0GHz 5、Ku波段14.0/12.4 GHz;14.011.0 GHz 6、Ka波段30/20 GHz 9、什么是移动卫星通信的电波衰落和多普勒效应? 电波在移动环境中传播时,会遇到各种物体,经反射、散射、绕射到达接收天线时已成为通过各个路径到达的合成波,由于各传播路径分量的幅度和相信各不相同,因此合成信号起伏很大,称为多径衰落 多普勒频移:当卫星与用户终端之间、卫星与基站之间、卫星与卫星之间存在相对运动时,接收端接收到的发射端载频发生频移 第二章、通信卫星和地球站设备概念 10、卫星轨道 地球绕卫星运行的运动轨迹叫卫星轨道 11、卫星运动规律 卫星运动的三个定律:1、卫星以地球中心为一焦点,作干净曲线运动。2、连接卫星与地球质量中心的矢径(即位置矢量),在单位时间内所扫过的面积相等。3、卫星绕地球公转周期的平方,与椭圆半长轴的立方成正比 12、摄动:由于一些次要因素的影响,卫星运动的实际轨道不断发生不同程度地偏离开普勒定律所确定的理想轨道的现象称为摄动13、如何保持卫星的轨道位置? 实现位置控制主要是靠星体上的轴向喷嘴与横向喷嘴来完成 14、按高度分卫星轨道如何分类? 静止轨道GEO、中轨道MEO、低轨道LEO、长椭圆轨道HEO 15、哪些因素导致卫星摄动?太阳、月亮引力的影响,2、地球引力场不均匀,3、地球大气层阻力4、太阳辐射压力 16、卫星姿态控制有哪些方法?最常用的是哪两种? 自旋稳定法、重力梯度稳定法、磁力稳定法和三轴稳定法;最常用的是自旋稳定法和三轴称稳定法 17、通信卫星由哪两部分组成?由空间平台和有效负荷两部分组成 18、通信卫星的有效载荷包括哪些?包括全部通信转发器和天线 19、卫星通信天线有哪两种?由于通信的微波定向天线分为哪三类? (1)全身天线和微波定向天线(2)全球波束天线、点波束天线、区域波束天线 20、卫星转发器分为哪两类?透明转发器和处理转发器 21、典型地球站有哪些部分组成? 由天线分系统,发射系统,接收分系统,信道终端设备分系统,伺服跟踪设备分系统,监控分系统,用户接口分系统和电源分系统组成 第三章卫星通信的多址技术 22、多址联接:是指多个地球站通过共同的卫星,同时建立各自的信道,从而实现各地球站相互之间通信的一种方式 23、ALOHA方式:是一种为交互计算机传输而设计的按需分配时分多址方式 24、卫星通信中常用的信道分配制度有哪些? (1)、预分配方式;(2)、按需分配方式(3)、随机分配方式25、什么是SCPC\FDMA方式? SCPC\FDMA方式是一种比较好的卫星通信体制。它是在每一载波上只传送一路电话,或相当于一路话的数据或电报,并且可以采用“话音激活”(又称话音开关)技术,不讲话时关闭所有虚渺,有话音时才发射载波。 26、FDMA产生互调干扰的主要原因是什么?减少互调干扰的方法有哪些? 主要原因:当卫星转发器的行波管放大器(TWTA)同时放大多个不同频率的信号时,由于输入、输出特性和调幅/调相转换特性的非线性,使输出信号出现各种组合频率成分。当这些组合频率成分汇入工作频带内时,就会造成干扰 几种常用减少互调干扰的方法: 1、载波不等间隔排列 2、对上行载波功率进行控制,合理选择行

卫星通信期末考试复习重点

一.名词解释 卫星通信:利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。 日凌中断:当卫星处在太阳和地球之间,并且三者在一条时间上时,卫星天线在对准卫星接收信号的同时,也会因对准太阳而受到太阳的辐射干扰,又由于地球站天线对准卫星的同时也就对准了太阳,使得强大的太阳噪声进入地球站,因此会造成通信中断,这种现象称为日凌中断。 星蚀现象:当地球处于卫星与太阳之间时,地球把阳光遮挡,卫星处于地球的阴影区,此时通信卫星上的太阳能电池不能正常工作,而星载蓄电池只能维持卫星自转,不能支持转发器工作,这种现象造成的通讯中断称为星蚀现象。 多址技术:多个地球站通过同一颗卫星建立两址和多址之间的通信的技术。FDMA:是一种把卫星占用的频带按频率高低划分给各地面站的多址方式。CDMA:是一种给各地球站分配一个特殊的地址码(伪随机码)的扩频通信多址方式。 复用技术: 个人认为,复用技术和多址技术最大的区别在于应用的领域不同。 复用这个词通常用在传输上,将一个物理信道根据时间、频率、空间等资源划分为多个虚拟信道。这么做的好处有二:一是减少管道的个数,为运营商减少线路成本;二是提升单通道的容量。从作用上看都是针对传输而言的,与具体用户无关。 多址则应用在接入中,特别是移动通信。我们知道在同一个基站下,不同的用户利用相同的资源(同一时间,同一频率)发出通信请求肯定会发生冲突。而多址技术正是用来解决这个问题:如何划分资源块,使更多的用户终端(如手机)能够在不发生冲突的情况下获得服务。当然,处理好用户接入的问题能够提升服务质量并带来商业效益。 总的来说,两个技术十分接近,都是针对资源进行细粒度的划分和重用,但应用的领域和目的不大相同。 2、多址的“址”在移动通信中是指用户临时占用的信道,多址就是要给用户动态分配一种地址资源——信道,当然这种分配只是临时的; 3、多址和复用的区别还在于,多址技术是要根据不同的“址”来区分用户;复用是要给用户一个很好的利用资源的方式。一句话“复用针

NOAA系列极轨气象卫星数据格式

NOAA系列极轨气象卫星 数据格式

目录 1卫星介绍 (1) 2有效载荷介绍 (2) 3NOAA 1B数据格式 (4) 3.1 压缩形式的1B格式 (4) 3.2 NOAA_K/L/M/N(15,16,17..)卫星1B数据格式 (7) 3.3 NOAA-16/17A TOVS L EVEL 1数据文件格式 (13)

1卫星介绍 目前我国接收、存档和使用的NOAA系列卫星主要分为美国第四代(NOAA-9--NOAA-14)和第五代(NOAA-15--NOAA-17)极轨气象卫星,它们的共同点是卫星姿态为三轴稳定,扫描率为6条扫描线/秒,对地扫描角±55.4度,星下点分辨率1.1公里,卫星轨道是太阳同步轨道,高度在800-850.0公里之间,倾角为98.6-99.1度之间,偏心率小于10E-4。周期101-102分。24小时内卫星绕地球运行14圈左右。回归周期9天左右,所不同的第五代卫星在AVHRR探测器安装改进的甚高分辨率辐射计3型(AVHRR/3),增加CH3A(同CH3B进行时间切换),同时TOVS变为ATOVS,增加微波探测器等先进仪器,并且预处理生成的1B文件由压缩形式改变成二进制长字节文件。现将卫星某些轨道参数介绍如下: NOAA-11卫星: 发射日期1988年9月24日,正式运行日期1988年11月8日 轨道高度:841公里轨道倾角:98.9度轨道周期:101.8分 NOAA-12卫星: 发射日期1991年5月14日,正式运行日期1991年9月17日 轨道高度:804公里轨道倾角:98.6度轨道周期:101.1分 NOAA-14卫星: 发射日期1994年12月30日,正式运行日期1985年4月10日 轨道高度:845公里轨道倾角:99.1度轨道周期:101.9分 NOAA-15卫星: 发射日期1998年5月13日,正式运行日期1998年12月15日 轨道高度:808公里轨道倾角:98.6度轨道周期:101.2分 NOAA-16卫星: 发射日期2000年9月12日,正式运行日期2001年3月20日 轨道高度:850公里轨道倾角:98.9度轨道周期:102.1分 NOAA-17卫星:

遥感卫星影像数据信息提取

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1)光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、landsat(etm)、rapideye、alos、Kompsat卫星、北京二号、资源三号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。 (2)雷达卫星影像系列 合成孔径雷达(SAR)观测星座。errasar-x、radarsat-2、alos、高分三号卫星围绕行业及市场应用对自然灾害监测、资源监测、环境监测、农情监测、桥隧形变监测、地面沉降、基础地理信息、全球变化信息获取等全天候、全天时、多尺度观测,以及高精度形变观测业务需求,发挥SAR卫星在复杂气象条件下的观测优势,与光学观测手段相互配合,建设高低轨道合理配置、多种观测频段相结合的卫星星座,形成多频段、多模式综合观测能力 (3)历史卫星影像系例 锁眼卫星影像1960年至1980年代的影像,高分辨率0.6米,已在中国各个行业得到广泛应用。 北京揽宇方圆信息技术有限公司公司为北京市创新企业,通过了严格国际质量体系认证,产品和服务质量均有着优良的保证,曾独立提供国家重大遥感图像工程项目和遥感图像处理项目,经过多年在遥感行业的积累,在遥感影像数据供应方面形成了一整套解决方

相关文档
最新文档