高中平面解析几何知识点总结(直线、圆、椭圆、曲线)

合集下载

高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,主要研究几何图形在坐标系中的性质和关系。

在高中数学中,解析几何是一个重要的学习内容。

本文将对高中数学中的解析几何知识点进行总结,帮助读者更好地理解和掌握相关知识。

一、平面直角坐标系平面直角坐标系是解析几何的基础,用来描述平面上的点和直线。

平面直角坐标系由x轴和y轴组成,它们相交于原点O。

在平面直角坐标系中,每个点都可以用有序数对(x, y)表示,其中x是该点在x轴上的坐标,y是该点在y轴上的坐标。

二、点的位置关系在平面直角坐标系中,可以根据点的坐标确定其位置关系。

1. 同一直线上的点:设A(x₁, y₁)、B(x₂, y₂)和C(x₃, y₃)是平面直角坐标系中的三个点,如果它们满足斜率相等的条件,即 (y₂ - y₁) / (x₂ - x₁) = (y₃ - y₁) / (x₃ - x₁)那么点A、B和C在同一直线上。

2. 垂直关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率互为负倒数,即(y₂ - y₁) / (x₂ - x₁) = -1 / ((y₄ - y₃) / (x₄ - x₃))那么直线AB和CD垂直。

3. 平行关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率相等,即(y₂ - y₁) / (x₂ - x₁) = (y₄ - y₃) / (x₄ - x₃)那么直线AB和CD平行。

三、直线的方程在解析几何中,直线可以用不同的形式表示其方程。

常见的有点斜式、斜截式和一般式。

1. 点斜式:设直线L过坐标系中的点A(x₁, y₁)且斜率为k,那么直线L的点斜式方程为y - y₁ = k(x - x₁)2. 斜截式:设直线L与y轴相交于点B,且直线L的斜率为k,那么直线L的斜截式方程为y = kx + b3. 一般式:设直线L的方程为Ax + By + C = 0,其中A、B、C为常数且A和B不同时为0,那么该直线L的一般式方程为Ax + By + C = 0四、直线的性质在解析几何中,对于两条直线的位置关系,有以下几个重要的性质。

高中数学平面解析几何知识点总结

高中数学平面解析几何知识点总结

平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。

平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。

在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。

1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。

常见的坐标系有直角坐标系和极坐标系两种。

直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。

平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。

例如,点A(x,y)表示了点A在坐标系中的位置。

极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。

在极坐标系中,点的坐标表示为(r,θ)。

2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。

当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。

另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。

3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。

在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。

4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。

这些曲线都有各自的方程形式,在解析几何中有着重要的应用。

5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

平面解析几何知识总结

平面解析几何知识总结

1、直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y )2、一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:BCx B A y --=,即,直线的斜率:BAk -=. 3、两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .4、平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 5.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA C By Ax d +++=.6.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.7.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=. (2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=. (3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数. ② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.8.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . 注)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. 1、圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)2.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d3.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- . (3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =. 4.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 三、求曲线方程的步骤:(1)建立适当的坐标系,用有序实数对(,)x y 表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{}()P M p M =; (3)用坐标表示条件()p M ,列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.简言之:①建系、取点 ②列式 ③代换 ④化简 ⑤证明.四、椭圆1、椭圆的定义可用集合语言表示为:{}12122,2P M MF MF a a F F =+=>注意:当122a F F =时,表示线段12F F ;当122a F F <时,轨迹不存在. 2(e 可以刻画椭圆的扁平程度,e 越大,椭圆越扁,e 越小,椭圆越圆.)222a b c =+ 2.点P 是椭圆上任一点,F 是椭圆的一个焦点,则max PF a c =+,min PF a c =-. 3.点P 是椭圆上任一点,当点P 在短轴端点位置时,12F PF ∠取最大值.4.椭圆的第二定义:当平面内点M 到一个定点(,0)(0)F c c >的距离和它到一条定直线l :2a x c=的距离的比是常数(01)ce e a=<< 时,这个点的轨迹是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的 离心率.5直线与椭圆位置关系(1)直线与椭圆的位置关系及判定方法(2)弦长公式:设直线y kx b =+交椭圆于111222(,),(,)P x y P x y则1212||PP x =-,或1212||PP y =-(0)k ≠. .椭圆方程22221(0)x y a b a b+=>> 常用三角换元为cos ,sin x a y b θθ==五、双曲线1.双曲线的定义可用集合语言表示为:{}12122,2P M MF MF a a F F =-=<.注意:当122a F F =时,表示分别以1F 、2F 为端点的两条射线;当122a F F <时,轨迹不存在. 2.双曲线的标准方程与几何性质:(注:222c a b =+; e 越大,双曲线的张口就越大.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e =3.双曲线的第二定义:当平面内点M 到一个定点(,0)(0)F c c >的距离和它到一条定直线l :2a x c=的距离的比是常数(1)ce e a=> 时,这个点的轨迹是双曲线,定点是双曲线的焦点,定直线叫做双曲线的准线,常数e 是 双曲线的离心率.4.直线与双曲线位置关系同椭圆. 特别地,直线与双曲线有一个公共点,除相切外还有当直线与渐进线平行时,也是一个公共点.5.共渐近线的双曲线可写成2222(0)x y a b λλ-=≠ ;共焦点的双曲线可写成2222221()x y b a a b λλλ-=-<<-+. 六、抛物线抛物线的标准方程与简单几何性质:注意:1. p 的几何意义:p 表示焦点到准线的距离. 2p 表示抛物线的通径(过焦点且垂直于轴的弦).2. 若点00(,)M x y 是抛物线22(0)y px p =>上任意一点,则02p MF x =+. 3.若过焦点的直线交抛物线22(0)y px p =>于11(,)A x y 、22(,)B x y 两点,则弦长12AB x x p =++.。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结1.直线方程直线和圆的方程是解析几何中的重要知识点之一。

在直线方程的研究中,我们需要掌握以下几个要点:1.1 直线的倾斜角直线的倾斜角是指一条直线向上的方向与x轴正方向所成的最小正角。

当直线与x轴平行或重合时,其倾斜角为0度或180度。

需要注意的是,当直线垂直于x轴时,其斜率不存在。

1.2 直线方程的几种形式直线方程可以表示为点斜式、截距式、两点式和斜截式。

其中,当直线经过两点时,即在x轴和y轴上的截距分别为a和b(a≠0,b≠0)时,直线方程为y = (-a/b)x + 1.1.3 直线系直线系是指斜截式方程y = kx + b中的k和b均为确定的数值时,所表示的一组直线。

当b为定值,k变化时,它们表示过定点(0,b)的直线束;当k为定值,b变化时,它们表示一组平行直线。

2.平行和垂直的直线在解析几何中,平行和垂直的直线是常见的情况。

判断两条直线是否平行或垂直,需要注意以下几点:2.1 两条直线平行的条件两条直线平行的条件是:它们是两条不重合的直线,且在它们的斜率都存在的前提下,斜率相等。

需要特别注意的是,抽掉或忽视其中任一个“前提”都会导致结论的错误。

2.2 两条直线垂直的条件两条直线垂直的条件是:它们的斜率之积为-1.同样需要注意的是,在判断两条直线是否垂直时,需要确保它们的斜率都存在。

以上是解析几何中直线方程和平行、垂直直线的基本知识点总结。

掌握这些知识点,对于研究和理解解析几何的其他内容将会有很大的帮助。

本文主要介绍了直线和圆的方程,其中包括直线的平行和垂直方程,过定点的直线方程以及过两条直线交点的直线方程等内容。

同时还介绍了关于点和直线对称的性质,以及圆的标准方程和特例。

下面对每个部分进行小幅度的改写和格式修正。

一、直线方程1.直线的平行和垂直方程直线的平行和垂直方程是很重要的概念,它们可以帮助我们更好地理解直线的性质和特点。

其中,与直线 Ax+By+C=0平行的直线方程是 Ax+By+m=0(m为实数,且C≠m);与直线Ax+By+C=0 垂直的直线方程是Bx-Ay+m=0(m为实数)。

解析几何知识点总结高中

解析几何知识点总结高中

解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。

解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。

在高中数学的学习中,解析几何是一个重要的知识点。

在本文中,将详细介绍一些高中解析几何的知识点。

1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。

我们可以通过它来描述到两个物体之间的空间位置关系。

下面是二元一次方程的一般式子:ax + by + c = 0。

其中,a、b、和c是常数,x和y是未知数。

在解析几何中,二元一次方程代表一条直线。

该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。

直线的一般式子可以根据两个点或点与斜率之间的关系来确定。

如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。

其中,k为直线的斜率,b为直线的截距。

另一种方法是给定点和斜率的值。

如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。

这种表示形式称为点斜式。

2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。

标准方程如下:(x – a)^2 + (y – b)^2 = r^2。

其中,a和b是圆心的坐标,r是圆的半径。

通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。

该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。

其中,D、E和F是常数。

该表达式描述的圆方程称为一般圆方程。

3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。

在空间几何中,一个点由三个坐标表示。

直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。

空间几何中的一些重要概念包括向量,对称和距离。

向量是大小和方向的量,可以使用两点之间的差值来描述。

高考数学平面解析几何的复习方法总结

高考数学平面解析几何的复习方法总结

2019年高考数学平面解析几何的复习方法总结在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。

在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。

要想学好这部分知识,在高考总不丢分,以下几点是很关键的。

突破第一点,夯实基础知识。

对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。

只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。

(一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。

在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。

倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。

②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。

角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。

角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。

以此为基础突破,将直线方程的五种不同的形式套入其中。

直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。

在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。

(三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。

对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。

只有这样,才能更加完整的掌握与圆有关的所有的知识。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结在高中数学的学习中,平面解析几何是一个重要的板块,它将代数与几何巧妙地结合在一起,为我们解决各种几何问题提供了有力的工具。

下面就让我们来详细总结一下这部分的知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π) 。

倾斜角为 0 时,直线与 x 轴平行或重合;倾斜角为π/2 时,直线与 x 轴垂直。

2、直线的斜率过两点 P(x₁, y₁),Q(x₂, y₂)(x₁ ≠ x₂)的直线的斜率 k =(y₂y₁) /(x₂ x₁) 。

当直线与 x 轴垂直时,斜率不存在。

3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上一点,k 是直线的斜率。

(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上两点。

(4)截距式:x / a + y / b = 1 ,其中 a ,b 分别是直线在 x 轴和 y 轴上的截距。

(5)一般式:Ax + By + C = 0 (A,B 不同时为 0)。

4、两条直线的位置关系(1)平行:两条直线斜率相等且截距不同。

(2)垂直:两条直线斜率的乘积为-1 (当其中一条直线斜率为0 ,另一条直线斜率不存在时也垂直)。

5、点到直线的距离公式点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。

二、圆1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b) 是圆心坐标,r 是半径。

2、圆的一般方程x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0 ),圆心坐标为(D/2, E/2) ,半径 r =√(D²+ E² 4F) / 2 。

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k ,则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o 90=α;斜率不存在; 二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线; ②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+by a x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

高考数学中的平面解析几何知识点整理

高考数学中的平面解析几何知识点整理

高考数学中的平面解析几何知识点整理平面解析几何是高中数学的重要知识点,也是高考数学必考的部分。

平面解析几何涉及坐标系、直线、圆、双曲线、椭圆、抛物线等内容,需要注重理论的掌握、题目的练习和解题技巧的提高。

本篇文章就高考数学中平面解析几何的知识点进行整理和总结,帮助学生更好地应对高考数学。

一、坐标系坐标系是平面解析几何的基础,需要掌握笛卡尔坐标系和极坐标系。

笛卡尔坐标系是平面上以两条相互垂直的直线为坐标轴,确定一点的位置需要用到两个数,称为该点的坐标。

极坐标系是以圆心为原点,以极轴为基准线的坐标系。

一个点在极坐标系中的坐标表示为(r,θ),其中r为该点到圆心的距离,θ为该点与极轴正方向的夹角。

二、直线直线是平面解析几何中最基本也最重要的图形。

直线的斜率、截距和两点式都是需要掌握的公式。

斜率表示直线在笛卡尔坐标系中的倾斜程度,截距表示直线与坐标轴的交点,两点式表示直线经过的两个点的坐标。

三、圆圆是平面上与一个点距离相等的点的集合。

圆的一般式、标准式、参数式都是需要掌握的公式。

一般式表示圆心坐标为(h,k),半径为r的圆,标准式表示圆心在原点,半径为r的圆,参数式表示圆心坐标为(a,b),半径为r的圆,其中参数t在区间[0,2π)内变化。

四、椭圆椭圆是平面上到两个固定点F1和F2距离之和等于常数2a的点的集合。

椭圆的标准式、参数式和离心率都是需要掌握的公式。

标准式表示椭圆的长轴在x轴上,椭圆的中心在原点,离心率小于1;参数式表示椭圆的中心在(a,b)处,椭圆的长轴倾斜角度为θ,离心率小于1。

五、抛物线抛物线是平面上到一个定点F距离等于到另一个定点D的距离的平方的定点P的集合。

抛物线的标准式、参数式和焦距都是需要掌握的公式。

标准式表示抛物线的焦点在原点,开口朝上或朝下;参数式表示抛物线的焦点在(a,b)处,开口朝上或朝下。

六、双曲线双曲线是平面上到两个定点F1和F2距离之差等于常数2a的点的集合。

双曲线的标准式、参数式和离心率都是需要掌握的公式。

高三数学复习口诀:平面解析几何

高三数学复习口诀:平面解析几何

学习没有界限,只有努力了,拼搏了,奋斗了,人生才不会那么枯燥无味。

查字典数学网为了帮助各位高中学生,整理了高三数学复习口诀:平面解析几何一文:高三数学复习口诀:平面解析几何《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

高三数学复习口诀:平面解析几何由查字典数学网为您整理提供,望各位考生能够努力奋斗,成绩更上一层楼。

高中数学解析几何总结非常全

高中数学解析几何总结非常全

高中数学解析几何总结非常全解析几何是数学中一个非常重要的分支,它凭借着坐标系的引入和解析法的运用,把几何图形的特征用精确的数学语言描述。

本篇文章主要围绕高中数学解析几何的知识点进行总结,旨在帮助读者更好的掌握该学科。

一、平面直角坐标系平面直角坐标系指由二维直角坐标系(x,y) 和坐标平面上给定的一个原点(O) 共同构成的平面。

坐标系的基础知识对解析几何的学习至关重要,因此我们需要掌握如下概念:1. 笛卡尔坐标系平面直角坐标系又称为笛卡尔坐标系,是二维空间中的一种坐标系。

该坐标系中,平面上的任意一点P的坐标(x,y) 是由P点在x轴、y轴上的投影所确定的。

2. 坐标轴平面直角坐标系中的两条坐标轴分别是x轴和y轴,它们相交于坐标系的原点O。

3. 坐标变化在平面直角坐标系中,任意一点P(x,y) 关于x轴、y轴、原点O的对称点分别是P'(x,-y)、P'(-x,y) 和P'(-x,-y)。

二、直线及其方程解析几何中的直线是平面上的一种基本几何元素,由于它们的性质非常重要,因此直线及其方程的知识点也是解析几何中的核心内容。

我们需要掌握以下知识点:1. 直线的方程直线的一般式和斜截式是解析几何中最为常用的两种方程。

(1)直线的一般式:Ax+By+C=0在直线的一般式中,A、B、C 均为实数,其中 A 和 B 不同时为零。

(2)直线的斜截式:y=kx+b在直线的斜截式中,k 为直线的斜率,即斜线的倾斜程度。

斜率为0的直线是水平线,斜率为正数的直线是上升的,斜率为负数的直线是下降的。

2. 直线的截距式直线的截距式比较简单,它是指直线在x、y轴上截距所组成的一种方程形式,可以用来求解直线的截距。

3. 直线之间的关系直线之间的关系有平行、垂直等多种情况,我们需要掌握这些关系的性质和求解方法。

三、圆与圆的方程圆是解析几何中的另一个重要几何元素,它可以用一个点和一个距离来描述。

在本篇文章中,我们需要掌握以下知识点:1. 圆的一般式圆的一般式为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为圆的半径。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。

2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。

1)倾斜角为90度的直线没有斜率。

2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。

当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。

二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。

需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。

特别地,斜率存在且经过坐标原点的直线方程为y=kx。

需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

需要注意的是,不能表示与x轴和y轴垂直的直线。

4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。

反之,任何一个二元一次方程都表示一条直线。

首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。

高中数学知识点:平面解析几何初步知识点总结

高中数学知识点:平面解析几何初步知识点总结

高中数学知识点:平面解析几何初步知识点总结高中数学知识点:平面解析几何初步知识点总结
平面解析几何初步:
①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。

直接考查主要考查直线的倾斜角、
直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现
在高考试卷中,主要考查直线与圆锥曲线的综合问题。

②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆
的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为
圆的切线问题。

③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要
的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。

空间直角坐标系也是
解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排
除出现考查基础知识的选择题和填空题。

高中解析几何知识点

高中解析几何知识点

高中解析几何知识点1.坐标系和坐标表示方法:-笛卡尔坐标系及其性质:直角坐标系中,平面上的每个点都可以用一个有序数对表示。

-参数方程和参数化表示:给定直角坐标系中的方程,如直线、曲线等,可以通过参数方程或参数化表示,简化计算过程。

2.向量及其运算:-向量的表示方法:向量可以用有向线段表示,也可以用坐标表示。

-向量的基本运算:向量的相等、相反、数乘、加减等运算法则。

-向量的数量积和向量积:向量的数量积和向量积的定义及其性质。

3.点、线、面及其性质:-直线与平面的位置关系:直线与平面的相交、平行、重合等关系。

-三角形和四边形的性质:三角形和四边形的角度、边长、面积、重心、外心、内心等性质。

4.平面解析几何:-直线的方程:直线的点斜式、两点式、截距式、一般式等方程及其应用。

-圆的方程:圆的标准式、一般式、截距式等方程及其应用。

5.空间解析几何:-空间直线的方程:空间直线的参数方程、一般方程、两平面交线等方程及其应用。

-空间平面的方程:空间平面的点法式、一般式、截距式等方程及其应用。

6.变换与坐标运算:-平移、旋转和对称变换:平面和空间中图形的平移、旋转和对称的定义和性质。

-坐标运算:点的对称、平移、旋转的坐标运算方法。

7.空间几何体的性质:-圆锥曲线的方程:椭圆、双曲线和抛物线的标准方程及其性质。

-空间几何体的体积和表面积:球、柱体、锥体等空间几何体的体积和表面积的计算方法。

以上是高中解析几何的一些重要知识点,它们是数学学习中的基础,也是解决实际问题的重要工具。

在学习解析几何时,需要注重理论和实践结合,通过大量的练习和应用,掌握解析几何的核心概念和方法,提高数学解决问题的能力。

高中数学知识点总结(第九章 平面解析几何 第九节 曲线与方程)

高中数学知识点总结(第九章 平面解析几何 第九节 曲线与方程)

第九节 曲线与方程一、基础知识1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明化简后的方程的解为坐标的点都在曲线上.(1)如果曲线C 的方程是f (x ,y )=0, 那么点P 0(x 0,y 0)在曲线C 上的充要条件是f (x 0,y 0)=0.(2)“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件.坐标系建立的不同,同一曲线在不同坐标系中的方程也不同,但它们始终表示同一曲线. 有时此过程可根据实际情况省略,直接列出曲线方程.考点一 直接法求轨迹方程1.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且Q P ―→·Q F ―→=FP ―→·F Q ―→,则动点P 的轨迹C 的方程为( )A .x 2=4yB .y 2=3xC .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q(x ,-1). ∵Q P ―→·Q F ―→=FP ―→·F Q ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y ,∴动点P 的轨迹C 的方程为x 2=4y .2.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.则动点P 的轨迹方程为________________.解析:因为点B 与点A (-1,1)关于原点O 对称, 所以点B 的坐标为(1,-1).设点P 的坐标为(x ,y ),由题意得y -1x +1·y +1x -1=-13,化简得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1). 答案:x 2+3y 2=4(x ≠±1)3.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为____________________.解析:设A (x ,y ),由题意可知D ⎝⎛⎭⎫x 2,y 2. ∵|CD |=3,∴⎝⎛⎭⎫x 2-52+⎝⎛⎭⎫y22=9, 即(x -10)2+y 2=36, 由于A ,B ,C 三点不共线, ∴点A 不能落在x 轴上,即y ≠0,∴点A 的轨迹方程为(x -10)2+y 2=36(y ≠0). 答案:(x -10)2+y 2=36(y ≠0)考点二 定义法求轨迹方程[典例精析]已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.[解] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>|MN |=2.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).[解题技法]定义法求曲线方程的2种策略(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.[题组训练]如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|C Q|+|AP |+|B Q|=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点). 设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝⎛⎭⎫|AB |22=3, 所以曲线M 的方程为x 24+y 23=1(y ≠0).考点三 代入法(相关点)求轨迹方程[典例精析]如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.[解] (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x ,设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,y 1≠0,y 2≠0.切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212, 代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0, 由Δ=0,解得k =1y 1,∴l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y22,解得⎩⎨⎧x =y 1y 22,y =y 1+y22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎨⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x.代入⎩⎨⎧x =y 1y 22,y =y 1+y22,可得M (x ,y )满足⎩⎨⎧x =-8x 0,y =-y0x 0,可得⎩⎨⎧x 0=-8x,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1. 考虑到x 0∈[2,22],知x ∈[-4,-22],∴动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].[解题技法]“相关点法”求轨迹方程的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f x ,y ,y 1=g x ,y ;(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.[题组训练]已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝⎛⎭⎫33,0的直线l 与曲线E 交于点A ,B ,且MB ―→=-2MA ―→.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),∵B (0,2),M ⎝⎛⎭⎫33,0,故MB ―→=⎝⎛⎭⎫-33,2,MA ―→=⎝⎛⎭⎫x 0-33,y 0.由于MB ―→=-2MA ―→,∴⎝⎛⎭⎫-33,2=-2⎝⎛⎭⎫x 0-33,y 0.∴x 0=32,y 0=-1,即A ⎝⎛⎭⎫32,-1. ∵A ,B 都在曲线E 上, ∴⎩⎪⎨⎪⎧ a ·02+b ·22=1,a ·⎝⎛⎭⎫322+b ·-12=1,解得⎩⎪⎨⎪⎧a =1,b =14. ∴曲线E 的方程为x 2+y 24=1. [课时跟踪检测]A 级1.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC ―→=λ1OA ―→+λ2OB ―→(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:选A 设C (x ,y ),因为OC ―→=λ1OA ―→+λ2OB ―→, 所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹是直线,故选A.2.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A ­B ­C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D 当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 所示,故选D.3.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2x B.(x -1)2+y 2=4 C .y 2=-2xD .(x -1)2+y 2=2解析:选D 如图,设P (x ,y ), 圆心为M (1,0).连接MA ,PM , 则MA ⊥P A ,且|MA |=1, 又因为|P A |=1,所以|PM |=|MA |2+|P A |2=2, 即|PM |2=2,所以(x -1)2+y 2=2.4.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2P A ―→,且O Q ―→·AB ―→=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP ―→=2P A ―→,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q(-x ,y ),故由O Q ―→·AB ―→=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).5.如图所示,已知F 1,F 2是椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 是椭圆Γ上任意一点,过F 2作∠F 1PF 2的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .直线 B.圆 C .椭圆D .双曲线解析:选B 延长F 2Q ,与F 1P 的延长线交于点M ,连接O Q.因为P Q 是∠F 1PF 2的外角的角平分线,且P Q ⊥F 2M ,所以在△PF 2M 中,|PF 2|=|PM |,且Q 为线段F 2M 的中点.又O 为线段F 1F 2的中点,由三角形的中位线定理,得|O Q|=12|F 1M |=12(|PF 1|+|PF 2|).根据椭圆的定义,得|PF 1|+|PF 2|=2a ,所以|O Q|=a ,所以点Q 的轨迹为以原点为圆心,半径为a 的圆,故选B.6.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是____________________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -27.设F 1,F 2为椭圆x 24+y 23=1的左、右焦点,A 为椭圆上任意一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:由题意,延长F 1D ,F 2A 并交于点B ,易证Rt △ABD ≌Rt △AF 1D ,则|F 1D |=|BD |,|F 1A |=|AB |,又O 为F 1F 2的中点,连接OD ,则OD ∥F 2B ,从而可知|DO |=12|F 2B |=12(|AF 1|+|AF 2|)=2,设点D 的坐标为(x ,y ),则x 2+y 2=4.答案:x 2+y 2=48.(2019·福州质检)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为________.解析:因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk1-3k 2=12,①y 1+y 2=k (x 1+x 2)+2m =12k +2m =2,② 由①②解得k =2. 答案:29.如图,动圆C 1:x 2+y 2=t 2(1<t <3)与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.解:由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0), 由曲线的对称性,得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③ 又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).10.(2019·武汉模拟)在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP ―→=λR Q ―→ (λ>1),求证:NF ―→=λF Q ―→.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),① 直线A 2N 2的方程为y =-n6(x -6),② 设M (x ,y )是直线A 1N 1与A 2N 2的交点, ①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q(x 2,y 2),则N (x 1,-y 1), 由⎩⎪⎨⎪⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*)所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP ―→=λR Q ―→,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF ―→=λF Q ―→, 即证(2-x 1,y 1)=λ(x 2-2,y 2),只需证2-x 1=λ(x 2-2),只需x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6t t 2+3=0成立,即NF ―→=λF Q ―→成立.B 级1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B.两条射线C .两条线段D .一条直线和一条射线解析:选D 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0,或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线.2.动点P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上异于椭圆顶点A (a,0),B (-a,0)的一点,F 1,F 2为椭圆的两个焦点,动圆M 与线段F 1P ,F 1F 2的延长线及线段PF 2相切,则圆心M 的轨迹为除去坐标轴上的点的( )A .抛物线 B.椭圆 C .双曲线的右支D .一条直线解析:选D 如图,设切点分别为E ,D ,G ,由切线长相等可得|F 1E |=|F 1G |,|F 2D |=|F 2G |,|PD |=|PE |.由椭圆的定义可得|F 1P |+|PF 2|=|F 1P |+|PD |+|DF 2|=|F 1E |+|DF 2|=2a ,即|F 1E |+|GF 2|=2a ,也即|F 1G |+|GF 2|=2a ,故点G 与点A 重合,所以点M 的横坐标是x =a ,即点M 的轨迹是一条直线(除去A 点),故选D.3.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,所以|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)4.如图,P 是圆x 2+y 2=4上的动点,P 点在x 轴上的射影是D ,点M 满足DM ―→=12DP ―→.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.解:(1)设M (x ,y ),则D (x,0), 由DM ―→=12DP ―→,知P (x,2y ),∵点P 在圆x 2+y 2=4上, ∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 是以(-3,0),(3,0)为焦点,长轴长为4的椭圆.(2)设E (x ,y ),由题意知l 的斜率存在, 设l :y =k (x -3),代入x 24+y 2=1,得(1+4k 2)x 2-24k 2x +36k 2-4=0,Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0,得k 2<15,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2,∴y 1+y 2=k (x 1-3)+k (x 2-3)=k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k 1+4k 2. ∵四边形OAEB 为平行四边形,∴OE ―→=OA ―→+OB ―→=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2, 又OE ―→=(x ,y ),∴⎩⎪⎨⎪⎧x =24k 21+4k 2,y =-6k1+4k 2,消去k 得,x 2+4y 2-6x =0, ∵k 2<15,∴0<x <83.11∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝⎛⎭⎫0<x <83. 5.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B.抛物线 C .椭圆 D .双曲线的一支解析:选C 母线与中轴线夹角为30°,然后用平面α去截,使直线AB与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P的轨迹为椭圆.故选C.6.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B.x 2+y 2=9C.x 225+y 29=1 D .x 2=16y解析:选B ∵M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,∴M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1. A 项,直线x +y =5过点(5,0),故直线与M 的轨迹有交点,满足题意;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),故椭圆x 225+y 29=1与M 的轨迹有交点,满足题意; D 项,把x 2=16y 代入x 216-y 29=1,可得y -y 29=1, 即y 2-9y +9=0,∴Δ>0,满足题意.7.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为________________. 解析:由sin B +sin A =54sin C 可知b +a =54c =10, 则|AC |+|BC |=10>8=|AB |,∴满足椭圆定义.令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3, 则轨迹方程为x 225+y 29=1(x ≠±5). 答案:x 225+y 29=1(x ≠±5)。

(解析几何)基础知识点总结

(解析几何)基础知识点总结

《高中数学解析几何基础知识总结》一、圆1、 定义:平面内与定点距离等于定长的点的集合叫圆2、 圆的方程1)特殊式:222x y r += 圆心(0,0)半径r 2)标准式:222()()x a y b r -+-=3)一般式:220x y Dx Ey F ++++=(2240D E F +->)圆心(,22D E --)4)参数式:cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数)圆心(a ,b )半径为r3、点与圆的位置关系:设点到圆心距离为d ,圆的半径为r点在圆外⇔d>r 点在圆上⇔d=r 点在圆内⇔d<r4、直线与圆的位置关系:直线:0l Ax By C ++= 圆C 222()()x a y b r -+-= 线心距d =相交⇔0>或d<r 相切⇔0=或d=r 相离⇔0<或d>r 5、圆的切线求法1)切点00(,)x y 已知222x y r += 切线2x x y y r +=222()()x a y b r -+-= 切线200()()()()x a x a y b y b r --+--=220x y Dx Ey F ++++= 切线0000022x x y yx x y y DE F ++++++= 满足规律:20x x x →、20y y y →、02x x x +→、02y y y +→2)切线斜率k 已知时,222x y r += 切线y kx =±222()()x a y b r -+-= 切线()y b k x a -=-± 6、圆的切线长:自圆外一点P 00(,)x y 引圆外切线,切点为P ,则20PP x =7、切点弦方程:过圆外一点p 00(,)x y 引圆222x y r +=的两条切线,过切点的直线即切点弦200x x y y r +=(其推到过程逆向思维的运用)8、圆与圆的位置关系:设两圆圆心距离为d ,半径分别为12,r r 1)外离::12d r r >+ 2)外切:12d r r =+ 3)相交:1212r r d r r -<<+ 4)内切:12d r r =- 5)内含:12d r r <-圆与圆位置关系的判定中,不能简单的应用联立方程求根当有两个根时候,肯定两圆相交;当没有根时候,不能确定是外离还是内含;当有且只有一个根时候,也不能确定是外切和内切9、公共弦方程(相交弦):相交两圆1C :221110x y D x E y F ++++=、222222:0C x y D x E y F ++++=公共弦方程121212()()()0D D x E E y F F -++++=10、圆系:具有某些共同性质的圆的集合1)同心圆系:222()()x a y b r -+-=(a ,b 为定值,r 为变量且r>0) 2)等圆系:222()()x a y b r -+-=(a ,b 为变量,r 为定值)3)过直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=的交点的圆系方程:22()0x y Dx Ey F Ax By C λ+++++++=()λθ∈简记为0C l λ+=4)过两圆221111:0C x y D x E y F ++++=,222222:0C x y D x E y F ++++=交点的圆系方程:2222111222()0(1)x y D x E y F x y D x E y F λλ+++++++++=≠-简记为120C C λ+=二、椭圆椭圆:平面内到两定点距离之和等于定长(定长大于两定点间距离)的点的集合1、定义:12122(2)PF PF a a F F +=> 第二定义:(01)PF ce e d a==<< 2、标准方程:22221(0)x y a b a b +=>> 或 22221(0)y x a b a b+=>>;3、参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数)θ几何意义:离心角4、几何性质:(只给出焦点在x 轴上的的椭圆的几何性质) ①、顶点(,0),(0,)a b ±± ②、焦点(,0)c ± ③、离心率(01)ce e a=<< ④准线:2a x c=±(课改后对准线不再要求,但题目中偶尔给出)5、焦点三角形面积:122tan 2PF F Sb θ=⋅(设12F PF θ∠=)(推导过程必须会)6、椭圆面积:S a b π=⋅⋅椭(了解即可)7、直线与椭圆位置关系:相离(0∆<);相交(0∆>);相切(0∆=) 判定方法:直线方程与椭圆方程联立,利用判别式判断根的个数 8、椭圆切线的求法1)切点(00x y )已知时,22221(0)x y a b a b +=>> 切线00221x x y y a b +=22221(0)y x a b a b +=>> 切线00221y y x x a b +=2)切线斜率k 已知时, 22221(0)x y a b a b +=>> 切线y kx =±22221(0)y x a b a b+=>> 切线y kx =±9、焦半径:椭圆上点到焦点的距离22221(0)x y a b a b +=>> 0r a ex =±(左加右减)22221(0)y a a b a b+=>> 0r a ey =±(下加上减)三、双曲线1、定义:122PF PF a -=± 第二定义:(1)PF ce e d a ==>2、标准方程:22221(0,0)x y a b a b-=>>(焦点在x 轴)22221(0,0)y x a b a b -=>>(焦点在y 轴) 参数方程:sec tan x a y b θθ=⋅⎧⎨=⋅⎩(θ为参数) 用法:可设曲线上任一点P (sec ,tan )a b θθ3、几何性质 ① 顶点(,0)a ±② 焦点(,0)c ± 222c a b =+ ③ 离心率ce a=1e > ④ 准线2a x c±⑤ 渐近线 22221(0,0)x y a b a b -=>> by x a=±或22220x y a b -=22221(0,0)y x a b a b -=>> by x a=±或22220y x a b -= 4、特殊双曲线①、等轴双曲线22221x y a a -= e =渐近线y x =±②、双曲线22221x y a b-=的共轭双曲线22221x y a b -=-性质1:双曲线与其共轭双曲线有共同渐近线性质2:双曲线与其共轭双曲线的四个焦点在同一圆上 5、直线与双曲线的位置关系 ① 相离(0∆<);② 相切(0∆=); ③ 相交(0∆>) 判定直线与双曲线位置关系需要与渐近线联系一起 0∆=时可以是相交也可以是相切 6、焦半径公式22221(0,0)x y a b a b-=>> 点P 在右支上 0r ex a =±(左加右减) 点P 在左支上 0()r ex a =-±(左加右减)22221(0,0)y x a b a b-=>> 点P 在上支上 0r ey a =±(下加上减) 点P 在上支上 0()r ey a =-±(下加上减) 7、双曲线切线的求法① 切点P 00(,)x y 已知 22221(0,0)x y a b a b -=>> 切线00221x x y y a b -=22221(0,0)y x a b a b -=>> 切线00221y y x x a b -=② 切线斜率K 已知 22221x y a b -= 222()by kx a k b k a =->22221y x a b -= 222()by kx a b k k a=-<8、焦点三角形面积:122cot2PF F Sb θ=⋅(θ为12F PF ∠)四、抛物线1、定义:平面内与一定点和一定直线的距离相等的点的集合(轨迹)2、几何性质:P 几何意义:焦准距 焦点到准线的距离设为P 标准方程:22(0)y px p => 22(0)y px p =->图 像:范 围: 0x ≥ 0x ≤ 对 称 轴: x 轴 x 轴 顶 点: (0,0) (0,0)焦 点: (,02p ) (,02p-) 离 心 率: 1e = 1e =准 线: 2px =- 2p x =标准方程:22(0)x py p => 22(0)x py p =->图 像:范 围: 0y ≥ 0y ≤ 对 称 轴: y 轴 y 轴 定 点: (0,0) (0,0)焦 点: (0,2p ) (0,)2p - 离 心 率: 1e = 1e =准 线: 2py =- 2p y =3、参数方程222x pt y pt⎧=⎨=⎩(t 为参数方程)⇔22(0)y px p =>4、通径:过焦点且垂直于对称轴的弦椭圆:双曲线通径长22b a抛物线通径长2P5、直线与抛物线的位置关系1)相交(有两个交点或一个交点) 2)相切(有一个交点); 3)相离(没有交点) 6、抛物线切线的求法1)切点P 00(,)x y 已知:22(0)y px p =>的切线;00()y y p x x =+2)切线斜率K 已知:22(0):2p y px p y kx k =>=+22(0):2py px p y kx k=->=-222(0):2pk x py p y kx =>=-222(0):2pk x py p y kx =->=+此类公式填空选择或解答题中(部分)可作公式直接应用五、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB 2121k y y +-。

高中解析几何知识归纳

高中解析几何知识归纳

高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。

以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。

2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。

4. 圆锥曲线:包括椭圆、双曲线和抛物线。

-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。

-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。

-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。

二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。

2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。

3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。

4. 空间几何体:包括立方体、球、锥体、柱体等。

三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。

2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。

3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。

4. 直线与圆的位置关系:直线与圆相交、相切或相离。

5. 圆与圆的位置关系:圆与圆相交、相切或相离。

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2(tan πα≠=a k ,R k ∈斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为121221x x y y k P P --=倾斜角 斜率 方向向量 2πα≠⇒ t a nk α= ⇒ d =(cos ,sin )αα 或d =(1,)karctan ,0arctan ,0k k k k απ≥⎧=⎨+<⎩⇐ k =vu ⇐ (,)d u v =(0)u ≠3.直线方程的几种形式 名称方程方向向量法向量斜率 适用条件点方向式 00x x y y u v--= ()v u , ()u v ,- uv与坐标轴不垂直的直线点法向式 00()()0a x x b y y -+-=()a b ,-()a b ,所有直线斜截式 b kx y +=()k ,1 ()1,k - k 与x 轴不垂直的直线点斜式 )(00x x k y y -=-()k ,1 ()1,k - k截距式 1=+bya x 不过原点且与两坐标轴均不垂直的直线一般式0=++C By Ax )0(22≠+B A所有直线例1.已知直线斜率2k =,则倾斜角α= ,一个方向向量是 ,一个法向量是 。

2.过(1,4)A 、(3,1)B 的直线的一个方向向量是 ,斜率是 ,倾斜角是 。

3.直线)0,0(>>=+b a ab by ax 的倾斜角是 ,且不经过第 象限。

两直线位置关系 两条直线的位置关系位置关系222111::b x k y l b x k y l +=+= 0:0:22221111=++=++C y B x A l C y B x A l平行 ⇔ 21k k =,且21b b ≠ A 1B 2-A 2B 1=0(验证)重合 ⇔ 21k k =,且21b b =D=Dx=Dy=0 相交 ⇔ 21k k ≠A 1B 2-A 2B 1≠0垂直⇔121-=⋅k k 02121=+B B A A设两直线的方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++0222111C y B x A C y B x A 直线间的夹角:①若θ为1l 到2l 的夹角,②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ(斜率都存在且121-≠k k );③当0121=+k k 或02121=+b b a a 时,o90=θ;例1.过点)2,2(-P 且与0143=++y x 平行的直线方程是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中平面解析几何知识点总结
一.直线部分
1.直线的倾斜角与斜率:
(1)直线的倾斜角:在平面直角坐标系中,对于一条与 轴相交的直线,如果把 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为 叫做直线的倾斜角.
倾斜角 , 斜率不存在.
(2)直线的斜率: .两点坐标为 、 .
2.直线方程的五种形式:
(2)过圆 上的点 的切线方程为: .
(3)当点 在圆外时,可设切方程为 ,利用圆心到直线距离等于半径,
即 ,求出 ;或利用 ,求出 .若求得 只有一值,则还有一条斜率不存在的直线 .
8. 圆的参数方程:
圆方程参数方程源于:
那么
设: 得:
9.把两圆 与 方程相减
即得相交弦所在直线方程: .
10.对称问题:
如下:
韦达定理:⑴.
⑵.顶点坐标 ,推导采用配方法:
⑶ 求根公式:
从而零点坐标为 。
③ 平移
注意,平移部分需要自己琢磨,根据上面三个例子.



5.两圆位置关系:
设两圆圆心分别为 ,半径分别为 ,





6.圆系方程:
(1)过直线 与圆 : 的交点的圆系方程: ,λ是待定的系数.
(2)过圆 : 与圆 : 的交点的圆系方程:
,λ是待定的系数.
特别地,当 时, 就是
表示两圆的公共弦所在的直线方程,即过两圆交点的直线.
7.圆的切线方程:
(1)过圆 上的点 的切线方程为: .
点 关于直线 对称 .
② 直线关于直线对称:(设 关于 对称)
法1:若 相交,求出交点坐标,并在直线 上任取一点,求该点关于直线 的对称点.
若 ,则 ,且 与 的距离相等.
法2:求出 上两个点 关于 的对称点,在由两点式求出直线的方程.
(3)其他对称:
点(a,b)关于x轴对称:(a,-b);
关于y轴对称:(-a,b);
(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.
3.直线在坐标轴上的截矩可正,可负,也可为0.
(1)直线在两坐标轴上的截距相等 直线的斜率为 或直线过原点.
(2)直线两截距互为相反数 直线的斜率为1或直线过原点.
(3)直线两截距绝对值相等 直线的斜率为 或直线过原点.
方向向量为 下面推导参数方程:
注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
二.圆部分
1.圆的方程:
(1)圆的标准方程: ( ).
(2)圆的一般方程: .
(3)圆的直径式方程:若 ,以线段 为直径的圆的方程是: .
注:(1)在圆的一般方程中,圆心坐标和半径分别是 , .
④由于两个焦半径和为2a
所以 得: 得:
⑤ 椭圆离心率,来源于圆的定义:
圆实际上是一种特殊的椭圆,而圆不过是两个焦点与坐标圆点重合罢了。
椭圆离心率为
四.双曲线部分
1.双曲线定义:到两定点的距离之差的绝对值为常数的平面几何图形,即:
① 双曲线的标准方程:
② 由于双曲线上任意一点两个焦点之差的绝对值为常数2a.
三.椭圆部分
1.椭圆定义:
① 到两定点距离之和为一常数的平面几何曲线:即∣MO1∣+∣MO2∣=2a
② 或定义:任意一条线段,在线段中任取两点(不包括两端点),将线段两端点置于这两点处,用一个钉子将线段绷直旋转一周得到的平面几何曲线即为椭圆。
③从椭圆定义出发得到一个基本结论:椭圆上任意一点引出的两个焦半径之和为常数2a。
为了推导抛物线标准式,设:定直线为x=-p,定点为O1(p,0),
(尽管这是一种特殊情况,但同样具有一般性)
① 设:抛物线上任意一点坐标为M(x,y)
M点到定直线x=-p的距离为
M点到定点O1(p,0)的距离为
② 很显然与以前学习的二次函数是一致的,只不过这里自变量变成y,函数变成x;而二次函数自变量是x,函数是y,因而二次函数也是抛物线,同样具有抛物线的性质。
关于原点对称:(-a,-b);
点(a,b)关于直线y=x对称:(b,a);
关于y=-x对称:(-b,-a);
关于y=x+m对称:(b-m、a+m);
关于y=-x+m对称:(-b+m、-a+m).
11.若 ,则△ABC的重心G的坐标是 .
12.各种角的围:
直线的倾斜角
两条相交直线的夹角
两条异面线所成的角
(1)中心对称:
① 点关于点对称:点 关于 的对称点 .
② 直线关于点对称:
法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.
法2:求出一个对称点,在利用 由点斜式得出直线方程.
(2)轴对称:
① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.
8.直线系方程:
(1)平行直线系方程:
① 直线 中当斜率 一定而 变动时,表示平行直线系方程.
② 与直线 平行的直线可表示为 .
③ 过点 与直线 平行的直线可表示为: .
(2)垂直直线系方程:
① 与直线 垂直的直线可表示为 .
② 过点 与直线 垂直的直线可表示为: .
(3)定点直线系方程:
① 经过定点 的直线系方程为 (除直线 ),其中 是待定的系数.
② 经过定点 的直线系方程为 ,其中 是待定的系数.
(4)共点直线系方程:经过两直线 交点的直线系方程为 (除开 ),其中λ是待定的系数.
9.两条曲线的交点坐标:
曲线 与 的交点坐标 方程组 的解.
10.平面和空间直线参数方程:
1平面直线方程以向量形式给出:
方向向量为 下面推导参数方程:
2空间直线方程也以向量形式给出:
(1)点斜式: (直线 过点 ,且斜率为 ).
注:当直线斜率不存在时,不能用点斜式表示,此时方程为 .
(2)斜截式: (b为直线 在y轴上的截距).
(3)两点式: ( , ).
注:① 不能表示与 轴和 轴垂直的直线;
② 方程形式为: 时,方程可以表示任意直线.
(4)截距式: ( 分别为 轴 轴上的截距,且 ).
4.两条直线的平行和垂直:
(1)若 , ,有
① ; ② .
(2)若 , ,有
① ;② .
5.平面两点距离公式:
(1)已知两点坐标 、 ,则两点间距离 .
(2) 轴上两点间距离: .
(3)线段 的中点是 ,则 .
6.点到直线的距离公式:
点 到直线 的距离: .
7.两平行直线间的距离公式:
两条平行直线 的距离: .
(其中 的求法是将直线和圆的方程联立消去 或 ,利用韦达定理求解)
3.点与圆的位ቤተ መጻሕፍቲ ባይዱ关系:
点 与圆 的位置关系有三种
1 在在圆外 .
2 在在圆 .
③ 在在圆上 .
【 到圆心距离 】
4.直线与圆的位置关系:
直线 与圆 的位置关系有三种:
圆心到直线距离为 ( ),由直线和圆联立方程组消去 (或 )后,所得一元二次方程的判别式为 .
注:不能表示与 轴垂直的直线,也不能表示与 轴垂直的直线,特别是不能表示过原点的直线.
(5)一般式: (其中A、B不同时为0).
一般式化为斜截式: ,即,直线的斜率: .
注:(1)已知直线纵截距 ,常设其方程为 或 .
已知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .
已知直线过点 ,常设其方程为 或 .
(2)一般方程的特点:
① 和 的系数相同且不为零;② 没有 项; ③
(3)二元二次方程 表示圆的等价条件是:
① ; ② ; ③ .
2.圆的弦长的求法:
(1)几何法:当直线和圆相交时,设弦长为 ,弦心距为 ,半径为 ,
则:“半弦长 +弦心距 =半径 ”—— ;
(2)代数法:设 的斜率为 , 与圆交点分别为 ,则
③ 双曲线的渐近线:
由标准方程知:
若标准方程为 ,那么这时
注意y下面对应b,x下面对应a.
④取x=a及x=-a两条直线,它们与渐近线的两个焦点的连线和y轴的交点称为虚焦点,
该轴称为虚轴。
⑤推导a、b、c之间的关系:
设双曲线上任意一点坐标M(x,y)
设:
从而得到:
五.抛物线部分
1.定义:到定点与定直线距离相等的平面曲线称为抛物线。
2.椭圆性质:
①由于椭圆上任意一点到两点距离之和为常数,所以从A点向焦点引两条焦半径
∣AO1∣+∣AO2∣=∣AO2∣+∣O2B∣=2a
这是因为∣AO1∣=∣O2B∣(由图形比较看出)
②椭圆的标准方程:
③椭圆参数方程:
从圆方程知:
圆方程参数方程源于:
所以按上面逻辑将椭圆方程 视为
设 得:
同理椭圆参数方程为: 得:
相关文档
最新文档