多元线性回归分析ppt课件
合集下载
多因变量的多元线性回归课件
多因变量的多元线性回归课件
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。
多元线性回归分析ppt课件
DF 自由度
22 22 22 22 22
Parameter Standard
Estimate Error
t Value
偏回归系数 标准误 t值
5.94327 2.82859 2.10
0.14245 0.36565 0.39
0.35147 0.20420 1.72
-0.27059 0.12139 -2.23
ppt课件完整
31很多自变量时,即使其中一些自变量在解释
因变量 Y 的变异时贡献很小,但随着回归方程中自变量的
增加。决定系数仍然会表现为只增不减,故计算校正决定
系数(adjusted coefficient of determination)以消除自变量
个数的影响。公式为:
ppt课件完整
2
Multivariate linear regression
概念: 多元线性回归分析也称复线性回归分析(multiple linear regression analysis),它研究一组自变量如何直接影响一个 因变量。
自变量(independent variable)是指独立自由变量的变量,用向量X 表示;因变量(dependent variable)是指非独立的、受其它变量影响 的变量,用向量Y表示;由于模型仅涉及一个因变量,所以多元线性回 归分析也称单变量线性回归分析(univariate linear regression analysis)
方程组中: lij l ji (Xi Xi )(X j X j ) Xi X j [(Xi )(X j )]/ n liy (Xi Xi )(Y Y ) XiY [(Xi )(Y)]/ n
常数项 b0 Y b1X1 b2 X2 ... bm Xm
心理学研究方法多元回归分析PPT课件
save ——distance –勾上Cook’s和leverage 值
Plots-histogram 和 normal probability plot勾
上-把ZPRED放入Y,把ZRESID放入X轴——
.
12
OK
原始回归方程Y=0.0498X+0.441
标准化回归方程Zy=0.881Zx
β = (δy/ δx)*r =(0.41989/7.426)*0.881=0.04981
.
29
步骤同一元回归
补充步骤 在statistic勾上R square change,part and partial correlation(半偏 相关和偏相关), conlinerarity diagnostics (共线性判断)
.
30
分层回归方法
Enter:强制进入 Forward:前向选择法 Backward:反向删除法 Stepwise:逐步回归,最常用 把需要控制的变量用这种方法强制enter法
.
39
对强影响点的诊断和处理
同一元线性回归
.
40
多重共线性(conlinerarity diagnostics)
判断方法
✓ 相关系数矩阵:当相关系数>0.8,代表共线性 越大。
✓ 容忍度(tolerance):最大值为1。当值越小, 代表共线性越大。
✓ 特征值(eigenvalue):表示该因子所解释变 量的方差。如果很多变量的特征值<1,表示共 线性。
残差是否独立:用durbin-watson进行分析(取值 0<d<4)。如果独立,则d约等于2。如果相邻两点的 残差为正相关,d<2。当相邻两点的残差为负相关时, d>2。
回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
多元线性回归分析简介ppt课件
动情况
回归平方和:SSR= ( yˆi y)2 ,是 SS 中由自变量的波动
引起的部分,即在 SS 中能用自变量解释的部分。
残差平方和:SSE= ( yi yˆi )2 ei2 ,由自变量之外
函数关系为 y 0 1x1 p xp ,其中 0 , 1, , p 待定,称 1, , p 为这个 p 元线性 回归函数的回归系数。
类似于一个自变量的情形,可以把自变量 x1, , xp 与因变量Y 之间的相关关系表示成 Y 0 1x1 p xp ,其中随机误差项
~ N 0, 2 。于是,Y ~ N 0 1x1 pxp, 2
为 y 关于 x 的多元线性经验回归方程(函数),它表示 p+1 维空间中的一个超平面(经验回归平面)。
引进矩阵的形式:
设
y
y1
y2
,
X
1
1
x1 p
则多元线性回归模型可表示为:
x1p
x2
p
,
1 2
,
xnp
n
y X
G
M
条件
一、多元线性回归的估计和检验
在实际问题中,往往要考虑多个自变量与一个 因变量之间的相关关系.例如,一个人的身高 不仅受到父亲身高的影响,还受到母亲等其他 直系长辈的影响.
一般地,我们需要研究 p 个自变量 x1, , xp 与 因变量Y 之间相关关系的数量表示。假定自变
量 x1, , xp 与因变量Y 的均值 E Y y 之间的
j 1
三、回归方程的显著性检验---F 检验 在 p 元回归分析问题中,回归系数的显著性检验 问题是要检验 : H0 : 1 p 0
F-检验是根据平方和分解公式,直接从 回归效果来检验回归方程的显著性。和 一元情形类似
回归平方和:SSR= ( yˆi y)2 ,是 SS 中由自变量的波动
引起的部分,即在 SS 中能用自变量解释的部分。
残差平方和:SSE= ( yi yˆi )2 ei2 ,由自变量之外
函数关系为 y 0 1x1 p xp ,其中 0 , 1, , p 待定,称 1, , p 为这个 p 元线性 回归函数的回归系数。
类似于一个自变量的情形,可以把自变量 x1, , xp 与因变量Y 之间的相关关系表示成 Y 0 1x1 p xp ,其中随机误差项
~ N 0, 2 。于是,Y ~ N 0 1x1 pxp, 2
为 y 关于 x 的多元线性经验回归方程(函数),它表示 p+1 维空间中的一个超平面(经验回归平面)。
引进矩阵的形式:
设
y
y1
y2
,
X
1
1
x1 p
则多元线性回归模型可表示为:
x1p
x2
p
,
1 2
,
xnp
n
y X
G
M
条件
一、多元线性回归的估计和检验
在实际问题中,往往要考虑多个自变量与一个 因变量之间的相关关系.例如,一个人的身高 不仅受到父亲身高的影响,还受到母亲等其他 直系长辈的影响.
一般地,我们需要研究 p 个自变量 x1, , xp 与 因变量Y 之间相关关系的数量表示。假定自变
量 x1, , xp 与因变量Y 的均值 E Y y 之间的
j 1
三、回归方程的显著性检验---F 检验 在 p 元回归分析问题中,回归系数的显著性检验 问题是要检验 : H0 : 1 p 0
F-检验是根据平方和分解公式,直接从 回归效果来检验回归方程的显著性。和 一元情形类似
多元线性回归分析PPT模板
=1−
SSE
SST
σ e2i
= 1 − σ(y −y)2
i
(6-42)
10
由判定系数的定义可知,R2的大小取决于残差平
2
方和σ e2i 在总离差平方和σ(yi − y) 中所占的比
重。在样本容量一定的条件下,总离差平方和与
自变量的个数无关,而残差平方和则会随着模型
中自变量个数的增加而不断减少,至少不会增加。
回归系数对应的自变量对因变量的影响是否显著,以
便对自变量的取舍做出正确的判断。一般来说,当发
现某个自变量的影响不显著时,应将其从模型中删除,
这样才能做到以尽可能少的自变量达到尽可能高的拟
合优度。
17
多元模型中回归系数的检验同样采用t检验,其原理和基本
步骤与一元回归模型中的t检验基本相同,此处不再赘述。
因此,R2是自变量个数的非递减函数。
11
在一元线性回归模型中,所有模型包含的变量个
数都相同,如果所使用的样本容量也一样,判定
系数便可以直接作为评价拟合优度的尺度。然而
在多元线性回归模型中,各回归模型所含的变量
的个数未必相同,以R2的大小作为衡量拟合优度
的尺度是不合适的。
12
因此,在多元回归分析中,人们更常用的评价指标是所谓
( ′ )是一个(k + 1) × (k + 1)的对称矩阵,根据标准假定1,
rank() = k + 1,k + 1个变量之间不存在高度的线性相关,
因此其逆矩阵存在。式(6-40)两边同时除以( ′ ),可以
得到回归系数最小二乘估计的一般形式:
= ( ′ )−1 ′
(6-41)
多元线性回归分析课件
注意:似然函数取对数是一个单调变换,不会影响参 数估计值的最优解。
42
极大似然估计的优化一阶条件:
结论: 回归系数的ML估计量与OLS估计量完全等价。 在有限样本下是有偏的,大样本下具有一致性。
43
二、参数约束的似然比检验
例子:柯布-道格拉斯生产函数
无约束方程: 受约束方程:
待检验假设:
无约束方程进行 ML估计,得到极大对数似然函数值:
回忆:P值是检验结论犯第一类“弃真”错误的概率。 P值非常小的含义是什么呢?
17
二、随机误差项方差的估计
的无偏估计量可以表述为:
自由度为什么是N-(K+1)? 多元回归模型的OLS估计中,我们基于正规方程 组中的K+1个约束估计了K+1个回归系数,所以损失 了K+1个自由度,独立的观测信息只剩下N-(K+1)个。
34
3 :参数的线性约束检验: F检验一般形式
对于多元线性回归模型:
参数的多个约束:
待检验假设:
原假设中至少有一个约束条件不成立。
35
检验统计量
基于 和 有
,在原假设成立的情况下,
如果原假设为真,我们会倾向于得到较小的F值。
反之,我们会倾向于得到较大的F值。
判定:若F值大于临界值,或p值小于显著性水平, 则拒绝原假设。
36
4 :经济关系的结构稳定性检验: F检验的一 个例子——邹检验
n 例:中国宏观生产函数在1992年前后是否不同? 无约束回归:参数可以不同
1978~1992年: 1993~2006年:
受约束回归:参数不变 1978~2006年:
37
待检验假设:
: 原假设中约束条件至少有一个不成立。
42
极大似然估计的优化一阶条件:
结论: 回归系数的ML估计量与OLS估计量完全等价。 在有限样本下是有偏的,大样本下具有一致性。
43
二、参数约束的似然比检验
例子:柯布-道格拉斯生产函数
无约束方程: 受约束方程:
待检验假设:
无约束方程进行 ML估计,得到极大对数似然函数值:
回忆:P值是检验结论犯第一类“弃真”错误的概率。 P值非常小的含义是什么呢?
17
二、随机误差项方差的估计
的无偏估计量可以表述为:
自由度为什么是N-(K+1)? 多元回归模型的OLS估计中,我们基于正规方程 组中的K+1个约束估计了K+1个回归系数,所以损失 了K+1个自由度,独立的观测信息只剩下N-(K+1)个。
34
3 :参数的线性约束检验: F检验一般形式
对于多元线性回归模型:
参数的多个约束:
待检验假设:
原假设中至少有一个约束条件不成立。
35
检验统计量
基于 和 有
,在原假设成立的情况下,
如果原假设为真,我们会倾向于得到较小的F值。
反之,我们会倾向于得到较大的F值。
判定:若F值大于临界值,或p值小于显著性水平, 则拒绝原假设。
36
4 :经济关系的结构稳定性检验: F检验的一 个例子——邹检验
n 例:中国宏观生产函数在1992年前后是否不同? 无约束回归:参数可以不同
1978~1992年: 1993~2006年:
受约束回归:参数不变 1978~2006年:
37
待检验假设:
: 原假设中约束条件至少有一个不成立。
《多元线性回归模型》课件
参数估计Biblioteka 最小二乘法使用最小二乘法估计模型中的 回归系数。
最大似然估计
通过最大似然估计法求解模型 参数。
岭回归
使用岭回归克服多重共线性问 题。
模型评估
R方值
通过R方值评估模型对数据的拟合程度。
调整R方值
调整R方值可纠正样本容量对R方的偏倚。
残差分析
通过残差分析评估模型的合理性和拟合优度。
解释变量
通过系数解释每个自变量对因变量的影响,了解它们在模型中的作用和重要性。
实例分析
1
数据收集
搜集相关数据,准备进行多元线性回归分析。
2
模型构建
使用收集到的数据建立多元线性回归模型。
3
结果解读
对模型结果进行解读和分析,并给出相关结论。
变量选择
相关性分析
通过相关性分析选择与因变量相关性强的自变量。
逐步回归
逐步回归法能帮助我们选择最佳的自变量组合。
变量筛选
借助统计指标和领域知识选择适当的自变量。
模型假设
1 线性关系
假设因变量与自变量之间存在线性关系。
2 多元正态分布
3 无多重共线性
假设因变量及自变量服从多元正态分布。
假设自变量之间不存在高度相关性。
《多元线性回归模型》 PPT课件
在这个PPT课件中,我们将讲解多元线性回归模型的重要概念和应用。通过 丰富的实例和清晰的解释,帮助你深入了解这一统计分析方法。
多元线性回归模型的概述
我们将介绍多元线性回归模型的基本概念、原理和用途。了解什么是多元线 性回归,以及如何利用它来分析和预测多个自变量对因变量的影响。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归
多元线性回归是用线性方程表达一个因变量与多 个自变量之间数量关系的统计分析方法。如:儿 童的心象面积,除与年龄有关外,还与性别、身 高、体重、胸围等因素有关。
复习直线回归(一)
直线回归是研究一个因变量与一个自变量之间线性趋势数量 关系的回归分析方法。 1、直线回归方程为ŷ=a+b*x,反映的是x和y之间数量依存 变化关系; 2、a是截距,b是回归系数,a和b是利用最小二乘法原理计 算而来; 3、用决定系数R2来说明回归模型的好坏,R2 =SS回/SS总。
S ig. .646 .002 .633
回归方程的假设检验(一)
与直线回归类似,根据y总变异的分解对回归方程进行方 差分析。 在回归分析中,y方面的总变异lyy分解为回归贡献U和剩余 变异Q:lyy=U + Q Q是总变异中不能由自变量解释的残差平方和, U是总变异中由自变量所引起的一部分变异。 自变量的作用是否显著,或整个方程是否有意义,就看回 归所能解释的变异U比剩余变异Q大多少而定,即进行方 差分析。
复习直线回归(二)
PAN.sav数据库是某地29名13岁男童的体重x (kg) 和肺 活量y(L)资料,试建立体重与肺活量的直线回归方程。 SPSS程序:Analyze Regression Linear,打开对 话框,把肺活量y放入应变量栏中,体重x放入自变 量栏中。 建立的直线回归方程为:ŷ= -0.009+0.060x a= -0.009 ;b= 0.060,表示体重每增加1kg ,肺活 量平均增加0.060L。 R2 = 0.542。 经t检验,体重对肺活量有影响,P = 0.000 < 0.05。
回归分析的步骤
1、建立线性回归方程; 2、回归方程的假设检验; 3、偏回归系数的假设检验与区间估计; 4、比较自变量对因变量的作用大小; 5、因变量的区间估计; 6、残差分析。 Analyze→Regression → Linear
建立线性回归方程(一)
即计算截距a和回归系数bi ,应用最小二乘 法原理,即要求残差平方和达到最小。 以 PAN.sav为例,作身高、体重对肺活量影 响的多元线性回归分析。 选择变量的方法有强迫引入法(系统默认)、 强迫剔除法、向前引入法、向后剔除法、 逐步回归法。
建立线性回归方程(二)
前进法:事先给一个挑选自变量进入方程的标准,开始时方程中除常数项外没 有自变量,然后按自变量对Y的贡献大小依次挑选进入方程,一直到方程外没有 变量进入为止,进入变量不再删除;
后退法:事先给一个剔除自变量的标准,开始时自变量全部在方程中,然后按自 变量对Y的贡献从小到大依次删除,一直到方程内没有变量删除入为止;删除 变量不再进入方程; 逐步向前法:每进入一个变量都要对已经在模型中的变量进行检验,对低于剔 除标准的变量要逐一剔除,直到方程内没有变量被剔除,方程外没有变量被引 入为止; 逐步向后法:是每剔除一个变量,都要对方程外的变量进行检验,对符合入选标 准的变量都要重新考虑引入。直到方程内没有变量被剔除,方程外没有变量被 引入为止;
多元线性回归模型(二)
设因变量为y,自变量为xi(i= 1,….,m),m元线 性回归方程为: ŷ=a+b1*x1+b2*x2+….+bm*xm, 或y=ŷ+e。 ŷ 是y的估计值或预测值; e是残差,不能由现有的自变量决定的部分; a为常数项或截距; bi为样本偏回归系数,即在其它自变量固定不变 情况下,xi改变一个单位,因变量平均改变bi 个单 位。对应的总体偏回归系数为βi,若βi =0,则该 自变量xi与因变量y之间无线性关系,即xi对因变 量y无影响 。
多元线性回归 分析
(一)对多变量资料进行多元分析的优点: 1、减少假阳性错误; 2、可以得到一个综合结论; 3、考虑了变量间的相互关系。 总而言之,是对多个相关变量同时进行分析。
(二)多元线性回归分析的应用条件 1.应变量与自变量之间的关系是线性的(linear) 2.各自变量之间相互独立(indedpendent) 3.各变量满足正态性(此条件可以放宽) (normality) 4.方差齐性(homogeneity or equal variance) 简称为LINE
“Coefficients”的表格
a s Coefficient
Unstandardized S tanda rdized Coeffic ients Coeffic ients Model B S td. Er ror Beta t 1 (Constant) -.577 1.241 -.465 体重 .054 .016 .666 3.377 身高 .005 .011 .095 .484 a. Dependent Variable : 肺 活 量
建议用各种方法、多种引入或剔除水准处理同一问题,若一些变量常被选中, 它们就值得重视。
建立线性回归方程(三)
SPSS中常用的对话框有:“Statistics”对话框中的 “Estimates” 和“Confidence intervals” 、 “Model” 选项。 自变量只有两个,应用系统默认的强迫引入法进行 分析,得出二元线性回归方程为: ŷ= -0.577+0.005x1 +0.054x2 对应SPSS的结果中标题为“Coefficients”的表格。
多元线性回归模型(一)
举例(见 PAN.sav): 根据某地29名13岁男童的身高x1(kg)、体重x2(cm) 和肺活量y(L)建立的二元线性回归方程为: ŷ= -0.577+0.005x1 +0.054x2 a= -0.577 ; b1= 0.005,表示在体重不变的情况下,身高每增 加1cm ,肺活量平均增加0.005L; b2= 0.054,表示在身高不变的情况下,体重每增 加1kg ,肺活量平均增加0.054L。
ቤተ መጻሕፍቲ ባይዱ
回归方程的假设检验(二)
方差分析的步骤如下: H0:总体中所有偏回归系数均为0; H1:总体中偏回归系数不为0或不全为0。 α = 0.05。 F=MS回归 / MS剩余 ,得P值大小; 若P≤ 0.05,则拒绝H0,接受H1,说明回归方程成立,因变 量与自变量之间有线性关系; 若P> 0.05,则不拒绝H0,说明回归方程不成立,因变量与 自变量之间无线性关系。 对应SPSS的结果中标题为“ANOVA”的表格,p=0.000。