图像处理参数翻译

合集下载

图像处理单词

图像处理单词

图像处理核心单词Photoreceptor cells:感光细胞Rod: 杆状细胞Cone: 锥状细胞Retina: 视网膜Iris: 虹膜Fovea: 中央凹Visual cortex: 视觉皮层CCD: charge-coupled devices电荷耦合器件Scanning: 扫描Continuous: 连续的Discrete: 离散的Digitization: 数字化Sampling: 采样Quantization: 量化Band-limited function: 带宽有限函数ADC: analog-to-digital converter 模数转换器Pixel: picture element 象素Gray-scale :灰度Gray level:灰度级Gray-scale resolution: 灰度分辨率Resolution: 分辨率Sample density: 采样密度Bit: 比特Byte: 字节Pixel spacing: 象素间距Contrast: 对比度Noise: 噪声SNR: signal-to-noise ratio 信噪比Frame: 帧Field: 场Line: 行,线Interlaced scanning: 隔行扫描Frame grabber: 帧抓取器Image enhancement:图象增强Image quality:图象质量Algorithm: 算法Globe operation: 全局运算Local operation: 局部运算Point operation: 点运算Spatial: 空间的Spatial domain:空间域Spatial coordinate:空间坐标Linear: 线性Nonlinear: 非线性Frequency: 频率Frequency variable: 频率变量Frequency domain: 频域Fourier transform: 傅立叶变换One-dimensional Fourier transform: 一维傅立叶变换Two-dimensional Fourier transform: 二维傅立叶变换Discrete Fourier transform(DFT): 离散傅立叶变换Fast Fourier transform(FFT): 快速傅立叶变换Inverse Fourier transform: 傅立叶反变换Contrast enhancement: 对比度增强Contrast stretching: 对比度扩展Gray-scale transformation(GST): 灰度变换Logarithm transformation: 对数变换Exponential transformation: 指数变换Threshold: 阈值Thresholding: 二值化、门限化False contour: 假轮廓Histogram: 直方图Multivariable histogram: 多变量直方图Histogram modification: 直方图调整、直方图修改Histogram equalization: 直方图均衡化Histogram specification: 直方图规定化Histogram matching: 直方图匹配Histogram thresholing: 直方图门限化Probability density function(PDF): 概率密度函数Cumulative distribution function(CDF): 累积分布函数Slope: 斜率Normalized: 归一化Inverse function: 反函数Calculus: 微积分Derivative: 导数Integral: 积分Monotonic function: 单调函数Infinite: 无穷大Infinitesimal: 无穷小Equation: 方程Numerator: 分子Denominator: 分母Coefficient: 系数Image smoothing: 图象平滑Image averaging: 图象平均Expectation: 数学期望Mean: 均值Variance: 方差Median filtering: 中值滤波Neighborhood: 邻域Filter: 滤波器Lowpass filter: 低通滤波器Highpass filter: 高通滤波器Bandpass filter: 带通滤波器Bandreject filter、Bandstop filter: 带阻滤波器Ideal filter: 理想滤波器Butterworth filter: 巴特沃思滤波器Exponential filter: 指数滤波器Trapezoidal filter: 梯形滤波器Transfer function: 传递函数Frequency response: 频率响应Cut-off frequency: 截止频率Spectrum: 频谱Amplitude spectrum: 幅值谱Phase spectrum: 相位谱Power spectrum: 功率谱Blur: 模糊Random: 随机Additive: 加性的Uncorrelated: 互不相关的Salt & pepper noise: 椒盐噪声Gaussian noise: 高斯噪声Speckle noise: 斑点噪声Grain noise: 颗粒噪声Bartlett window: 巴特雷窗Hamming window: 汉明窗Hanning window: 汉宁窗Blackman window: 布赖克曼窗Convolution: 卷积Convolution kernel: 卷积核。

Photoshop 词汇中英文对照

Photoshop 词汇中英文对照

Photoshop词汇中英文对照Accented Edges 11强化的边缘Actual Pixels] | 实际象素Add Layer Clipping Path 11添加图层剪切路径Add Layer Mask 11添加图层蒙板Add Noise 11力U入杂色Add To Workflow] |添加到工作流程Add Vector Mask 11添加矢最遮罩Adjustments1 |调整Adjust] |调整Adobe Online 11 Adobe 在线Again 11 再次All Layers1 |所有图层All 11全选Angled Stroke1|成角的线条Annotations1 |注释Anti-Alias Crisp11消除锯齿明晰Anti-Alias None11 消除锯齿无Anti-Alias Smooth] |消除锯齿平滑Anti-Alias Strong1 | 消除锯齿强Apply Image11应用图像Arbitrary] |任意角度Arrange Icons11 排列图标Arrange Linked 11对齐链接图层Arrange1 |排列Artistic 11艺术效果Assign Profile1 |制定配置文件Assing Profile1 |制定配置文件Auto Color 11自动色彩Auto Contrast 11自动对比度Auto Laves 11自动色阶Automate) | 自动Background From Layer11 背景图层Bas Relief”基底凸现Batch ||批处理Bevel and Emboss11 斜面和浮雕Bitmap11位图Bits/Channel| | 位通道Blending Options 11 混合选项Blur More| |进一步模糊Blur ||模糊Border] |扩边Bottom Edges] |底边Brightness/Contrast| | 亮度/对比度Bring Forward] |前移一层Bring to Front 11 置为顶层Browse 11 浏览Brush Strokes 11 画笔描边CCW||逆时针度CMYK Color | |CMYK 颜色CW 11顺时针度Calculations! |ifM Calculations] |运算Cancel Check Out 11 取消登出Canvas Size 11画布大小Cascade1 |层叠Chalk/Charcoal 11 粉笔和炭笔Change Layer Content] | 更改图层内容Channel Mixer 11通道混合器Charcoal11 炭笔Check In 11 登记Check Out|| 登出Check Spelling1 |检查拼写Chromel |铭黄Clear Guides] |清除参考线Clear Layer Effects1 |清除图层样式Clear Slices 11 清除切片Clear 11 清除Clipboard] |剪贴板Close All 11关闭全部Close11 关闭Clouds |「云,彩Color Balance1|色彩平衡Color Halftone] | 彩色半调Color Overlay 11 颜色叠加Color Range11色彩范围Color Settings 11 颜色设置Color Table 11 颜色表Colored Pencil 11 彩色铅笔Conditional Mode Change11 条件模式更改Contact Sheet H11 联系表IIContact Sheet] |联系表Conte Crayon 11 Conte 蜡笔Conte Crayon 11 彩色粉笔Contract1|收缩Convert to ProfHe| |转换为配置文件Convert to Shape || 转变为形状Copy Layer Effects] |拷贝图层样式Copy Merged 11合并拷贝Copy 11拷贝Covert To Paragraph Text 11 转换为段落文字Craquelure 11 龟裂缝Create Droplet 11创建快捷批处理。

reshade滤镜调整翻译

reshade滤镜调整翻译

"Reshade滤镜调整"的正确翻译可能是:"Reshade Filter Adjustment"。

- "Reshade"是一个英文单词,可以表示重新调整或改变。

- "滤镜"翻译为"Filter",在图像处理中用于改变图像的外观和色彩。

- "调整"翻译为"Adjustment",表示对某物进行微小的改变或调整。

因此,"Reshade滤镜调整"可以理解为使用Reshade滤镜来进行图像调整或改变。

请注意,这只是直译的翻译方式,具体情况可能要根据上下文和具体语境来决定最合适的翻译方式。

当涉及到图像处理和滤镜调整时,Reshade是一个非常流行的工具。

它是一个开源的图像后处理工具,主要用于电脑游戏和视频的图像增强和改进。

Reshade的特点之一是它支持大量的滤镜效果和图像处理技术。

用户可以根据自己的需求选择并叠加不同的滤镜,从而达到对图像的个性化调整。

一些常见的滤镜效果包括色彩增强、锐化、模糊、景深效果等。

通过调整这些滤镜的参数,用户可以实现对图像的细致控制,让图像看起来更加鲜艳、清晰或者柔和。

使用Reshade的过程相对简单,通常只需将Reshade工具安装到目标游戏或视频软件中,并在启动时加载所需的滤镜效果文件。

一旦设置完成,Reshade会在后台运行,并自动应用选定的滤镜效果。

除了提供预设的滤镜效果,Reshade还支持用户自定义滤镜。

这意味着有经验的用户可以根据自己的需求编写自己的滤镜脚本,进一步扩展Reshade的功能,实现更加个性化的图像处理。

总的来说,Reshade是一个功能强大且灵活的图像处理工具,为用户提供了许多自定义选项,帮助他们改善游戏和视频的图像质量,提升视觉体验。

由于其开源性质,Reshade也受到了广大社区的支持和持续的更新,为用户提供不断改进的滤镜效果和功能。

图像处理常见词汇

图像处理常见词汇
DCT变换(全称是离散余弦变换Discrete Cosine Transform,是指将一组光强数据转换成频率数据,以便得知强度变化的情形。)
RGB(三种基本色的波长分别为R:700 nm,G:546.1 nm,B: 435.8 nm)
HSI(Hue色调、 Saturation饱和度:指一个颜色的鲜明程度,饱和度越高,颜色越深。 Intensity亮度:亮度是指光波作用于感受器所发生的效应,其大小由物体反射系数来决定。面向彩色处理的最常用模型ixel)
点(Dot)
样点(Sample)
屏幕分辨率每英寸点数(ppi)
dpi(dot per inch每英寸点数)
TIF (Tag Image File Format标记图像文件格式)
PCX(各种扫描仪扫描得到的图像,支持256种颜色,不如TARGA或TIF等格式功能强,但结构较简单,存取速度快,压缩比适中,图像颜色的位数可以是 1、 4、8 或 24)
VGA(Video Graphics Array即视频图形阵列)
JPEG(Joint Photographer’s Experts Group,即联合图像专家组,)
HTML(Hypertext Markup Language,即文本标记语言)
BMP(全称Bitmap,位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,数据存放是从下到上,从左到右的。)
contrast(对比度= 最大亮度/ 最小亮度)
CMYK(减色合成法Subtractive Color Synthesis,青色(Cyan)、品红色(Magenta)、黄色(Yellow)和黑色(Black)占用的磁盘空间和内存大,这种模式一般在印刷时使用。 )

photoshop中英文对照

photoshop中英文对照

photoshop中英⽂对照photoshop中英⽂对照[2007/4/16]三、Image 图像四、Layer 图层1.Mode 模式 1.New 新建1 Bitmap 位图 1 Layer 图层2 Grayscale 灰度 2 Background From Layer 背景图层4.Open Recent 最近打开⽂件 3 Layer Set 图层组3 Duotone 双⾊调4 Layer Set From Linked 图层组来⾃链接的4 Indexed Color 索引⾊5 Layer via Copy 通过拷贝的图层5 RGB Color RGB⾊6 Layer via Cut 通过剪切的图层8.Save for Web 存储为Web所⽤格式 2.Duplicate Layer 复制图层6 CMYK Color CMYK⾊ 3.Delete Layer 删除图层7 Lab Color Lab⾊ yer Properties 图层属性8 Multichannel 多通道 yer Style 图层样式9 8 Bits/Channel 8位通道 1 Blending Options 混合选项10 16 Bits/Channel 16位通道 2 Drop Shadow 投影11 Color Table 颜⾊表 3 Inner Shadow 内阴影12 Assing Profile 制定配置⽂件 4 Outer Glow 外发光13 Convert to Profile 转换为配置⽂件 5 Inner Glow 内发光2.Adjust 调整 6 Bevel and Emboss 斜⾯和浮雕1 Levels ⾊阶7 Satin 光泽2 Auto Laves ⾃动⾊阶8 Color Overlay 颜⾊叠加3 Auto Contrast ⾃动对⽐度9 Gradient Overlay 渐变叠加4 Curves 曲线10 Pattern Overlay 图案叠加5 Color Balance ⾊彩平衡11 Stroke 描边6 Brightness/Contrast 亮度/对⽐度12 Copy Layer Effects 拷贝图层样式7 Hue/Saturation ⾊相/饱和度13 Paste Layer Effects 粘贴图层样式8 Desaturate 去⾊14 Paste Layer Effects To Linked 将图层样式粘贴的链接的9 Replace Color 替换颜⾊15 Clear Layer Effects 清除图层样式10 Selective Color 可选颜⾊16 Global Light 全局光11 Channel Mixer 通道混合器17 Create Layer 创建图层12 Gradient Map 渐变映射18 Hide All Effects 显⽰/隐藏全部效果13 Invert 反相19 Scale Effects 缩放效果14 Equalize ⾊彩均化 6.New Fill Layer 新填充图层15 Threshold 阈值 1 Solid Color 纯⾊16 Posterize ⾊调分离 2 Gradient 渐变17 Variations 变化 3 Pattern 图案3.Duplicate 复制7.New Adjustment Layer 新调整图层4.Apply Image 应⽤图像 1 Levels ⾊阶5.Calculations 计算 2 Curves 曲线6.Image Size 图像⼤⼩ 3 Color Balance ⾊彩平衡7.Canvas Size 画布⼤⼩ 4 Brightness/Contrast 亮度/对⽐度8.Rotate Canvas 旋转画布 5 Hue/Saturation ⾊相/饱和度1 180° 180度 6 Selective Color 可选颜⾊2 90°CW 顺时针90度7 Channel Mixer 通道混合器3 90°CCW 逆时针90度8 Gradient Map 渐变映射4 Arbitrary 任意⾓度9 Invert 反相5 Flip Horizontal ⽔平翻转10 Threshold 阈值6 Flip Vertical 垂直翻转11 Posterize ⾊调分离9.Crop 裁切8.Change Layer Content 更改图层内容10.Trim 修整yer Content Options 图层内容选项11.Reverl All 显⽰全部10.Type ⽂字12.Histogram 直⽅图 1 Create Work Path 创建⼯作路径13.Trap 陷印 2 Convert to Shape 转变为形状14.Extract 抽出 3 Horizontal ⽔平15.Liquify 液化 4 Vertical 垂直5 Anti-Alias None 消除锯齿⽆五、Selection 选择 6 Anti-Alias Crisp 消除锯齿明晰1.All 全部7 Anti-Alias Strong 消除锯齿强2.Deselect 取消选择8 Anti-Alias Smooth 消除锯齿平滑3.Reselect 重新选择9 Covert To Paragraph Text 转换为段落⽂字4.Inverse 反选10 Warp Text ⽂字变形5.Color Range ⾊彩范围11 Update All Text Layers 更新所有⽂本图层6.Feather ⽻化12 Replace All Missing Fonts 替换所以缺⽋⽂字7.Modify 修改11.Rasterize 栅格化1 Border 扩边 1 Type ⽂字2 Smooth 平滑 2 Shape 形状3 Expand 扩展 3 Fill Content 填充内容4 Contract 收缩 4 Layer Clipping Path 图层剪贴路径8.Grow 扩⼤选区 5 Layer 图层9.Similar 选区相似 6 Linked Layers 链接图层10.Transform Selection 变换选区7 All Layers 所以图层11.Load Selection 载⼊选区12.New Layer Based Slice 基于图层的切⽚12.Save Selection 存储选区13.Add Layer Mask 添加图层蒙板1 Reveal All 显⽰全部六、Filter 滤镜 2 Hide All 隐藏全部st Filter 上次滤镜操作 3 Reveal Selection 显⽰选区2.Artistic 艺术效果 4 Hide Selection 隐藏选区1 Colored Pencil 彩⾊铅笔14.Enable Layer Mask 启⽤图层蒙板2 Cutout 剪贴画15.Add Layer Clipping Path 添加图层剪切路径3 Dry Brush ⼲笔画 1 Reveal All 显⽰全部4 Film Grain 胶⽚颗粒 2 Hide All 隐藏全部5 Fresco 壁画 3 Current Path 当前路径6 Neon Glow 霓虹灯光16.Enable Layer Clipping Path 启⽤图层剪切路径7 Paint Daubs 涂抹棒17.Group Linked 于前⼀图层编组8 Palette Knife 调⾊⼑18.UnGroup 取消编组9 Plastic Wrap 塑料包装19.Arrange 排列10 Poster Edges 海报边缘 1 Bring to Front 置为顶层11 Rough Pastels 粗糙彩笔 2 Bring Forward 前移⼀层12 Smudge Stick 绘画涂抹 3 Send Backward 后移⼀层13 Sponge 海绵 4 Send to Back 置为底层14 Underpainting 底纹效果20.Arrange Linked 对齐链接图层15 Watercolor ⽔彩 1 Top Edges 顶边3.Blur 模糊 2 Vertical Center 垂直居中1 Blur 模糊 3 Bottom Edges 底边2 Blur More 进⼀步模糊 4 Left Edges 左边3 Gaussian Blur ⾼斯模糊 5 Horizontal Center ⽔平居中4 Motion Blur 动态模糊 6 Right Edges 右边5 Radial Blur 径向模糊21.Distribute Linked 分布链接的6 Smart Blur 特殊模糊 1 Top Edges 顶边4.Brush Strokes 画笔描边 2 Vertical Center 垂直居中1 Accented Edges 强化边缘 3 Bottom Edges 底边2 Angled Stroke 成⾓的线条 4 Left Edges 左边3 Crosshatch 阴影线 5 Horizontal Center ⽔平居中4 Dark Strokes 深⾊线条 6 Right Edges 右边5 Ink Outlines 油墨概况22.Lock All Linked Layers 锁定所有链接图层6 Spatter 喷笔23.Merge Linked 合并链接图层7 Sprayed Strokes 喷⾊线条24.Merge Visible 合并可见图层8 Sumi 总量25.Flatten Image 合并图层5.Distort 扭曲26.Matting 修边1 Diffuse Glow 扩散亮光 1 Define 去边2 Displace 置换 2 Remove Black Matte 移去⿊⾊杂边3 Glass 玻璃 3 Remove White Matte 移去⽩⾊杂边4 Ocean Ripple 海洋波纹5 Pinch 挤压七、View 视图6 Polar Coordinates 极坐标 1.New View 新视图7 Ripple 波纹 2.Proof Setup 校样设置8 Shear 切变 1 Custom ⾃定9 Spherize 球⾯化 2 Working CMYK 处理CMYK10 Twirl 旋转扭曲 3 Working Cyan Plate 处理青版11 Wave 波浪 4 Working Magenta Plate 处理洋红版12 Zigzag ⽔波 5 Working Yellow Plate 处理黄版6.Noise 杂⾊ 6 Working Black Plate 处理⿊版1 Add Noise 加⼊杂⾊7 Working CMY Plate 处理CMY版2 Despeckle 去斑8 Macintosh RGB3 Dust & Scratches 蒙尘与划痕9 Windows RGB4 Median 中间值10 Monitor RGB 显⽰器RGB7.Pixelate 像素化11 Simulate Paper White 模拟纸⽩1 Color Halftone 彩⾊半调12 Simulate Ink Black 模拟墨⿊2 Crystallize 晶格化 3.Proof Color 校样颜⾊3 Facet 彩块化 4.Gamut Wiring ⾊域警告4 Fragment 碎⽚ 5.Zoom In 放⼤5 Mezzotint 铜版雕刻 6.Zoom Out 缩⼩6 Mosaic 马赛克7.Fit on Screen 满画布显⽰7 Pointillize 点状化8.Actual Pixels 实际象素8.Render 渲染9.Print Size 打印尺⼨1 3D Transform 3D 变换10.Show Extras 显⽰额外的2 Clouds 云彩11.Show 显⽰3 Difference Clouds 分层云彩 1 Selection Edges 选区边缘4 Lens Flare 镜头光晕 2 Target Path ⽬标路径5 Lighting Effects 光照效果 3 Grid ⽹格6 Texture Fill 纹理填充 4 Guides 参考线9.Sharpen 锐化 5 Slices 切⽚1 Sharpen 锐化 6 Notes 注释2 Sharpen Edges 锐化边缘7 All 全部3 Sharpen More 进⼀步锐化8 None ⽆4 Unsharp Mask USM 锐化9 Show Extras Options 显⽰额外选项10.Sketch 素描12.Show Rulers 显⽰标尺1 Bas Relief 基底凸现13.Snap 对齐2 Chalk & Charcoal 粉笔和炭笔14.Snap To 对齐到3 Charcoal 1 Guides 参考线4 Chrome 铬黄 2 Grid ⽹格5 Conte Crayon 彩⾊粉笔 3 Slices 切⽚6 Graphic Pen 绘图笔 4 Document Bounds ⽂档边界7 Halftone Pattern 半⾊调图案 5 All 全部8 Note Paper 便条纸 6 None ⽆9 Photocopy 副本15.Show Guides 锁定参考线10 Plaster 塑料效果16.Clear Guides 清除参考线11 Reticulation ⽹状17.New Guides 新参考线12 Stamp 图章18.Lock Slices 锁定切⽚13 Torn Edges 撕边19.Clear Slices 清除切⽚14 Water Paper ⽔彩纸11.Stylize 风格化⼋、Windows 窗⼝1 Diffuse 扩散 1.Cascade 层叠2 Emboss 浮雕 2.Tile 拼贴3 Extrude 突出 3.Arrange Icons 排列图标4 Find Edges 查找边缘 4.Close All 关闭全部5 Glowing Edges 照亮边缘 5.Show/Hide Tools 显⽰/隐藏⼯具6 Solarize 曝光过度 6.Show/Hide Options 显⽰/隐藏选项7 Tiles 拼贴7.Show/Hide Navigator 显⽰/隐藏导航8 Trace Contour 等⾼线8.Show/Hide Info 显⽰/隐藏信息9 Wind 风9.Show/Hide Color 显⽰/隐藏颜⾊12.Texture 纹理10.Show/Hide Swatches 显⽰/隐藏⾊板1 Craquelure 龟裂缝11.Show/Hide Styles 显⽰/隐藏样式2 Grain 颗粒12.Show/Hide History 显⽰/隐藏历史记录3 Mosained Tiles 马赛克拼贴13.Show/Hide Actions 显⽰/隐藏动作4 Patchwork 拼缀图14.Show/Hide Layers 显⽰/隐藏图层5 Stained Glass 染⾊玻璃15.Show/Hide Channels 显⽰/隐藏通道6 Texturixer 纹理化16.Show/Hide Paths 显⽰/隐藏路径13.Video 视频17.Show/Hide Character 显⽰/隐藏字符1 De Interlace 逐⾏18.Show/Hide Paragraph 显⽰/隐藏段落2 NTSC Colors NTSC⾊彩19.Show/Hide Status Bar 显⽰/隐藏状态栏14.Other 其它20.Reset Palette Locations1 Custom ⾃定义2 High Pass ⾼反差保留3 Maximum 最⼤值4 Minimum 最⼩值5 Offset 位移15.Digimarc1 Embed Watermark 嵌⼊⽔印2 Read Watermark 读取⽔印。

图像处理外文翻译

图像处理外文翻译

英文资料翻译Image processing is not a one step process.We are able to distinguish between several steps which must be performed one after the other until we can extract the data of interest from the observed scene.In this way a hierarchical processing scheme is built up as sketched in Fig.The figure gives an overview of the different phases of image processing.Image processing begins with the capture of an image with a suitable,not necessarily optical,acquisition system.In a technical or scientific application,we may choose to select an appropriate imaging system.Furthermore,we can set up the illumination system,choose the best wavelength range,and select other options to capture the object feature of interest in the best way in an image.Once the image is sensed,it must be brought into a form that can be treated with digital computers.This process is called digitization.With the problems of traffic are more and more serious. Thus Intelligent Transport System (ITS) comes out. The subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. The image imputed to the computer is disposed and analyzed in order to localization the position and recognition the characters on the license plate express these characters in text string form The license plate recognition system (LPSR) has important application in ITS. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location. In this paper, several of methods in image manipulation are compared and analyzed, then come out the resolutions for localization of the car plate. The experiences show that the good result has been got with these methods. The methods based on edge map and frequency analysis is used in the process of the localization of the license plate, that is to say, extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted.The automated license plate location is a part of the image processing ,it’s also an important part in the intelligent traffic system.It is the key step in the Vehicle License Plate Recognition(LPR).A method for the recognition of images of different backgrounds and different illuminations is proposed in the paper.the upper and lower borders are determined through the gray variation regulation of the character distribution.The left and right borders are determined through the black-white variation of the pixels in every row.The first steps of digital processing may include a number of different operations and are known as image processing.If the sensor has nonlinear characteristics, these need to be corrected.Likewise,brightness and contrast of the image may require improvement.Commonly,too,coordinate transformations are needed torestore geometrical distortions introduced during image formation.Radiometric and geometric corrections are elementary pixel processing operations.It may be necessary to correct known disturbances in the image,for instance caused by a defocused optics,motion blur,errors in the sensor,or errors in the transmission of image signals.We also deal with reconstruction techniques which are required with many indirect imaging techniques such as tomography that deliver no direct image.A whole chain of processing steps is necessary to analyze and identify objects.First,adequate filtering procedures must be applied in order to distinguish the objects of interest from other objects and the background.Essentially,from an image (or several images),one or more feature images are extracted.The basic tools for this task are averaging and edge detection and the analysis of simple neighborhoods and complex patterns known as texture in image processing.An important feature of an object is also its motion.Techniques to detect and determine motion are necessary.Then the object has to be separated from the background.This means that regions of constant features and discontinuities must be identified.This process leads to a label image.Now that we know the exact geometrical shape of the object,we can extract further information such as the mean gray value,the area,perimeter,and other parameters for the form of the object[3].These parameters can be used to classify objects.This is an important step in many applications of image processing,as the following examples show:In a satellite image showing an agricultural area,we would like to distinguish fields with different fruits and obtain parameters to estimate their ripeness or to detect damage by parasites.There are many medical applications where the essential problem is to detect pathologi-al changes.A classic example is the analysis of aberrations in chromosomes.Character recognition in printed and handwritten text is another example which has been studied since image processing began and still poses significant difficulties.You hopefully do more,namely try to understand the meaning of what you are reading.This is also the final step of image processing,where one aims to understand the observed scene.We perform this task more or less unconsciously whenever we use our visual system.We recognize people,we can easily distinguish between the image of a scientific lab and that of a living room,and we watch the traffic to cross a street safely.We all do this without knowing how the visual system works.For some times now,image processing and computer-graphics have been treated as two different areas.Knowledge in both areas has increased considerably and more complex problems can now be treated.Computer graphics is striving to achieve photorealistic computer-generated images of three-dimensional scenes,while image processing is trying to reconstruct one from an image actually taken with a camera.In this sense,image processing performs the inverse procedure to that of computer graphics.We start with knowledge of the shape and features of an object—at the bottom of Fig. and work upwards until we get a two-dimensional image.To handle image processing or computer graphics,we basically have to work from the sameknowledge.We need to know the interaction between illumination and objects,how a three-dimensional scene is projected onto an image plane,etc.There are still quite a few differences between an image processing and a graphics workstation.But we can envisage that,when the similarities and interrelations between computergraphics and image processing are better understood and the proper hardware is developed,we will see some kind of general-purpose workstation in the future which can handle computer graphics as well as image processing tasks[5].The advent of multimedia,i. e. ,the integration of text,images,sound,and movies,will further accelerate the unification of computer graphics and image processing.In January 1980 Scientific American published a remarkable image called Plume2,the second of eight volcanic eruptions detected on the Jovian moon by the spacecraft V oyager 1 on 5 March 1979.The picture was a landmark image in interplanetary exploration—the first time an erupting volcano had been seen in space.It was also a triumph for image processing.Satellite imagery and images from interplanetary explorers have until fairly recently been the major users of image processing techniques,where a computer image is numerically manipulated to produce some desired effect-such as making a particular aspect or feature in the image more visible.Image processing has its roots in photo reconnaissance in the Second World War where processing operations were optical and interpretation operations were performed by humans who undertook such tasks as quantifying the effect of bombing raids.With the advent of satellite imagery in the late 1960s,much computer-based work began and the color composite satellite images,sometimes startlingly beautiful, have become part of our visual culture and the perception of our planet.Like computer graphics,it was until recently confined to research laboratories which could afford the expensive image processing computers that could cope with the substantial processing overheads required to process large numbers of high-resolution images.With the advent of cheap powerful computers and image collection devices like digital cameras and scanners,we have seen a migration of image processing techniques into the public domain.Classical image processing techniques are routinely employed by graphic designers to manipulate photographic and generated imagery,either to correct defects,change color and so on or creatively to transform the entire look of an image by subjecting it to some operation such as edge enhancement.A recent mainstream application of image processing is the compression of images—either for transmission across the Internet or the compression of moving video images in video telephony and video conferencing.Video telephony is one of the current crossover areas that employ both computer graphics and classical image processing techniques to try to achieve very high compression rates.All this is part of an inexorable trend towards the digital representation of images.Indeed that most powerful image form of the twentieth century—the TV image—is also about to be taken into the digital domain.Image processing is characterized by a large number of algorithms that are specific solutions to specific problems.Some are mathematical or context-independent operations that are applied to each and every pixel.For example,we can use Fourier transforms to perform image filtering operations.Others are“algorithmic”—we may use a complicated recursive strategy to find those pixels that constitute the edges in an image.Image processing operations often form part of a computer vision system.The input image may be filtered to highlight or reveal edges prior to a shape detection usually known as low-level operations.In computer graphics filtering operations are used extensively to avoid abasing or sampling artifacts.中文翻译图像处理不是一步就能完成的过程。

图像处理必备英文词汇

图像处理必备英文词汇

Algebraic operation 代数运算一种图像处理运算,包括两幅图像对应像素的和、差、积、商。

Aliasing 走样〔混叠〕当图像象素间距和图像细节相比太大时产生的一种人工痕迹。

Arc 弧〔l〕图的一部分〔2〕表示一段相连曲线的像素集合。

Binary image 二值图像只有两级灰度的数字图像〔通常为0和1,黑和白〕。

Blur 模糊由于散焦、低通滤波、摄像机运动等引起的图像清晰度的下降。

Border 边框一幅图像的首、未行或列。

Boundary chain code 边界链码定义一个物体边界的方向序列。

Boundary pixel 边界像素至少和一个背景象素相邻接的内部像素〔比较:外部像素、内部像素〕。

Boundary tracking边界跟踪一种图像分割技术,通过沿弧从一个像素顺序探索到下一个像素的方法将弧检测出来。

Brightness 亮度和图像一个点相关的值,表示从该点的物体发射或反射的光的量。

Change detection 变化检测通过相减等操作将两幅匹准图像的像素加以比较从而检测出其中物体差异的技术。

Class 类见模或类。

Closed curve 封闭曲线一条首尾接于一点的曲线。

Cluster 聚类,集群在空间〔如在特征空间〕中位置接近的点的集合。

Cluster analysis 聚类分析在空间中对聚类的检测、度量和描述。

Concave 凹的如果说某个物体是“凹的”是指至少存在两个物体内部的点,其连线不能完全包含在物体内部〔反义词为凸的〕。

Connected 连通的。

Contour encoding 轮廓编码对具有均匀灰度的区域,只将其边界进行编码的一种图像压缩技术。

Contrast 比照度物体平均亮度〔或灰度〕与其周围背景的差异程度。

Contrast stretch 比照度扩展一种线性的灰度变换。

Convex 凸的指连接物体内部任意两点的直线均落在物体内部。

Convolution 卷积一种将两个函数组合生成第三个函数的运算,卷积刻画了线性移不变系统的运算。

Photoshop英汉翻译

Photoshop英汉翻译

一、菜单(一)File:文件1、New:新建2、Open:打开文件3、Open as:打开为4、Close:关闭5、Save:存储6、Save As:存储为7、Save a copy:存储为拷贝文件8、Revert:恢复9、Place:置入10、Import:输入11、Export:输出12、Automate:自动操作1)Batch:批处理2)Conditional Mode change:模式转换3)Contact sheet:视图索引4)Fit Image:适合图像5)Multi-page PDF to PSD:将PDF文件转换为PSD文件13、File Info:文件信息14、Page setup:页面设置15、Print:打印16、Preference:预置1)General:常规2)Saving Files:文件存储3)Transparency Gamut:透明区域与色域4)Units Rulers:单位与标尺5)Guides Grid:参考线与网格6)Plug-Ins Scratch Disks:增效工具与暂存盘7)Memory Image Cache:缓存级别与内存使用率17、Color Settings:色彩设置18、Adobe on line:连接Adobe网站(二)、Edit 编辑1、Undo:恢复一步2、Cut:剪切3、Copy:拷贝4、Copy Merged:拷贝合并5、Paste:粘贴6、Paste into:粘贴入7、Clear: 清楚8、Fill:填充9、Strobe:描边10、free transform:自由变换11、transform:变换1)again:重复上一次变换2)scale:比例3)rotate:旋转4)skew:推斜5)distort:变形6)perspective:透视7)numeric:数字8)rotate 180º:旋转180º9)Rotate 90ºCW:顺时针旋转90º10)Rotate 90º CCW:逆时针旋转90º11)Flip Hovizontol:水平镜像12)Flip vertical 垂直镜像12、Refine pattem 定义图安13、Purge 清理1)vndo 重作2)clip band 剪贴板3)pattern 图案4)Histovies 历史5)All 全部(三) Image 图象菜单1、Mode 模式1)Bitmap (位图,模式)2)Grayscale (灰度模式)3)Duotone 双色调模式4)Indexed color 索引色模式5)RGB6)CMYK7)Lab8)Multichannel 多通道模式9)8 Bit/channel 8位/通道10)16 Bit/charnel 16位/通道11)color Table 索引色表12)profile to profile 色彩模式转换2、Adjust调整1)levels 色阶2)Auto levels 自动色阶3)Curves 曲线4)Color Balance 色彩平衡5)Brightness/contrast 亮度/对比度6)Hun/saturation 色相/饱和度7)Desaturate 去色8)Replace color 替换颜色9)Selective color 所选颜色10)Channel mixer 通道混合器11)Invert 反相12)Equalize 色调3均化13)Threshold 阈值14)Posterize 色调分离15)Variations 变化3 、Duplicate 复制4、Apply Image 应用图像5、Calculations 运算6、Image size图像大小7、Canvas size 通布大小8、Crop 裁切9、Rotate Canvas 旋转通布1)150º度2)90ºcw 顺时针90º3)90ºccw 逆时针90º4)variations5)Flip Horizontal水平镜像6)Flip vertical垂直镜像10、Histogram 直立图11、Trap 陷印四、Layer 层1、new 新建1)Layer 层2)Adjustment Layer 调节层3)Back ground 背景层4)Layer via copy 在层中将所选区域复制5)Layervia via cut 在层中将所选区域剪切2、Duplicate Layer 复制层3、Delete Layer 删除层4、Layer Options 层选项5、Adjustment Options 调节层选项6、Effects 效果层1)Drop shadow 阴影2)Inner shadow 内部阴影3)Outer Glow 外发光4)Inner Glow 内发光5)Bevel and emboss 斜角与浮雕6)Copy Effects 拷贝效果7)Paste Effects 粘贴效果8)Paste Effects to linked 粘贴效果至链接层9)Clear 清除效果层10)Global Angle 斜角角度11)Create Layers 分离效果层12)Hide All Effects 隐藏/显示所有效果层7、Type 类型1)Render Layer 渲染图层2)Vertical 垂直镜像3)Horizontal 水平镜像8、Add Layer Mask 添加层蒙版1)显示所有2)隐藏所有3)显示所选取区域4)隐藏所选区域9、Enable Layer Mask 启用/停用层蒙版10、Group with previons 与上一层编组11、Ungroup 解组12、Arrange 排列1)Bring to Front 放于最上面2)Bring Forward 向前一层3)Send Backward 向后一层4)Send to Back 放于最下面13、Align Linked 对齐链接层1)Top 顶部2)Vertical Center 垂直居中3)Bottom 底部4)Left 左部5)Horizontal Center 水平居中6)Right 右对齐14、Distribute Linked 分部链接层15、Merge down 向下合并 Merge linked 合并链接层16、Merge visible 合并可见层17、Flatten Image 合并所有图层18、Matting 修边1)Defringe 用纯色替换边缘像素颜色2)Remove Black Matte 移除黑边3)Remove White Matte 移除白边五、Select 选择菜单1、All 全选2、Deselect 取消选取择3、Reselect 重新选取择4、Inverse 反选5、Color Range 色彩范围6、Feather 羽化7、Modify 修边1)Border 边框2)Smooth 平滑3)Expand 扩边4)Contact 缩边8、Grow 生长9、Similar 相似10、Transform selection 变换选区11、Load selection 载入选区12、Save selection 存储选区六、Filter 滤镜1、Last Filter 重复上一次滤镜操作2、Fade 淡化效果滤镜3、Artistic 艺术化笔刷1)colored pencil 彩色铅笔2)Cutout 剪贴画3)Dry Brush 干画笔4)Film Groin 胶片颗粒5)Fresco 壁画6)Neon Glow 荧光7)Paint daubs 颜料涂抹8)Palette knife 调色板刀9)Plastic wrap 塑料覆膜10)Poster edges 招贴画11)Rough pastels 粗蜡笔12)Smudge Stick 涂抹棒13)Sponge 海绵14)Underpainting15)Watercolor 水彩画4、Blur 模糊1)Blur More 更加模糊2)Gaussion Blur 高斯模糊3)Motion Blur 动态模糊4)Redial Blur 幅射模糊5)Smart Blur 强化模糊5、Brush stroks 画笔勾画1)Accented Edges 边缘强调2)Angled strokes 角度线条3)Crosshatch 十字交叉线4)Dark strokes 模糊线条5)Ink out lines 墨线图6)Spatter 飞溅效果7)Sprayed strokes 喷雾线条8)Sumi-e 水墨画效果6、Distort 扭曲变形1)Diffuse Glow 发散辉光2)Displace 置换3)Glass 玻璃4)Ocean Ripple 海涟漪5)Pinch 挤压变形6)Polar Coordinates 极坐标7)Ripple 水波纹8)Shear 切变扭曲9)Spherize 球面化10)Twirl 旋涡11)Wave 波形效果12)Zigzag 扭曲效果7、Noise 杂色1)Add Noise 加杂色2)Despeckle 去斑点3)Dust Scratches 去散乱噪声4)Median 中值8、Pixelate 像素化1)Color Halftone 彩色半调网频2)Crystallize 结晶效果3)Facet 多面体效果4)Fragment 碎片效果5)Mezzotint 网版效果6)Mosaic 马塞克7)Pointillize 点彩画9、Render 渲染1)3D Transform 3D变换2)Clouds 云彩3)Difference Clouds 分层云彩4)Lens Flare 镜头光晕5)Lighting Effects 光照效果6)Texture Fill 纹理填充10、Sharpen 锐化2)Sharpen More 进一步锐化3)Unsharp Mask 模糊蒙版锐化效果11、Sketch 素描绘画效果1)Bas kelief 浮雕效果2)Chalk charcoal 碳粉画效果3)Charcoal 碳笔效果4)Chrome 金属铬画5)Conte Crayon 蜡笔6)Graphic pen 钢笔7)Halftone pattern 半色调图案8)Note paper 粗糙纸9)Photocopy 照片复印10)Plaster 石膏版画11)Reticulation 网状效果12)Stamp 印章效果14)Water paper 浸水纸12、Stylize 风格化1)Diffuse 散乱化2)Emboss 浮雕3)Extrude 突出分离4)Find edges 获取边缘5)Glowing edges 辉光边缘6)Solarize 中途曝光7)Files 瓷砖8)Trace contour 轮廓描绘9)Wind 风13、Texture 纹理1)Craquelure 裂纹2)Grain 颗粒效果3)Mosaic Tiles 马塞克4)Patchwork 拼图效果5)Stained Glass 彩色玻璃6)Texturizer 纹理化14、Video 视频1)De-Interlace 逐行2)NTSC colors NTSC 颜色15、Other 其它1)Custom 自定义2)High Pass 高通滤波器3)Maximum 最大化4)Minimum 最小化5)Offset 偏移16、Digimarc 水印1)Embed watermark 加水印标记2)Read watermark 读取水印标记七、View 视图1、New view 新视图2、Preview 预览1)Cyan 青2)Magenta 品红3)Yellow 黄4)Black 黑3、Gamut warning 色域警告4、Zoom In 放大5、Zoom out 缩小6、Fit on Screen 满画布显示7、Actual pixels 实际像素8、Print size 打印尺寸9、Hide Edges 隐藏边界10、Hide path 隐藏路径11、Show Rules 显示/隐藏标尺12、Hide Guides 显示/隐藏辅助线13、Snap to Guides 贴齐辅助线14、Lock Guides 锁定辅助线15、Clear Guides 清除辅助线16、Show Grid 显示/隐藏网格17、Snap to Grid 贴齐网格八、Window 窗口菜单1、Cascade 层叠2、Tile 平铺3、Auange Icens 排列4、Close All 关闭所有窗口5、Hide Tools 显示/隐藏工具栏6、Hide Navigator 显示/隐藏导航栏7、Show Info 显示/隐藏信息面板8、Show Options 显示/隐藏选项面板9、Hide color 显示/隐藏颜色面板10、Show Suatches 显示/隐藏调色板11、Show Brushes 显示/隐藏笔刷面板12、Hide Layers 层面板13、Show channels 显示/隐藏通道面板14、Show Path 显示/隐藏路径面板15、Hide History 显示/隐藏历史面板16、Show Actions 显示/隐藏动作面板17、Hide status Bar 显示/隐藏状态栏九、Help 帮助菜单。

photoshop常用英语单词——中英文对照

photoshop常用英语单词——中英文对照

photoshop常用英语单词——中英文对照photoshop 常用英语单词——中英文对照作者:胡建鹏关键词:常用英语单词添加时间:2008-3-12 17:15:15Aaccent 加重accurate 精确acquire 获得action 操作,运算adjust 调整ambient light 环境光angle 角度anti-aliased 平滑处理arbitrary 任意的arrange 排列arrow 箭头artistic 艺术的,美术的--------------------------------------------------------------------------------Bbalance 平衡bar 条,栏base 基准batch 批量,成批bevel 使成斜角,斜切bilinear 双线性插值bitmap 位图,点阵图blend 混合,调和blur 模糊bold 加粗border 边界,边框brightness 亮度brush 画笔,笔形build 建造,创立burn 焦化,烧黑button 按钮--------------------------------------------------------------------------------Ccache 快速存储器calculation 计算calibrate 校准,校验canvas 画布carve 镌刻cascade 层叠chalk 粉笔,作记号channel 通道,频道charcoal 炭笔画chrome 铬黄,铬合金classic 经典的click (单)击(鼠标)clipboard 剪贴版clone 复制cloud 云彩command 命令content 内容continue 连续的,持续的contour 轮廓线,周线contract 收缩,缩小contrast 反差,对比coordinate 协调,协作craquelue 裂纹crayon 蜡笔crop 剪裁crystallize 水晶curl 螺旋状物,卷曲的current 当前的cursor 光标,游标curve 曲线custom 自定义--------------------------------------------------------------------------------Ddarken 较黑的,使变黑daubs 涂抹define 定义design 设计destination 目标,对象difference 区别,差异diffuse 散乱扩散displace 转移distort 扭曲document 文档,文件dodge 加亮drop shadow 投影duotone 双色调duplicate 复制dust 灰尘,尘土--------------------------------------------------------------------------------Eedge 边界effect 效果作用embed 嵌入emboss 浮雕enlarge 放大equalize 平均化expand 扩充,扩展export 输出extrude 突出eyedropper 吸管--------------------------------------------------------------------------------Ffacet 刻面feather 晕开,羽化fill 填充flare 张开,闪耀flatten 变平flip 翻转fragment 碎片fresco 壁画--------------------------------------------------------------------------------Ggamut 整个领域general 普通的glass 玻璃杯glow 发光gradient 渐变grain 纹理graphics 图形grayscale 灰阶,灰度图grid 坐标格子group 群,组grow 成长guide 参考,参考线--------------------------------------------------------------------------------Hhalftone 半色调histogram 柱状图horizontal 水平hue 色相--------------------------------------------------------------------------------Iicon 图标image 图像import 输入index 索引Inner 内部的input 输入intensity 亮度inverse 相反invert 反转,反相--------------------------------------------------------------------------------Kkeyboard 键盘kilometre 千米,公里--------------------------------------------------------------------------------Llens 凹凸透镜,焦距level 级别,色阶light 光线location 定位--------------------------------------------------------------------------------Mmagic 有魔法的magic wand 魔棒mask 遮罩,掩膜maximum 最大值memory 记忆,内存merge 合并,融合minimum 最小值mode 模式,方式modify 修改,改变monitor 显示器,监视器monochrome 单色的mosaic 马塞克motion 运动multichannel 多通道模式--------------------------------------------------------------------------------Nnegative 负片,负像noise 噪音,糙点numeric 数字化的;分数--------------------------------------------------------------------------------Ooffset 位移,偏移option 选项ornament 装饰outline 轮廓,外形--------------------------------------------------------------------------------Ppalette 调色板parameter 参数,参变量paste 粘贴pastel 彩色粉笔,蜡笔画patchwork 补教,式样path 路径pattern 图案perspective 透视pinch 极化,凹陷或突起plug-ins 插件(滤镜)pointillize 乱点描述polar coordinates 极坐标poster 招贴画posterize 色调分离preference 偏好设定preview 预览previous 前一个pseudo 假的purge 消除--------------------------------------------------------------------------------Rradial 圆形range 范围,领域relief 救济,援救render 渲染,粉刷,上色reticulation 网状物revert 还原,复原ripple 涟漪,波纹rotate 旋转rough 粗略ruler 标尺--------------------------------------------------------------------------------Ssaturation 色彩饱和度scale 缩放scratch 暂时,临时screen 屏幕seam 缝,接缝selection 选择,工作区selective 精心挑选的separation 分离,分开sharpen 锐化shear 扭曲变形similar 相似的sketch 草图,画稿skew 偏斜的smart 灵活的,精巧的smooth 平滑的smudge 玷污,污点snapshot 快照solarize 中途曝光spatter 溅,洒落sponge 海绵spray 喷,喷涂stain 着色,染色stamp 盖章,盖印status 状态,状况stereo 立体声stroke 笔划,打击swirl 漩涡,卷状物--------------------------------------------------------------------------------Ttexture 质地,纹理threshold 两阶调化tile 平铺,窗口并联trace 跟踪,镂边trail 痕迹,足迹transform 转变,变形transparency 透明度twirl 卷曲,快速旋转--------------------------------------------------------------------------------Uultimate 最终的uncommon 罕见,非凡的units 单位,单元--------------------------------------------------------------------------------Vvertex 顶点,最高点vertical 垂直的video 视频,电视view 视图,显示方式virus 病毒visible 可见的,明显的visual 视觉的vogue 流行,时尚volume (磁盘)容量vortex 漩涡--------------------------------------------------------------------------------Wwatercolor 水彩watermark 水印wave 波纹,波动welder 焊接workstation 工作站wrinkle 皱纹--------------------------------------------------------------------------------Zzero 零zigzag 锯齿zoom in 放大zoom out 缩小一、File<文件>1.New<新建>2.Open<打开>3.Open As<打开为>4.Open Recent<最近打开文件>5.Close<关闭>6.Save<存储>7.Save As<存储为>8.Save for Web<存储为Web所用格式>9.Revert<恢复>10.Place<置入>11.Import<输入><1>PDF Image<2>Annotations<注释>12.Export<输出>13.Manage Workflow<管理工作流程><1>Check In<登记><2>Undo Check Out<还原注销><3>Upload To Server<上载到服务器><4>Add To Workflow<添加到工作流程><5>Open From Workflow<从工作流程打开> 14.Automate<自动><1>Batch<批处理><2>Create Droplet<创建快捷批处理><3>Conditional Mode Change<条件模式更改><4>Contact Sheet<联系表><5>Fix Image<限制图像><6>Multi<7>Picture package<图片包><8>Web Photo Gallery15.File Info<文件简介>16.Print Options<打印选项>17.Page Setup<页面设置>18.Print<打印>19.Jump to<跳转到>20.Exit<退出>二、Edit<编辑>1.Undo<还原>2.Step Forward<向前>3.Step Backward<返回>4.Fade<消退>5.Cut<剪切>6.Copy<拷贝>7.Copy Merged<合并拷贝>8.Paste<粘贴>9.Paste Into<粘贴入>10.Clear<清除>11.Fill<填充>12.Stroke<描边>13.Free Transform<自由变形>14.Transform<变换><1>Again<再次><2>Sacle<缩放><3>Rotate<旋转><4>Skew<斜切><5>Distort<扭曲><6>Prespective<透视><7>Rotate 180°<旋转180度><8>Rotate 90°CW<顺时针旋转90度><9>Rotate 90°CCW<逆时针旋转90度><10> Flip Hpeizontal<水平翻转><11> Flip Vertical<垂直翻转>15.Define Brush<定义画笔>16.Define Pattern<设置图案>17.Define Custom Shape<定义自定形状>18.Purge<清除内存数据><1> Undo<还原><2> Clipboard<剪贴板><3> Histories<历史纪录><4> All<全部>19.Color Settings<颜色设置>20.Preset Manager<预置管理器>21.Preferences<预设><1> General<常规><2> Saving Files<存储文件><3> Display & Cursors<显示与光标><4> Transparency & Gamut<透明区域与色域><5> Units & Rulers<单位与标尺><6> Guides & Grid<参考线与网格><7> Plug<8> Memory & Image Cache<内存和图像高速缓存><9> Adobe Online<10> Workflows Options<工作流程选项>三、Image<图像>1.Mode<模式><1> Bitmap<位图><2> Grayscale<灰度><3> Duotone<双色调><4> Indexed Color<索引色><5> RGB Color<6> CMYK Color<7> Lab Color<8> Multichannel<多通道><9> 8 Bits/Channel<8位通道><10> 16 Bits/Channel<16位通道><11> Color Table<颜色表><12>Assing Profile<制定配置文件><13>Convert to Profile<转换为配置文件> 2.Adjust<调整><1> Levels<色阶>><2> Auto Laves<自动色阶><3> Auto Contrast<自动对比度><4> Curves<曲线>><5> Color Balance<色彩平衡><6> Brightness/Contrast<亮度/对比度><7> Hue/Saturation<色相/饱和度><8> Desaturate<去色><9> Replace Color<替换颜色><10> Selective Color<可选颜色><11> Channel Mixer<通道混合器><12> Gradient Map<渐变映射><13> Invert<反相><14> Equalize<色彩均化><15> Threshold<阈值><16> Posterize<色调分离><17> Variations<变化>3.Duplicate<复制>4.Apply Image<应用图像>5.Calculations<计算>6.Image Size<图像大小>7.Canvas Size<画布大小>8.Rotate Canvas<旋转画布><1> 180°<180度><2> 90°CW<顺时针90度><3> 90°CCW<逆时针90度><4> Arbitrary<任意角度><5> Flip Horizontal<水平翻转><6> Flip Vertical<垂直翻转>9.Crop<裁切>10.Trim<修整>11.Reverl All<显示全部>12.Histogram<直方图>13.Trap<陷印>14.Extract<抽出>15.Liquify<液化>四、Layer<图层>1.New<新建><1> Layer<图层><2> Background From Layer<背景图层><3> Layer Set<图层组><4> Layer Set From Linked<图层组来自链接的><5> Layer via Copy<通过拷贝的图层><6> Layer via Cut<通过剪切的图层>2.Duplicate Layer<复制图层>3.Delete Layer<删除图层>yer Properties<图层属性>yer style<图层样式><1> Blending Options<混合选项><2> Drop Shadow<投影><3> Inner Shadow<内阴影><4> Outer Glow<外发光><5> Inner Glow<内发光><6> Bevel and Emboss<斜面和浮雕><7> Satin<光泽><8> Color Overlay<颜色叠加><9> Gradient Overlay<渐变叠加><10> Pattern Overlay<图案叠加><11> Stroke<描边><12> Copy Layer Effects<拷贝图层样式><13> Paste Layer Effects<粘贴图层样式><14> Paste Layer Effects To Linked<将图层样式粘贴的链接的><15> Clear Layer Effects<清除图层样式><16> Global Light<全局光><17> Create Layer<创建图层><18> Hide All Effects<显示/隐藏全部效果><19> Scale Effects<缩放效果>6.New Fill Layer<新填充图层><1> Solid Color<纯色><2> Gradient<渐变><3> Pattern<图案>7.New Adjustment Layer<新调整图层><1>Levels<色阶><2>Curves<曲线><3>Color Balance<色彩平衡><4>Brightness/Contrast<亮度/对比度><5>Hue/Saturation<色相/饱和度><6>Selective Color<可选颜色><7>Channel Mixer<通道混合器><8>Gradient Map<渐变映射><9>Invert<反相><10>Threshold<阈值><11>Posterize<色调分离>8.Change Layer Content<更改图层内容>yer Content Options<图层内容选项>10.Type<文字><1> Create Work Path<创建工作路径><2> Convert to Shape<转变为形状><3> Horizontal<水平><4> Vertical<垂直><5> Anti-Alias None<消除锯齿无><6> Anti-Alias Crisp<消除锯齿明晰><7> Anti-Alias Strong<消除锯齿强><8> Anti-Alias Smooth<消除锯齿平滑><9> Covert T o Paragraph Text<转换为段落文字><10> Warp Text<文字变形><11>Update All Text Layers<更新所有文本图层><12>Replace All Missing Fonts<替换所以缺欠文字> 11.Rasterize<栅格化><1>Type<文字><2>Shape<形状><3>Fill Content<填充内容><4>Layer Clipping Path<图层剪贴路径><5>Layer<图层><6>Linked Layers<链接图层><7>All Layers<所以图层>12.New Layer Based Slice<基于图层的切片>13.Add Layer Mask<添加图层蒙板><1> Reveal All<显示全部><2> Hide All<隐藏全部><3> Reveal Selection<显示选区><4> Hide Selection<隐藏选区>14.Enable Layer Mask<启用图层蒙板>15.Add Layer Clipping Path<添加图层剪切路径><1>Reveal All<显示全部><2>Hide All<隐藏全部><3>Current Path<当前路径>16.Enable Layer Clipping Path<启用图层剪切路径>17.Group Linked<于前一图层编组>18.UnGroup<取消编组>19.Arrange<排列><1> Bring to Front<置为顶层><2> Bring Forward<前移一层><3> Send Backward<后移一层><4> Send to Back<置为底层>20.Arrange Linked<对齐链接图层><1> Top Edges<顶边><2> Vertical Center<垂直居中><3> Bottom Edges<底边><4> Left Edges<左边><5> Horizontal Center<水平居中><6> Right Edges<右边>21.Distribute Linked<分布链接的><1> Top Edges<顶边><2> Vertical Center<垂直居中><3> Bottom Edges<底边><4> Left Edges<左边><5> Horizontal Center<水平居中><6> Right Edges<右边>22.Lock All Linked Layers<锁定所有链接图层>23.Merge Linked<合并链接图层>24.Merge Visible<合并可见图层>25.Flatten Image<合并图层>26.Matting<修边><1> Define<去边><2> Remove Black Matte<移去黑色杂边><3> Remove White Matte<移去白色杂边>五、Selection<选择>1.All<全部>2.Deselect<取消选择>3.Reselect<重新选择>4.Inverse<反选>5.Color Range<色彩范围>6.Feather<羽化>7.Modify<修改><1> Border<扩边><2> Smooth<平滑><3> Expand<扩展><4> Contract<收缩>8.Grow<扩大选区>9.Similar<选区相似>10.Transform Selection<变换选区>11.Load Selection<载入选区>12.Save Selection<存储选区>六、Filter<滤镜>st Filter<上次滤镜操作>2.Artistic<艺术效果><1> Colored Pencil<彩色铅笔><2> Cutout<剪贴画><3> Dry Brush<干笔画><4> Film Grain<胶片颗粒><5> Fresco<壁画><6> Neon Glow<霓虹灯光><7> Paint Daubs<涂抹棒><8> Palette Knife<调色刀><9> Plastic Wrap<塑料包装><10> Poster Edges<海报边缘><11> Rough Pastels<粗糙彩笔><12> Smudge Stick<绘画涂抹><13> Sponge<海绵><14> Underpainting<底纹效果><15> Watercolor<水彩>3.Blur<模糊><1> Blur<模糊><2> Blur More<进一步模糊><3> Gaussian Blur<高斯模糊><4> Motion Blur<动态模糊><5> Radial Blur<径向模糊><6> Smart Blur<特殊模糊>4.Brush Strokes<画笔描边><1> Accented Edges<强化边缘><2> Angled Stroke<成角的线条><3> Crosshatch<阴影线><4> Dark Strokes<深色线条><5> Ink Outlines<油墨概况><6> Spatter<喷笔><7> Sprayed Strokes<喷色线条><8> Sumi5.Distort<扭曲><1> Diffuse Glow<扩散亮光><2> Displace<置换><3> Glass<玻璃><4> Ocean Ripple<海洋波纹><5> Pinch<挤压><6> Polar Coordinates<极坐标><7> Ripple<波纹><8> Shear<切变><9> Spherize<球面化><10> Twirl<旋转扭曲><11> Wave<波浪><12> Zigzag<水波>6.Noise<杂色><1> Add Noise<加入杂色><2> Despeckle<去斑><3> Dust & Scratches<蒙尘与划痕><4> Median<中间值>7.Pixelate<像素化><1> Color Halftone<彩色半调><2> Crystallize<晶格化><3> Facet<彩块化><4> Fragment<碎片><5> Mezzotint<铜版雕刻><6> Mosaic<马赛克><7> Pointillize<点状化>8.Render<渲染><1> 3D Transform<3D 变换><2> Clouds<云彩><3> Difference Clouds<分层云彩><4> Lens Flare<镜头光晕><5> Lighting Effects<光照效果><6> Texture Fill<纹理填充>9.Sharpen<锐化><1> Sharpen<锐化><2> Sharpen Edges<锐化边缘><3> Sharpen More<进一步锐化><4> Unsharp Mask10.Sketch<素描><1> Bas Relief<基底凸现><2> Chalk & Charcoal<粉笔和炭笔><3> Charcoal<3> Chrome<铬黄><4> Conte Crayon<彩色粉笔><5> Graphic Pen<绘图笔><6> Halftone Pattern<半色调图案><7> Note Paper<便条纸><8> Photocopy<副本><9> Plaster<塑料效果><10> Reticulation<网状><11> Stamp<图章><12> Torn Edges<撕边><13> Water Paper<水彩纸>11.Stylize<风格化><1> Diffuse<扩散><2> Emboss<浮雕><3> Extrude<突出><4> Find Edges<查找边缘><5> Glowing Edges<照亮边缘><6> Solarize<曝光过度><7> Tiles<拼贴><8> Trace Contour<等高线><9> Wind<风>12.Texture<<纹理><1> Craquelure<龟裂缝><2> Grain<颗粒><3> Mosained Tiles<马赛克拼贴><4> Patchwork<拼缀图><5> Stained Glass<染色玻璃><6> Texturixer<纹理化>13.Video<视频><1> De<2> NTSC Colors14.Other<其它><1> Custom<自定义><2> High Pass<高反差保留><3> Maximum<最大值><4> Minimum<最小值><5> Offset<位移>15.Digimarc<1>Embed Watermark<嵌入水印><2>Read Watermark<读取水印>七、View<视图>1.New View<新视图>2.Proof Setup<校样设置><1>Custom<自定><2>Working CMYK<处理CMYK><3>Working Cyan Plate<处理青版><4>Working Magenta Plate<处理洋红版><5>Working Yellow Plate<处理黄版><6>Working Black Plate<处理黑版><7>Working CMY Plate<处理CMY版><8>Macintosh RGB<9>Windows RGB<10>Monitor RGB<显示器RGB><11>Simulate Paper White<模拟纸白><12>Simulate Ink Black<模拟墨黑>3.Proof Color<校样颜色>4.Gamut Wiring<色域警告>5.Zoom In<放大>6.Zoom Out<缩小>7.Fit on Screen<满画布显示>8.Actual Pixels<实际象素>9.Print Size<打印尺寸>10.Show Extras<显示额外的>11.Show<显示><1> Selection Edges<选区边缘><2> Target Path<目标路径><3> Grid<网格><4> Guides<参考线><5> Slices<切片><6> Notes<注释><7> All<全部><8> None<无><9>Show Extras Options<显示额外选项>12.Show Rulers<显示标尺>13.Snap<对齐>14.Snap To<对齐到><1> Guides<参考线><2> Grid<网格>。

数字图像处理英文原版及翻译

数字图像处理英文原版及翻译

Digital Image Processing and Edge DetectionDigital Image ProcessingInterest in digital image processing methods stems from two principal application areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for autonomous machine perception.An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we call the image a digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture elements, image elements, pixels, and pixels. Pixel is the term most widely used to denote the elements of a digital image.Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However, unlike humans, who are limited to the visual band of the electromagnetic (EM) spec- trum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that humans are not accustomed to associating with images. These include ultra- sound, electron microscopy, and computer-generated images. Thus, digital image processing encompasses a wide and varied field of applications.There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vi- sion, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computing the average intensity of an image (which yields asingle number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computers to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs. This area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence. The field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in be- tween image processing and computer vision.There are no clearcut boundaries in the continuum from image processing at one end to computer vision at the other. However, one useful paradigm is to consider three types of computerized processes in this continuum: low-, mid-, and high level processes. Low-level processes involve primitive opera- tions such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its inputs and outputs are images. Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual objects. A midlevel process is characterized by the fact that its inputs generally are images, but its outputs are attributes extracted from those images (e.g., edges, contours, and the identity of individual objects). Finally, higher level processing involves “making sense” of an ensemble of recognized objects, as in image analysis, and, at the far end of the continuum, performing the cognitive functions normally associated with vision.Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text, preprocessing that image, extracting(segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making sense.”As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad range of areas of exceptional social and economic value.The areas of application of digital image processing are so varied that some form of organization is desirable in attempting to capture the breadth of this field. One of the simplest ways to develop a basic understanding of the extent of image processing applications is to categorize images according to their source (e.g., visual, X-ray, and so on). The principal energy source for images in use today is the electromagnetic energy spectrum. Other important sources of energy include acoustic, ultrasonic, and electronic (in the form of electron beams used in electron microscopy). Synthetic images, used for modeling and visualization, are generated by computer. In this section we discuss briefly how images are generated in these various categories and the areas in which they are applied.Images based on radiation from the EM spectrum are the most familiar, especially images in the X-ray and visual bands of the spectrum. Electromagnet- ic waves can be conceptualized as propagating sinusoidal waves of varying wavelengths, or they can be thought of as a stream of massless particles, each traveling in a wavelike pattern and moving at the speed of light. Each massless particle contains a certain amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral bands are grouped according to energy per photon, we obtain the spectrum shown in fig. below, ranging from gamma rays (highest energy) at one end to radio waves (lowest energy) at the other. The bands are shown shaded to convey the fact that bands of the EM spectrum are not distinct but rather transition smoothly from one to theother.Image acquisition is the first process. Note that acquisition could be as simple as being given an image that is already in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling.Image enhancement is among the simplest and most appealing areas of digital image processing. Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to highlight certain features of interest in an image. A familiar example of enhancement is when we increase the contrast of an image because “it looks better.” It is important to keep in mind that enhancement is a very subjective area of image processing. Image restoration is an area that also deals with improving the appearance of an image. However, unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabilistic models of image degradation. Enhancement, on the other hand, is based on human subjective preferences regarding what constitutes a “good”enhancement result.Color image processing is an area that has been gaining in importance because of the significant increase in the use of digital images over the Internet. It covers a number of fundamental concepts in color models and basic color processing in a digital domain. Color is used also in later chapters as the basis for extracting features of interest in an image.Wavelets are the foundation for representing images in various degrees of resolution. In particular, this material is used in this book for image data compression and for pyramidal representation, in which images are subdivided successively into smaller regions.Compression, as the name implies, deals with techniques for reducing the storage required to save an image, or the bandwidth required to transmit it.Although storage technology has improved significantly over the past decade, the same cannot be said for transmission capacity. This is true particularly in uses of the Internet, which are characterized by significant pictorial content. Image compression is familiar (perhaps inadvertently) to most users of computers in the form of image , such as the jpg used in the JPEG (Joint Photographic Experts Group) image compression standard.Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape. The material in this chapter begins a transition from processes that output images to processes that output image attributes.Segmentation procedures partition an image into its constituent parts or objects. In general, autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged segmentation procedure brings the process a longway toward successful solution of imaging problems that require objects to be identified individually. On the other hand, weak or erratic segmentation algorithms almost always guarantee eventual failure. In general, the more accurate the segmentation, the more likely recognition is to succeed.Representation and description almost always follow the output of a segmentation stage, which usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating one image region from another) or all the points in the region itself. In either case, converting the data to a form suitable for computer processing is necessary. The first decision that must be made is whether the data should be represented as a boundary or as a complete region. Boundary representation is appropriate when the focus is on external shape characteristics, such as corners and inflections. Regional representation is appropriate when the focus is on internal properties, such as texture or skeletal shape. In some applications, these representations complement each other. Choosing a representation is only part of the solution for trans- forming raw data into a form suitable for subsequent computer processing. A method must also be specified for describing the data so that features of interest are highlighted. Description, also called feature selection, deals with extracting attributes that result in some quantitative information of interest or are basic for differentiating one class of objects from another.Recognition is the process that assigns a label (e.g., “vehicle”) to an object based on its descriptors. As detailed before, we conclude our coverage of digital image processing with the development of methods for recognition of individual objects.So far we have said nothing about the need for prior knowledge or about the interaction between the knowledge base and the processing modules in Fig 2 above. Knowledge about a problem domain is coded into an image processing system in the form of a knowledge database. This knowledge may be as simple as detailing regions of an image where theinformation of interest is known to be located, thus limiting the search that has to be conducted in seeking that information. The knowledge base also can be quite complex, such as an interrelated list of all major possible defects in a materials inspection problem or an image database containing high-resolution satellite images of a region in connection with change-detection applications. In addition to guiding the operation of each processing module, the knowledge base also controls the interaction between modules. This distinction is made in Fig 2 above by the use of double-headed arrows between the processing modules and the knowledge base, as opposed to single-headed arrows linking the processing modules.Edge detectionEdge detection is a terminology in image processing and computer vision, particularly in the areas of feature detection and feature extraction, to refer to algorithms which aim at identifying points in a digital image at which the image brightness changes sharply or more formally has discontinuities.Although point and line detection certainly are important in any discussion on segmentation,edge detection is by far the most common approach for detecting meaningful discounties in gray level.Although certain literature has considered the detection of ideal step edges, the edges obtained from natural images are usually not at all ideal step edges. Instead they are normally affected by one or several of the following effects:1.focal blur caused by a finite depth-of-field and finite point spread function; 2.penumbral blur caused by shadows created by light sources of non-zero radius; 3.shading at a smooth object edge; 4.local specularities or interreflections in the vicinity of object edges.A typical edge might for instance be the border between a block of red color and a block of yellow. In contrast a line (as can be extracted by a ridge detector) can be a small number of pixels of a different color on an otherwise unchanging background. For a line, there maytherefore usually be one edge on each side of the line.To illustrate why edge detection is not a trivial task, let us consider the problem of detecting edges in the following one-dimensional signal. Here, we may intuitively say that there should be an edge between the 4th and 5th pixels.If the intensity difference were smaller between the 4th and the 5th pixels and if the intensity differences between the adjacent neighbouring pixels were higher, it would not be as easy to say that there should be an edge in the corresponding region. Moreover, one could argue that this case is one in which there are several edges.Hence, to firmly state a specific threshold on how large the intensity change between two neighbouring pixels must be for us to say that there should be an edge between these pixels is not always a simple problem. Indeed, this is one of the reasons why edge detection may be a non-trivial problem unless the objects in the scene are particularly simple and the illumination conditions can be well controlled.There are many methods for edge detection, but most of them can be grouped into two categories,search-based and zero-crossing based. The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction. The zero-crossing based methods search for zero crossings in a second-order derivative expression computed from the image in order to find edges, usually the zero-crossings of the Laplacian of the zero-crossings of a non-linear differential expression, as will be described in the section on differential edge detection following below. As a pre-processing step to edge detection, a smoothing stage, typically Gaussian smoothing, is almost always applied (see also noise reduction).The edge detection methods that have been published mainly differ in the types of smoothing filters that are applied and the way the measures of edge strength are computed. As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions.Once we have computed a measure of edge strength (typically the gradient magnitude), the next stage is to apply a threshold, to decide whether edges are present or not at an image point. The lower the threshold, the more edges will be detected, and the result will be increasingly susceptible to noise, and also to picking out irrelevant features from the image. Conversely a high threshold may miss subtle edges, or result in fragmented edges.If the edge thresholding is applied to just the gradient magnitude image, the resulting edges will in general be thick and some type of edge thinning post-processing is necessary. For edges detected with non-maximum suppression however, the edge curves are thin by definition and the edge pixels can be linked into edge polygon by an edge linking (edge tracking) procedure. On a discrete grid, the non-maximum suppression stage can be implemented by estimating the gradient direction using first-order derivatives, then rounding off the gradient direction to multiples of 45 degrees, and finally comparing the values of the gradient magnitude in the estimated gradient direction.A commonly used approach to handle the problem of appropriate thresholds for thresholding is by using thresholding with hysteresis. This method uses multiple thresholds to find edges. We begin by using the upper threshold to find the start of an edge. Once we have a start point, we then trace the path of the edge through the image pixel by pixel, marking an edge whenever we are above the lower threshold. We stop marking our edge only when the value falls below our lower threshold. This approach makes the assumption that edges are likely to be in continuous curves, and allows us to follow a faint section of an edge we have previously seen, without meaning that every noisy pixel in the image is marked down as an edge. Still, however, we have the problem of choosing appropriate thresholdingparameters, and suitable thresholding values may vary over the image.Some edge-detection operators are instead based upon second-order derivatives of the intensity. This essentially captures the rate of change in the intensity gradient. Thus, in the ideal continuous case, detection of zero-crossings in the second derivative captures local maxima in the gradient.We can come to a conclusion that,to be classified as a meaningful edge point,the transition in gray level associated with that point has to be significantly stronger than the background at that point.Since we are dealing with local computations,the method of choice to determine whether a value is “significant” or not id to use a threshold.Thus we define a point in an image as being as being an edge point if its two-dimensional first-order derivative is greater than a specified criterion of connectedness is by definition an edge.The term edge segment generally is used if the edge is short in relation to the dimensions of the image.A key problem in segmentation is to assemble edge segments into longer edges.An alternate definition if we elect to use the second-derivative is simply to define the edge ponits in an image as the zero crossings of its second derivative.The definition of an edge in this case is the same as above.It is important to note that these definitions do not guarantee success in finding edge in an image.They simply give us a formalism to look for them.First-order derivatives in an image are computed using the gradient.Second-order derivatives are obtained using the Laplacian.数字图像处理和边缘检测数字图像处理在数字图象处理方法的兴趣从两个主要应用领域的茎:改善人类解释图像信息;和用于存储,传输,和表示用于自主机器感知图像数据的处理。

数字图像处理英文原版及翻译

数字图像处理英文原版及翻译

数字图象处理英文原版及翻译Digital Image Processing: English Original Version and TranslationIntroduction:Digital Image Processing is a field of study that focuses on the analysis and manipulation of digital images using computer algorithms. It involves various techniques and methods to enhance, modify, and extract information from images. In this document, we will provide an overview of the English original version and translation of digital image processing materials.English Original Version:The English original version of digital image processing is a comprehensive textbook written by Richard E. Woods and Rafael C. Gonzalez. It covers the fundamental concepts and principles of image processing, including image formation, image enhancement, image restoration, image segmentation, and image compression. The book also explores advanced topics such as image recognition, image understanding, and computer vision.The English original version consists of 14 chapters, each focusing on different aspects of digital image processing. It starts with an introduction to the field, explaining the basic concepts and terminology. The subsequent chapters delve into topics such as image transforms, image enhancement in the spatial domain, image enhancement in the frequency domain, image restoration, color image processing, and image compression.The book provides a theoretical foundation for digital image processing and is accompanied by numerous examples and illustrations to aid understanding. It also includes MATLAB codes and exercises to reinforce the concepts discussed in each chapter. The English original version is widely regarded as a comprehensive and authoritative reference in the field of digital image processing.Translation:The translation of the digital image processing textbook into another language is an essential task to make the knowledge and concepts accessible to a wider audience. The translation process involves converting the English original version into the target language while maintaining the accuracy and clarity of the content.To ensure a high-quality translation, it is crucial to select a professional translator with expertise in both the source language (English) and the target language. The translator should have a solid understanding of the subject matter and possess excellent language skills to convey the concepts accurately.During the translation process, the translator carefully reads and comprehends the English original version. They then analyze the text and identify any cultural or linguistic nuances that need to be considered while translating. The translator may consult subject matter experts or reference materials to ensure the accuracy of technical terms and concepts.The translation process involves several stages, including translation, editing, and proofreading. After the initial translation, the editor reviews the translated text to ensure its coherence, accuracy, and adherence to the target language's grammar and style. The proofreader then performs a final check to eliminate any errors or inconsistencies.It is important to note that the translation may require adapting certain examples, illustrations, or exercises to suit the target language and culture. This adaptation ensures that the translated version resonates with the local audience and facilitates better understanding of the concepts.Conclusion:Digital Image Processing: English Original Version and Translation provides a comprehensive overview of the field of digital image processing. The English original version, authored by Richard E. Woods and Rafael C. Gonzalez, serves as a valuable reference for understanding the fundamental concepts and techniques in image processing.The translation process plays a crucial role in making this knowledge accessible to non-English speakers. It involves careful selection of a professional translator, thoroughunderstanding of the subject matter, and meticulous translation, editing, and proofreading stages. The translated version aims to accurately convey the concepts while adapting to the target language and culture.By providing both the English original version and its translation, individuals from different linguistic backgrounds can benefit from the knowledge and advancements in digital image processing, fostering international collaboration and innovation in this field.。

图像处理专业英语词汇

图像处理专业英语词汇

图像处理专业英语词汇图像处理是计算机科学领域中的一个重要分支,它涉及到数字图像的获取、处理、分析和展示。

在图像处理领域,有许多专业的英语词汇需要掌握。

本文将介绍一些常用的图像处理专业英语词汇,帮助读者更好地理解和运用这些术语。

一、数字图像获取数字图像获取是指通过传感器或者扫描仪等设备获取图像的过程。

在这个过程中,有一些常用的英语词汇需要了解。

1. Sensor(传感器)- 一种用于检测和测量环境变化的装置,常用于捕捉图像中的光线信息。

2. Scanner(扫描仪)- 一种设备,用于将纸质图像或照片转换为数字图像。

3. Resolution(分辨率)- 衡量图像细节的能力,通常以像素为单位表示。

4. Pixel(像素)- 图像的最小单位,每个像素代表一个颜色值。

5. Color depth(颜色深度)- 表示每个像素可以显示的颜色数量,通常以位数表示。

二、图像处理基础图像处理的基础是对图像进行各种操作和处理,以改善图像质量或提取有用的信息。

以下是一些常用的英语词汇。

1. Enhancement(增强)- 通过调整图像的对比度、亮度或者颜色等参数来改善图像质量。

2. Filtering(滤波)- 通过应用滤波器来改变图像的频率特性或去除噪声。

3. Segmentation(分割)- 将图像分成不同的区域或对象,以便更好地进行分析和处理。

4. Edge detection(边缘检测)- 识别图像中的边缘或轮廓。

5. Histogram(直方图)- 表示图像中不同灰度级的像素数量的统计图。

三、图像分析与识别图像分析和识别是图像处理的重要应用之一,它涉及到从图像中提取和识别有用的信息。

以下是一些常用的英语词汇。

1. Feature extraction(特征提取)- 从图像中提取有用的特征,用于分类和识别。

2. Pattern recognition(模式识别)- 通过比较图像中的模式和已知的模式,来识别图像中的对象或场景。

高级教程:通过Photoshop实现翻译效果

高级教程:通过Photoshop实现翻译效果

高级教程:通过Photoshop实现翻译效果翻译效果是指通过Photoshop软件对一张图像进行翻译处理,使其在保留原始图像主题和结构的基础上,呈现出具有翻译特色的视觉效果。

以下是实现翻译效果的详细步骤:步骤一:选择合适的图片在开始之前,首先要选择一张适合进行翻译效果处理的图片。

可以选择一张含有文字、标志或具有明显的地域特色的图片,这样在后续的处理中会更容易达到翻译效果的目的。

步骤二:打开图片并进行基本调整打开Photoshop软件,点击“文件”-“打开”,选择刚才选定的图片。

然后在“图像”-“调整”中,对图片进行一些基本的调整,如亮度、对比度、饱和度等。

步骤三:创建翻译遮罩在翻译效果中,我们通常会通过遮罩来实现文字的展示。

首先,在图层面板中,复制一层原始图像,然后选择矩形选框工具,将要添加翻译文字的区域选中。

接下来,点击图层面板右下角的“添加蒙版”按钮,创建一个空白的遮罩。

步骤四:添加文字选择横幅工具,点击遮罩区域,在弹出的文本框中输入要显示的文字内容,可以选择合适的字体、字号和颜色,进行文字的编辑。

可以根据实际需求选择添加多行文字或者居中排列等操作。

步骤五:调整字母间距翻译效果通常会注重字母之间的间距,使得文字看起来更加紧凑和整齐。

选择“字符”面板,将光标放在要调整的文字上,点击面板中的“kerning”按钮,通过增加或减少数值来调整字母间距。

步骤六:应用合适的滤镜为了使翻译效果更加突出,可以通过应用滤镜来增加一些特殊效果。

例如,在“滤镜”-“艺术效果”中,选择适当的滤镜类型,如“贝斯堡”、“粗笔绘画”等,通过调整参数和特效选项,使得文字看起来更加独特。

步骤七:调整图层叠加模式和透明度通过调整图层叠加模式和透明度,可以使文字和原始图像更加融合,达到更好的效果。

在图层面板中,选择翻译文字图层,点击“叠加模式”的下拉菜单,尝试不同的选项,如“叠加”、“颜色加深”、“柔光”等,来观察效果。

如果文字和图像的对比度太强,可以适当调整图层的透明度,使其更加融合自然。

PS中英文对照翻译

PS中英文对照翻译

| 翻译|
1、File<文件> 2、Edit<编辑> 3、Image<图像>
4、Layer<图层> 5、Selection<选择> 6、Filter<滤镜>
7、View<视图> 8、Revert<恢复> 9、Place<置入>
10、Import<输入> 11、Annotations<注释> 12、Export<输出>
6、Step Backward<返回>
7、Copy Merged<合并拷贝>
8、Paste Into<粘贴入>
9、Stroke<描边>
10、Free Transform<自由变形>
11、Transform<变换>
8、Flip Vertical<垂直翻转>
9、Define Brush<定义画笔>
10、Define Pattern<设置图案>
1、Print Options<打印选项>
2、Page Setup<页面设置>
3、Jump to<跳转到>
4、Undo<还原>
5、Step Forward<向前>
13、Manage Workflow<管理工作流程> 14、Undo Check Out<还原注销>
1、Again<再次>
2、Sacle<缩放>
3、Rotate<旋转>

图像处理专业英语词汇

图像处理专业英语词汇

图像处理专业英语词汇Introduction:As a professional in the field of image processing, it is important to have a strong command of the relevant technical terminology in English. This will enable effective communication with colleagues, clients, and stakeholders in the industry. In this document, we will provide a comprehensive list of commonly used English vocabulary related to image processing, along with their definitions and usage examples.1. Image Processing:Image processing refers to the manipulation and analysis of digital images using computer algorithms. It involves various techniques such as image enhancement, restoration, segmentation, and recognition.2. Pixel:A pixel, short for picture element, is the smallest unit of a digital image. It represents a single point in an image and contains information about its color and intensity.Example: The resolution of a digital camera is determined by the number of pixels it can capture in an image.3. Resolution:Resolution refers to the level of detail that can be captured or displayed in an image. It is typically measured in pixels per inch (PPI) or dots per inch (DPI).Example: Higher resolution images provide sharper and more detailed visuals.4. Image Enhancement:Image enhancement involves improving the quality of an image by adjusting its brightness, contrast, sharpness, and color balance.Example: The image processing software offers a range of tools for enhancing photographs.5. Image Restoration:Image restoration techniques are used to remove noise, blur, or other distortions from an image and restore it to its original quality.Example: The image restoration algorithm successfully eliminated the noise in the scanned document.6. Image Segmentation:Image segmentation is the process of dividing an image into multiple regions or objects based on their characteristics, such as color, texture, or intensity.Example: The image segmentation algorithm accurately separated the foreground and background objects.7. Image Recognition:Image recognition involves identifying and classifying objects or patterns in an image using machine learning and computer vision techniques.Example: The image recognition system can accurately recognize and classify different species of flowers.8. Histogram:A histogram is a graphical representation of the distribution of pixel intensities in an image. It shows the frequency of occurrence of different intensity levels.Example: The histogram analysis revealed a high concentration of dark pixels in the image.9. Edge Detection:Edge detection is a technique used to identify and highlight the boundaries between different objects or regions in an image.Example: The edge detection algorithm accurately detected the edges of the objects in the image.10. Image Compression:Image compression is the process of reducing the file size of an image without significant loss of quality. It is achieved by removing redundant or irrelevant information from the image.Example: The image compression algorithm reduced the file size by 50% without noticeable loss of image quality.11. Morphological Operations:Morphological operations are a set of image processing techniques used to analyze and manipulate the shape and structure of objects in an image.Example: The morphological operations successfully removed small noise particles from the image.12. Feature Extraction:Feature extraction involves identifying and extracting relevant features or characteristics from an image for further analysis or classification.Example: The feature extraction algorithm extracted texture features from the image for cancer detection.Conclusion:This comprehensive list of English vocabulary related to image processing provides a solid foundation for effective communication in the field. By familiarizing yourself with these terms and their usage, you will be better equipped to collaborate, discuss, andpresent ideas in the context of image processing. Remember to continuously update your knowledge as the field evolves and new techniques emerge.。

英文版PR常用特效及翻译

英文版PR常用特效及翻译

Video Effects 【视频效果】一. Adjust【调整】1. Lighting effects【照明效果】2. Levels【色阶】二. Blur&Sharpen【模糊&锐化】1. Fast blur【快速模糊】2. Directional blur【方向模糊】3. Gaussian blur【高斯模糊】三. Channel【通道】1. Set matte【设置蒙版】四. Color Correction【色彩校正】1. RGB Curves【RGB曲线】2. Change color【更改颜色】3.Color balance HLS【色彩平衡HLS】4. Change to color【转换颜色】5. Luma curve【亮度曲线】五.Distort【扭曲】1. Offset【偏移】2. Wave warp【波形弯曲】3. Magnify【放大】4. Twirl【旋转扭曲】5. Spherize【球面化】6. Corner pin【边角固定】7. Lens distortion【镜头扭曲】六.Generate【生成】1. Circle【圆】2. Ramp【渐变】3. Grid【网格】4. Lens flare【镜头光晕】5. Lighting【闪电】七. Generate【键控】1. Four-Point Garbage Matte【四点蒙版键】2. Luma【亮度键】3. Image Matte Key【图像遮罩键】4. Chroma Key【色度键】5. Color Key【颜色键】6. Blue Screen Key【蓝屏键】7. Track Matte Key【轨道蒙版键】8. Non Red Key【非红色键】八. Noise&Grain【噪波与颗粒】1. Noise【噪波】2. Noise Alpha【通道噪波】九. Perspective【透视】1. Basic 3D【基本3D】2. Drop Shadow【投影】3. Bevel Edges【斜角边】1. Alpha Glow 【Alpha辉光】2. Replicate 【复制】3. Color Emboss【彩色浮雕】4. Find Edges【查找边缘】5. Emboss【浮雕】6. Roughen Edges【边缘粗糙】7. Strobe Light【闪光灯】8.Mosaic【马赛克】1. Posterize Time【抽帧】2. Echo【重影】1. Vertical Hold【垂直保持】2. Vertical Flip【垂直翻转】3. Horizontal Hold【水平保持】4. Horizontal Flip【水平翻转】5. Edge Feather【羽化边缘】6. Crop【裁剪】1.Block Dissolve【块溶解】2.Radial Wipe【径向擦除】3. Gradient Wipe【渐变擦除】4. Venetian Blinds【百叶窗】5.Linear Wipe【线性擦除】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

校准后,参数列表文件可以存储在matab Calib_Results通过单击Save。

变量列表中可以分为两类:内在参数和外部参数。

内在参数(相机模型):
内部所使用的相机模型非常类似于Heikkil�和Silven大学在芬兰的奥卢。

访问在线校准页
面,发布页面。

我们特别推荐CVPR的97年的论文:一个四个步骤的相机标定过程与隐式图像校正。

内部参数的列表:
Focal length焦距:焦距像素存储在2 x1向量fc。

Principal point:主要观点:主点坐标存储在2 x1向量cc。

Skew coefficient倾斜系数:倾斜系数定义之间的角x和y像素存储在标量alpha_c轴。

Distortions:扭曲:图像失真系数(径向和切向畸变)存储在5 x1向量kc。

固有参数的定义:
让P点的空间坐标向量XXc =(Xc、Yc Zc)相机的参考系。

我们项目现在点在图像平面根据内在参数(fc、cc、alpha_c kc)。

让xn规范化(针孔)图像投影:
让r2 = x2 +y2。

包括透镜畸变后,新的规范化点坐标xd定义如下:
在dx切向畸变向量:
因此,5-vector kc包含径向和切向畸变系数(观察到第六阶径向畸变系数来看的第五项向量kc)。

值得注意的是,这种扭曲模型是由布朗在1966年首次引入并称为“铅锤”模式(径向多项式+“薄棱镜”)。

切向畸变是由于“新社会”,或不完美的镜头组件的定心和其他复合透镜制造缺陷。

更多细节,请参阅布朗的原始参考页面中列出的出版物。

一旦应用变形,最终的像素坐标x_pixel =(xp,yp)P在图像平面的投影:
因此,像素坐标矢量x_pixel和规范化(扭曲)坐标向量xd彼此通过相关线性方程:
KK称为摄像机矩阵,定义如下:
在matlab中,这个矩阵存储在变量校准后KK。

观察到fc(1)和fc(2)焦距(mm)的独特价值水平和垂直像素为单位。

这两个组件的向量fc通常是非常相似的。

比fc(2)/ fc(1),通常被称为“纵横比”,不同于1如果CCD阵列的像素不广场。

因此,自然地处理非方块像素的相机模型。

此外,alpha_c编码系数x和y传感器轴之间的角度。

因此,像素甚至允许非矩形。

一些作者引用类型的模型作为“仿射畸变”模型。

除了计算估计的内在参数fc、cc,kc和alpha_c工具箱也回报估计这些参数的不确定性。

matlab 变量包含那些不确定性fc_error cc_error,kc_error alpha_c_error。

信息,这些向量是大约三倍标准差的估计的错误。

下面是一个示例输出优化后的工具箱:
重要的公约:像素坐标定义,(0,0)是左上角的中心像素的图像。

因此,[nx-1;0]是右上角的中心像素,[0;ny-1]是左下角的中心像素和nx-1;ny-1是右下角的中心像素nx和纽约图像的宽度和高度(图片的第一个例子,nx = 640和ny= 480)。

工具箱中提供一个matlab函数计算,直接像素投影地图。

这个函数是project_points2.m。

这个函数接收一组点的三维坐标空间(在全球参考框架或相机参考系)和内在相机参数(fc、cc、kc,alpha_c),并返回点图像的像素预测飞机。

看到信息的功能。

逆映射:
反问题计算归一化图像的像素坐标的投影向量xn x_pixel在大多数机器视觉应用程序非常有用。

然而,由于高度畸变模型,不存在一般代数表达式的逆映射(也称为标准化)。

然而,在工具箱中提供了一个数值逆映射的实现函数的形式:normalize.m。

函数应该调用的方法:xn =正常化(x_pixel、fc、cc、kc alpha_c)。

在这种语法,x_pixel和xn可能包含不止一个点坐标。

调用的示例,请参见compute_extrinsic_init.m matlab函数。

减少相机模型:
目前生产的相机并不总是证明这非常一般的光学模型。

例如,现在习惯假设矩形像素,因此假设零斜(alpha_c = 0)。

它实际上是默认设置的工具箱(倾斜系数不是估计)。

此外,通用(第六阶径向+切线)畸变模型通常是不完全考虑。

标准的视图(非广角相机)、通常是没有必要的(不推荐),推动第四订单以外的径向畸变模型的组件(即保持kc(5)= 0)。

这也是一个工具箱的默认设置。

此外,失真往往被丢弃的切向分量(合理的事实大多数镜头目前生产没有缺陷在定心)。

第四阶对称径向畸变无切向分量(kc的三个组件设置为0)实际上是使用的畸变模型。

另一个非常常见的畸变模型良好的光学系统或狭窄的视野镜头是二阶对称径向畸变模型。

在这种模型
中,只有第一个组件的向量kc估计,而其他四个设置为0。

这个模型也是常用的几个图像时用于校准(太少的数据来估计一个更复杂的模型)。

除了扭曲和扭曲,降低其他模型是可能的。

例如,当只有少数图像用于校准(如一个、两个或三个图像)主点cc往往很难估计准确。

它被认为是最困难的部分之一本机透视投影模型来估计(忽略透镜扭曲)。

如果是这种情况,有时更好(推荐)设置主点的中心形象(cc =[(nx-1)/ 2;(ny-1)/ 2]),而不是进一步估计它。

最后,在一些罕见的情况下,它可能是必要的拒绝长宽比fc(2)/ fc(1)评估。

模型降阶虽然这最后一步是可能的工具箱,一般不推荐的长宽比通常是简单的估计非常可靠。

有关如何执行模型的更多信息选择工具箱,访问该页面描述第一次校准的例子。

符合Heikkil�的符号:
在原始Heikkil�的纸,内部参数出现在名称上略有不同。

下表给出了对应两个符号之间的计
划:
一些评论Heikkil�的模型:
斜不是估计(alpha_c = 0)。

它可能不是一个问题,因为大多数相机目前没有定心制造缺陷。

径向畸变模型的组件只是第四订单。

在大多数情况下这就足够了。

四个变量(f,Du,Dv,su)取代2 x1焦向量fc分别一般无法估计。

只是可能如果两个已知的变量(例如度量焦值比例系数f和规模因素su)。

看到Heikkil�的纸的更多信息。

符合注册威尔逊的符号:
在他最初的蔡相机标定算法的实现,Reg威尔逊对相机参数使用不同的符号。

下表给出了对应两个符号之间的计划:
威尔逊使用一阶径向畸变模型(一个额外的常数kappa1)没有一个简单的封闭corespondence 与畸变模型(kc编码的系数(1),…,kc(5))。

然而,我们叫做willson_convert的工具箱中包含一个函数,将整个组威尔逊的参数转换成我们的参数(包括变形)。

这个函数被调用另一个函数willson_read直接加载在校准结果文件由威尔逊的代码生成和计算参数(内在和外在)后我们的符号(使用该函数,首先设置matlab变量calib_file原始威尔逊校准文件的名称)。

一些额外的评论威尔逊的模型:
类似于Heikkil�的模型中,斜不包括在模型(alpha_c = 0)。

类似于Heikkil�的模型,四个变量(f,sx,dpx dpy)取代2 x1焦向量fc分别一般无法估计。

只是
可能如果两个已知的变量(例如度量焦值比例系数f和sx)。

外在的参数:
Rotations旋转:一组n_ima 3 x3的旋转矩阵Rc_1,Rc_2,. .,Rc_20(假设n_ima = 20)。

Translations平移:一组n_ima 3 x1向量Tc_1 Tc_2,. .,Tc_20(假设n_ima = 20)。

非本征参数的定义:
考虑校准网格第#i个校准(附图片),和专注于相机参考系attahed网格。

没有损失的共性,i= 1。

下面的图显示了参考系(O,X,Y,Z)附加到校准gid。

让P点的空间坐标向量XX =[X,Y,Z]在网格参考系(参考帧显示在前面的图)。

让XX c = [X c;Y c;Z c]是P的坐标向量在相机参考系。

然后XX XXc互为相关通过严格的运动方程如下:
XX c = Rc_1 * XX + Tc_1
特别是translation 向量的坐标向量是Tc_1网格图形的起源(O)相机参考系,和第三列的矩阵Rc_1表面法向量包含平面的平面网格的相机参考系。

相同的关系持有剩余的外在参数(Rc_2 Tc_2)、(Rc_3 Tc_3)……(Rc_20 Tc_20)。

一旦一个点的坐标表示的相机参考系,也许像平面上投影使用内在的相机参数。

向量omc_1 omc_1,……,omc_20s是旋转矩阵Rc_1,Rc_1,……,Rc_20相关的旋转矢量。

这两个相关罗德里格斯公式。

例如, Rc_1 = rodrigues(omc_1)。

类似于内在参数,外在的估计的不确定性参数omc_i Tc_i(i= 1,…,n_ima)也计算工具箱。

这些不确定性都存储在向量omc_error_1,……,Tc_error_1 omc_error_20……,Tc_error_20(假设n_ima = 20)和代表大约三倍标准差的估计的错误。

相关文档
最新文档