自制折边机模型图

自制折边机模型图

自制折边机模型图上海宝冶建设炉窑分公司

数据结构课程设计图的遍历和生成树求解

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 图的遍历和生成树求解实现 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 12 月 09 日 完成时间: 2012 年 12 月 26 日 课程设计成绩: 指导教师签名:年月日

目录 摘要 (3) 引言 (4) 1 需求分析 (5) 1.1任务与分析 (5) 1.2测试数据 (5) 2 概要设计 (5) 2.1 ADT描述 (5) 2.2程序模块结构 (7) 软件结构设计: (7) 2.3各功能模块 (7) 3 详细设计 (8) 3.1结构体定义 (19) 3.2 初始化 (22) 3.3 插入操作(四号黑体) (22) 4 调试分析 (22) 5 用户使用说明 (23) 6 测试结果 (24) 结论 (26)

摘要 《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。进行数据结构课程设计要达到以下目的: ?了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; ?初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; ?提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。 这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。 因为图是一种较线形表和树更为复杂的数据结构。在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。对图的遍历分别采用了广度优先遍历和深度优先遍历。 关键词:计算机;图;算法。

机器学习 —— 概率图模型(推理:决策)

Koller 教授把决策作为一种单独的模块进行讲解,但我认为,决策和推理本质上是一样的,都是在假设已知CPD或者势函数的情况下对模型给出结论。 1、决策==逐利 决策的基本思想很intuitive,并且非常有用。在赌博行为中,最后获得的钱与硬币的正反,赌注的大小有关。硬币的正反显然是随机变量,而赌注的大小却是决策量。显而易见的是,决策的最终目的是使得某个期望最大化。再举一个视觉中的例子,对于双目配准算法而言,左相机对应右相机的像素可以认为是随机变量。但是否将两个像素配在一起却可以认为是一个决策(假设像素一一对应,如果甲配了乙就不能配丙了,希望配准的最终结果是尽可能正确的)。故决策的数学表达为: 其中,P(X|A)表示在给定决策下,随机变量X的概率。U(x,a)表示给定决策下,x发生所获得的收益。简单的决策如图所示:

2、决策的方法 显然从上面的分析可知,我们要做的决策就是使得期望最大化的那个。换一个角度来看,如果每次的决策都是未知的,决策取决于已知信息,决策影响最终结果,如果决策也是随机变量,我们应该把获利最多的那个决策组作为我们所需采取的决策库。换而言之,凡事应有a,b,c三策,不同的策略对应不同的情况。显然,我们所需要采取的策略取决于已知的信息(Action的父节点)。而策略组本身就是一个随机变量。 如图所示,如果变量真实值无法观测,只能通过一个传感器(survey)来进行推测时,决策应该取决于S的值。S的值又和其所有父节点(M)的值相关。MEU表示所选择的策略。

显然,我们需要P(S)deta(F|S)U(F,M),然后P(S)需要对P(M,S)进行边际获得。故表达式如上。带入数据发现

概率图模型研究进展综述

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/6418466620.html, Journal of Software,2013,24(11):2476?2497 [doi: 10.3724/SP.J.1001.2013.04486] https://www.360docs.net/doc/6418466620.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 概率图模型研究进展综述 张宏毅1,2, 王立威1,2, 陈瑜希1,2 1(机器感知与智能教育部重点实验室(北京大学),北京 100871) 2(北京大学信息科学技术学院智能科学系,北京 100871) 通讯作者: 张宏毅, E-mail: hongyi.zhang.pku@https://www.360docs.net/doc/6418466620.html, 摘要: 概率图模型作为一类有力的工具,能够简洁地表示复杂的概率分布,有效地(近似)计算边缘分布和条件分 布,方便地学习概率模型中的参数和超参数.因此,它作为一种处理不确定性的形式化方法,被广泛应用于需要进行 自动的概率推理的场合,例如计算机视觉、自然语言处理.回顾了有关概率图模型的表示、推理和学习的基本概念 和主要结果,并详细介绍了这些方法在两种重要的概率模型中的应用.还回顾了在加速经典近似推理算法方面的新 进展.最后讨论了相关方向的研究前景. 关键词: 概率图模型;概率推理;机器学习 中图法分类号: TP181文献标识码: A 中文引用格式: 张宏毅,王立威,陈瑜希.概率图模型研究进展综述.软件学报,2013,24(11):2476?2497.https://www.360docs.net/doc/6418466620.html,/ 1000-9825/4486.htm 英文引用格式: Zhang HY, Wang LW, Chen YX. Research progress of probabilistic graphical models: A survey. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2476?2497 (in Chinese).https://www.360docs.net/doc/6418466620.html,/1000-9825/4486.htm Research Progress of Probabilistic Graphical Models: A Survey ZHANG Hong-Yi1,2, WANG Li-Wei1,2, CHEN Yu-Xi1,2 1(Key Laboratory of Machine Perception (Peking University), Ministry of Education, Beijing 100871, China) 2(Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China) Corresponding author: ZHANG Hong-Yi, E-mail: hongyi.zhang.pku@https://www.360docs.net/doc/6418466620.html, Abstract: Probabilistic graphical models are powerful tools for compactly representing complex probability distributions, efficiently computing (approximate) marginal and conditional distributions, and conveniently learning parameters and hyperparameters in probabilistic models. As a result, they have been widely used in applications that require some sort of automated probabilistic reasoning, such as computer vision and natural language processing, as a formal approach to deal with uncertainty. This paper surveys the basic concepts and key results of representation, inference and learning in probabilistic graphical models, and demonstrates their uses in two important probabilistic models. It also reviews some recent advances in speeding up classic approximate inference algorithms, followed by a discussion of promising research directions. Key words: probabilistic graphical model; probabilistic reasoning; machine learning 我们工作和生活中的许多问题都需要通过推理来解决.通过推理,我们综合已有的信息,对我们感兴趣的未 知量做出估计,或者决定采取某种行动.例如,程序员通过观察程序在测试中的输出判断程序是否有错误以及需 要进一步调试的代码位置,医生通过患者的自我报告、患者体征、医学检测结果和流行病爆发的状态判断患者 可能罹患的疾病.一直以来,计算机科学都在努力将推理自动化,例如,编写能够自动对程序进行测试并且诊断 ?基金项目: 国家自然科学基金(61222307, 61075003) 收稿时间:2013-07-17; 修改时间: 2013-08-02; 定稿时间: 2013-08-27

概率图模型中的推断

概率图模型中的推断 王泉 中国科学院大学网络空间安全学院 2016年11月

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P R =1 P R =0 0 P R =1G =1= ? P B =0.001 P E =0.002 P A B ,E =0.95 P A B ,?E =0.94 P A ?B ,E =0.29 P A ?B ,?E =0.001 P J A =0.9 P J ?A =0.05 P M A =0.7 P M ?A =0.01 P B =1E =0,J =1=? P x Q x E =x Q ,x E x E

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P x Q x E =x Q ,x E x E 观测图片 y i 原始图片 x i y ?=argmax P y x 朴素贝叶斯 x ?=argmax P x y 图像去噪

?精确推断:计算P x Q x E的精确值 –变量消去 (variable elimination) –信念传播 (belief propagation) –计算复杂度随着极大团规模的增长呈指数增长,适用范围有限?近似推断:在较低的时间复杂度下获得原问题的近似解–前向采样 (forward sampling) –吉布斯采样 (Gibbs sampling) –通过采样一组服从特定分布的样本,来近似原始分布,适用范围更广,可操作性更强

读懂概率图模型:你需要从基本概念和参数估计开始

读懂概率图模型:你需要从基本概念和参数估计开始 选自statsbot作者:Prasoon Goyal机器之心编译参与:Panda 概率图模型是人工智能领域内一大主要研究方向。近日,Statsbot 团队邀请数据科学家Prasoon Goyal 在其博客上分两部分发表了一篇有关概率图模型的基础性介绍文章。文章从基础的概念开始谈起,并加入了基础的应用示例来帮助初学者理解概率图模型的实用价值。机器之心对该文章进行了编译介绍。 第一部分:基本术语和问题设定 机器学习领域内很多常见问题都涉及到对彼此相互独立的 孤立数据点进行分类。比如:预测给定图像中是否包含汽车或狗,或预测图像中的手写字符是0 到9 中的哪一个。 事实证明,很多问题都不在上述范围内。比如说,给定一个句子「I like machine learning」,然后标注每个词的词性(名词、代词、动词、形容词等)。正如这个简单例子所表现出的那样:我们不能通过单独处理每个词来解决这个任务——「learning」根据上下文的情况既可以是名词,也可以是动词。这个任务对很多关于文本的更为复杂的任务非常重要,比如从一种语言到另一种语言的翻译、文本转语音等。 使用标准的分类模型来处理这些问题并没有什么显而易见

的方法。概率图模型(PGM/probabilistic graphical model)是一种用于学习这些带有依赖(dependency)的模型的强大框架。这篇文章是Statsbot 团队邀请数据科学家Prasoon Goyal 为这一框架编写的一份教程。 在探讨如何将概率图模型用于机器学习问题之前,我们需要先理解PGM 框架。概率图模型(或简称图模型)在形式上是由图结构组成的。图的每个节点(node)都关联了一个随机变量,而图的边(edge)则被用于编码这些随机变量之间的关系。 根据图是有向的还是无向的,我们可以将图的模式分为两大类——贝叶斯网络(?Bayesian network)和马尔可夫网络(Markov networks)。 贝叶斯网络:有向图模型 贝叶斯网络的一个典型案例是所谓的「学生网络(student network)」,它看起来像是这样: 这个图描述了某个学生注册某个大学课程的设定。该图中有5 个随机变量:课程的难度(Difficulty):可取两个值,0 表示低难度,1 表示高难度 学生的智力水平(Intelligence):可取两个值,0 表示不聪明,1 表示聪明 学生的评级(Grade):可取三个值,1 表示差,2 表示中,3 表示优

概率图模型介绍与计算

概率图模型介绍与计算 01 简单介绍 概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示: 图一(a)无向图(隐马尔科夫)(b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,每个变量有N个状态(取值范围),节点之间的边表示变量之间的关系,它除了

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

求出下图的最小生成树

求出下图的最小生成树 解:MATLAB程序: % 求图的最小生成树的prim算法。 % result的第一、二、三行分别表示生成树边的起点、终点、权集合 % p——记录生成树的的顶点,tb=V\p clc;clear; % a(1,2)=50; a(1,3)=60; % a(2,4)=65; a(2,5)=40; % a(3,4)=52;a(3,7)=45; % a(4,5)=50; a(4,6)=30;a(4,7)=42; % a(5,6)=70; % a=[a;zeros(2,7)]; e=[1 2 20;1 4 7;2 3 18;2 13 8;3 5 14;3 14 14;4 7 10;5 6 30;5 9 25;5 10 9;6 10 30;6 11 30;7 8 2;7 13 5;8 9 4;8 14 2;9 10 6;9 14 3;10 11 11;11 12 30]; n=max([e(:,1);e(:,2)]); % 顶点数 m=size(e,1); % 边数 M=sum(e(:,3)); % 代表无穷大 a=zeros(n,n); for k=1:m a(e(k,1),e(k,2))=e(k,3); end a=a+a';

a(find(a==0))=M; % 形成图的邻接矩阵 result=[];p=1; % 设置生成树的起始顶点 tb=2:length(a); % 设置生成树以外顶点 while length(result)~=length(a)-1 % 边数不足顶点数-1 temp=a(p,tb);temp=temp(:); % 取出与p关联的所有边 d=min(temp); % 取上述边中的最小边 [jb,kb]=find(a(p,tb)==d); % 寻找最小边的两个端点(可能不止一个) j=p(jb(1));k=tb(kb(1)); % 确定最小边的两个端点 result=[result,[j;k;d]]; % 记录最小生成树的新边 p=[p,k]; % 扩展生成树的顶点 tb(find(tb==k))=[]; % 缩减生成树以外顶点 end result % 显示生成树(点、点、边长) weight=sum(result(3,:)) % 计算生成树的权 程序结果: result = 1 4 7 8 14 7 9 13 10 10 14 10 11 4 7 8 14 9 13 10 2 5 11 3 6 12 7 10 2 2 3 5 6 8 9 11 1 4 30 30 weight = 137 附图 最小生成树的权是137

求无向连通图的生成树

求无向连通图的生成树

————————————————————————————————作者:————————————————————————————————日期:

求无向连通图的生成树 一、实验目的 ⑴掌握图的逻辑结构 ⑵掌握图的邻接矩阵存储结构 ⑶验证图的邻接矩阵存储及其遍历操作的实现 二、实验内容 (1)建立无向图的邻接矩阵存储 (2)对建立的无向图,进行深度优先遍历 (3)对建立的无向图进行广度优先遍历 三、设计与编码 (1)本实验用到的理论知识 (2)算法设计 (3)编码 // 图抽象类型及其实现.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include"Graph.h" #include"iostream.h" int Graph::Find(int key,int &k) { ?int flag=0; ?for(int i=0;i<VertexLen;i++) ?if(A[i].data.key==key){k=i;flag=1;break;}; return flag; }; int Graph::CreateGraph(int vertexnum,Edge *E,int edgenum) {//由边的集合E(E[0]~E[VertexNum-1]),生成该图的邻接表

表示 if(vertexnum<1)return(-1);//参数vertexnum非法int i,front,rear,k; ?Enode *q; ?//先生成不带边表的顶点表--即顶点为孤立顶点集 ?A=newVnode[vertexnum]; if(!A)return(0);//堆耗尽 ?for(i=0;ikey=front; q->Weight=E[i].weight; ??q->next=A[rear].first; ?A[rear].first=q; ?A[rear].data.OutDegree++; A[front].data.InDegree++; ?if(Type>2) { ??q=new Enode;

求无向连通图的生成树

求无向连通图的生成树 一、实验目的 ⑴掌握图的逻辑结构 ⑵掌握图的邻接矩阵存储结构 ⑶验证图的邻接矩阵存储及其遍历操作的实现 二、实验内容 (1)建立无向图的邻接矩阵存储 (2)对建立的无向图,进行深度优先遍历 (3)对建立的无向图进行广度优先遍历 三、设计与编码 (1)本实验用到的理论知识 (2)算法设计 (3)编码 // 图抽象类型及其实现.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include"Graph.h" #include"iostream.h" int Graph::Find(int key,int &k) { int flag=0; for(int i=0;i

if(vertexnum<1)return(-1);//参数vertexnum非法 int i,front,rear,k; Enode *q; //先生成不带边表的顶点表--即顶点为孤立顶点集 A=new Vnode[vertexnum]; if(!A)return(0);//堆耗尽 for(i=0;ikey=front; q->Weight=E[i].weight; q->next=A[rear].first; A[rear].first=q; A[rear].data.OutDegree++; A[front].data.InDegree++; if(Type>2) { q=new Enode; if(!q)return(0); q->key=rear; q->next=A[front].first;

概率图模型

概率图模型 过去的一段时间里,忙于考试、忙于完成实验室要求的任务、更忙于过年,很长时间没有以一种良好的心态来回忆、总结自己所学的东西了。这几天总在想,我应该怎么做。后来我才明白,应该想想我现在该做什么,所以我开始写这篇博客了。这将是对概率图模型的一个很基础的总结,主要参考了《PATTERN RECOGNITION and MACHINE LEARNING》。看这部分内容主要是因为LDPC码中涉及到了相关的知识。概率图模型本身是值得深究的,但我了解得不多,本文就纯当是介绍了,如有错误或不当之处还请多多指教。 0. 这是什么? 很多事情是具有不确定性的。人们往往希望从不确定的东西里尽可能多的得到确定的知识、信息。为了达到这一目的,人们创建了概率理论来描述事物的不确定性。在这一基础上,人们希望能够通过已经知道的知识来推测出未知的事情,无论是现在、过去、还是将来。在这一过程中,模型往往是必须的,什么样的模型才是相对正确的?这又是我们需要解决的问题。这些问题出现在很多领域,包括模式识别、差错控制编码等。 概率图模型是解决这些问题的工具之一。从名字上可以看出,这是一种或是一类模型,同时运用了概率和图这两种数学工具来建立的模型。那么,很自然的有下一个问题 1. 为什么要引入概率图模型? 对于一般的统计推断问题,概率模型能够很好的解决,那么引入概率图模型又能带来什么好处呢? LDPC码的译码算法中的置信传播算法的提出早于因子图,这在一定程度上说明概率图模型不是一个从不能解决问题到解决问题的突破,而是采用概率图模型能够更好的解决问题。《模式识别和机器学习》这本书在图模型的开篇就阐明了在概率模型中运用图这一工具带来的一些好的性质,包括

概率图模型理论及应用教学大纲

教学大纲 统计推理和学习(Statistical Inference and Learning)是信号处理、模式识别、通信系统等工程应用中处理不确定性的一个重要方法。新兴的(概率)图模型是概率论与图论相结合的产物,为各种统计推理和学习提供了一个统一的灵活框架。 本课程介绍图模型基本理论,包括:图论相关知识,图模型上条件独立性,有向图模型(贝叶斯网络)、无向图模型(马尔可夫随机场),图模型的统计推理算法,图模型的学习算法(参数学习和结构学习)等,以及图模型在语音识别、图像处理、计算机视觉、通信信道编码(Turbo-coding)等应用中的具体实例。具体包括如下内容:第一章引言 统计推理和学习的概念 第二章图模型 图论相关知识(简介) 图模型上条件独立性(d-separation,Bayes ball) 有向图模型(贝叶斯网络),无向图模型(马尔可夫随机场) 在图模型框架下介绍: 多元高斯模型、 主成分分析(PCA)、 混合分布(Mixtures)、 因子分析(FA)、 隐马尔科夫模型(HMM) 第三章图模型上的推理(Inference) 图论知识深入:簇(Cliques)、可分解图(Decomposable graph),连接树(Junction tree),规范化(Moralization),三角化(Triangulation)等概念 Junction Tree算法 对HMM的前向-后向算法、Viterbi算法,线性动态系统的Kalman滤波的统一描述 1

第四章图模型的参数学习(Parameter Learning) 完整数据下的最大似然(ML)参数估计 不完整数据(Incomplete Data)下的ML参数估计(EM算法) 完整数据下的贝叶斯学习 不完整数据下的贝叶斯学习 第五章图模型的结构学习(Structure Learning) 模型选取准则,包括最小描述长度(Minimum Description Length,MDL),贝叶斯信息准则(Bayesian Information Criterion,BIC)等 结构EM算法(Structural EM) 结构的贝叶斯学习 第六章图模型的应用选讲 图模型在语音识别应用中的实例 图模型在图像处理应用中的实例 图模型在计算机视觉应用中的实例 图模型在通信信道编码(Turbo-coding)应用中的实例 (前面各章中配合理论的讲解,相应有应用实例的介绍。) 2

图的遍历生成树

实验项目:图的先深、先广遍历生成树 实验目的: 1、学会把图转化为程序能识别的邻接矩阵 2、透彻理解图的两种遍历方法及对应的生成树。 涉及的知识点:图的表示法、生成树的概念、图的深度优先、广度优先遍历算法 实验内容: 该程序是对树进行先深、先广遍历,请在此基础上,改为处理指定图,求该图从指定结点出发的先深、先广遍历生成树。 // AdjMWGraph.h : Defines the entry point for the console application. #include "SeqList.h" #include "SeqQueue.h" const int MaxVertices=10; const int Max Weight=10000; //表示无穷大 class AdjMWGraph { private: SeqList Vertices; // 顶点信息的线性表 int Edge[MaxVertices][MaxVertices]; //边的权信息矩阵 int numOf E dges; //当前的边数 public: AdjMWGraph(const int sz=MaxVertices);//构造函数,参数是顶点数目 int GraphEmpty()const { return Vertices.ListEmpty(); } int NumOfVertices(void)//当前结点个数 { return Vertices.ListSize(); } int NumOf E dges(void)//边数 { return numOf E dges; } VerT GetValue(const int i); //取结点i的值 int GetWeight(const int v1, const int v2); //取弧的权重; //插入顶点vertex void InsertVertex(const VerT &vertex); //插入弧,权为w eight void InsertE dge(const int v1,const int v2,int w eight); //删除与顶点i及关联的边 void DeleteVertex(const int i); //删除弧 void DeleteEdge(const int v1,const int v2); //取顶点i的第一条邻接边,返回邻接点的下标,否则返回-1 int GetFirstNeighbor(const int v);

最小生成树问题,图形输出最小生成树

数据结构课程设计 系别电子信息系 专业计算机科学与技术 班级学号 姓名 指导教师 成绩 2012年7 月12日

目录 1 需求分析 (2) 2 概要设计 (2) 2. 1抽象数据类型定义 (2) 2 . 2模块划分 (3) 3 详细设计 (4) 3. 1数据类型的定义 (4) 3. 2主要模块的算法描述 (6) 4 调试分析 (10) 5 用户手册 (10) 6 测试结果 (11) 7 附录(源程序清单) (13) 参考文献 (20)

一、需求分析 1.要在n个城市之间建设通信网络,只需要架设n-1条线路即可,而要以最低的经济代价建设这个通信网,就需要在这个网中求最小生成树。 (1)利用克鲁斯卡尔算法求网的最小生成树。 (2)实现教科书 6.5 节中定义的抽象数据类型 MFSet 。以此表示构造生成树过程中的连通分量。 (3)输入顶点个数,输入顶点序号(用整型数据[0,1,2,……,100]表示),输入定点之间的边的权值(整型数据)。系统构造无向图,并求解最小生成树。 (4)以图形和文本两种形式输出最小生成树。 2.程序执行的命令包括: (1)随机生成一个图; (2)输入图坐标信息; (3)以文本形式输出最小生成树; (4)以图形形式输出最小生成树; (5)以图形形式输出构造的图; (6)结束。 3.测试数据 (1)用户输入需要构造的图形顶点个数,假设顶点个数为4; (2)C语言函数随机生成的图形,顶点分别为a,b,c,d,权值分别为: ab=75,ac=99,ad=80,bc=33,bd=93,cd=19; (3)最小生成树边的权值分别为:ab=75,bc=33,cd=19; (4)结束。 二、概要设计 1. 图的抽象数据类型定义 ADT Gragh{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R: R={VR} VR={| v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息 } 基本操作P: CreateGraph(&G,V,VR); 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGragh(&G); 初始条件:图G存在。 操作结果:销毁图G。 GetVex(G,v); 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的值。 FirstAdjvex(G,v); 初始条件:图G存在,v是G中某个顶点。

概率图模型介绍与计算

概率图模型介绍与计算. 概率图模型介绍与计算 01 简单介绍概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea

Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示:

图一 (a)无向图(隐马尔科夫) (b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,个状态(取值范围),节点之间的边表示变量之间的关系,它除N每个变量有. 了可以作为构建模型的语言外,图还可以评价模型的复杂度和可行性,一个算法的运行时间或者错误界限的数量级可以用图的结构性质来分析,这句话说的范围很广,其实工程领域的很多问题都可以用图来表示,最终转换成一个搜索试问还有什么问题不是搜索问题?目标就是快速的定位到目标,或者查找问题,树是图,旅行商问题是基于图,染色问题更是基于图,他们具有不同的图的结 构性质。对于树的时间复杂度我们是可以估算出来的,而概率图模型的一开始

图的最小生成树的实现

数据结构课程设计 设计说明书 图的最小生成树的实现(Kruskal算法) (Kruskal算法)

计算机科学与技术系 2011 年 3 月 4 日 数据结构课程设计评阅书

指导教师(签字):教研室主任(签字):批准日期:年月日

图的最小生成树的实现(Kruskal算法)是一种按照网中边的权值递增的顺序构造最小生成树的方法.在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前当前为被选取的边集中权值最小的边.最后形成的连通分量便是最小生成树.在存储图时选取邻接矩表.此算法的关键问题是如何判断回路,解决办法是定义一个一维数组,让f[i]=I,在增加边时判断f[i]是否和f[j]相同.这样的设计更方便实用,可以使用户更好的使用. 关键词:邻接矩阵;邻接表;kruskal;最小生成树

1 课题描述 (1) 2问题分析和任务定义 (2) 3 逻辑设计 (3) 4 程序编码 (5) 6 总结 (10) 参考文献 (11)

1 课题描述 图的最小生成树的定义:设图连通G的所有边的集合E(G),在从任意顶点出发便利图时,必定将E(G)分为两部分,一个是便利的边的集合,另一个是剩余的.把经历的边的集合和图G中所有顶点一起构成连通图G的极小连通子图。这个连通图是一棵生成树,无向连通图的生成树不是唯一的,连通图的一次遍历所经历的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可得到不同的生成树。如果无相连通图是一个网,那么它所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵树是最小生成树。本次课设将采用Kruskal算法解决最小生成树问题。 1

最小生成树

数据结构(首页) 用时:2 学时第七章 图 第三讲 图的最小生成树、拓扑排序 授课教师: 授课对象: 授课时间: 主要教学内容:教学步骤、时间分配 1.图的连通性—连通分量 20分钟 2.图的最小生成树Prim和Kruskal算法过程 40分钟 3.图的拓扑排序生成方法 20分钟 4.小结 10分钟 教学目的及任务: 使学生掌握图的连通性—连通分量的概念; 2.掌握图的最小生成树Prim和Kruskal算法过程; 3.掌握图的拓扑排序生成方法。  单元重点Prim和Kruskal生成过程、Prim算法、拓扑排序生成算法。  单元难点Prim算法、拓扑排序生成算法。  教学方法1.先由示例引入,启发学生选择存储结构;2.拓扑排序算法先单个知识应用突破,再综合解读算法; 3.使用多媒体课件(注意经典)演示增加学生学习的主动性、选择好实例。  教具准备多媒体课件、讲授  课外作业P99 4,5,6 数据结构. 严蔚敏等 编著-------清华大学出版

参考资料社 数据结构. 陈有琪 编著----------南开大学出版社   第 3 讲图的连通性、最小生成树、拓扑排序授课时间:年月日授课班级: 教学内容和重点: 教学方法:教学准备:使用投影教学内容:注意算法程序实现( 图的连通性—连通分量 20分钟 图的最小生成树Prim和Kruskal算法过程 40分钟 图的拓扑排序生成方法 20分钟 小结 10分钟 *先回忆图的两种常用存储结构 一、图的连通性 1.连通分量 【算法说明】 (1)当无向图为非连通图时,从图中某一顶点出发,利用深度(或广度)优先搜索算法不可能遍历到图中的所有顶点,只能访问到该顶点所在的最大连通子图(连通分量)所有顶点。 (2)若从无向图的每个连通分量的一个顶点出发进行遍历,可求得无向图的所有连通分量。 (3)在该算法中,需要对图的每一个顶点进行检测;若已被访问过,则该顶点一定是落在图中已求得的连通分量上;若还未被访问,则从该顶点出发遍历图,可求得图的另一个连通分量 【图形说明】

相关文档
最新文档