六年级下册《鸽巢问题》教案上课讲义
人教版数学六年级下册鸽巢问题教案3篇
人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
5.1鸽巢问题(教案)人教版六年级下册数学
5.1 鸽巢问题(教案)人教版六年级下册数学我的教案:5.1 鸽巢问题一、教学内容今天我们要学习的章节是人教版六年级下册数学的第五章第一节——鸽巢问题。
这部分内容主要介绍了鸽巢问题的基本概念、原理和解决方法。
通过本节课的学习,学生将能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能应用于实际问题中。
二、教学目标1. 理解鸽巢问题的定义和原理;2. 掌握解决鸽巢问题的方法;3. 能够将鸽巢问题应用于实际问题中,提高解决问题的能力。
三、教学难点与重点1. 鸽巢问题的理解;2. 解决鸽巢问题的方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:笔记本、文具。
五、教学过程1. 实践情景引入:讲述一个关于鸽巢问题的实际例子,引发学生对鸽巢问题的兴趣。
2. 理论知识讲解:通过PPT展示,讲解鸽巢问题的定义、原理和解决方法。
3. 例题讲解:给出一个典型的鸽巢问题,引导学生思考并解决问题。
4. 随堂练习:让学生独立解决一些鸽巢问题,巩固所学知识。
5. 板书设计:将鸽巢问题的解决方法进行板书,方便学生理解和记忆。
6. 作业设计:布置一些有关鸽巢问题的练习题,让学生课后巩固。
六、板书设计鸽巢问题解决方法:1. 确定鸽巢数量和鸽子数量;2. 利用排除法或枚举法,找到符合条件的解答。
七、作业设计1. 题目:小明有5个鸽巢,已知每个鸽巢至少要放一只鸽子,现有6只鸽子,请问如何放置这些鸽子?答案:可以将6只鸽子分别放入5个鸽巢中,保证每个鸽巢至少有一只鸽子。
2. 题目:有一个长10cm,宽8cm的长方形盒子,每只鸽子占一个格子,请问最多能放多少只鸽子?答案:长方形盒子可以分成108=80个格子,每只鸽子占一个格子,所以最多能放80只鸽子。
八、课后反思及拓展延伸通过本节课的学习,学生对鸽巢问题有了基本的认识和解决方法。
在课后,学生可以通过查阅资料,了解更多的鸽巢问题及其解决方法,提高自己的解决问题的能力。
六年级下册数学教案《第1课时鸽巢问题 》人教版
六年级下册数学教案《第1课时鸽巢问题》人教版一、教学目标1.知识与技能:–了解鸽巢问题的基本概念;–能够运用鸽巢原理解决问题。
2.过程与方法:–通过讨论与实例分析引导学生主动参与课堂;–培养学生的逻辑思维和问题解决能力。
3.情感态度价值观:–培养学生的合作意识,鼓励学生勇于尝试、探索未知领域;–正确认识数学知识与实际生活的联系,激发学生学习数学的兴趣。
二、教学重点与难点:•重点:掌握鸽巢问题的基本原理,并能运用到实际问题中。
•难点:发散式思维在解决鸽巢问题时的应用。
三、教学准备1.教材:人教版六年级数学下册教材。
2.教具、媒体:黑板、彩色粉笔、教学PPT。
3.课前准备:准备好教学内容,查看教材相关知识点,准备相关实例分析。
四、教学步骤第一步:导入(5分钟)•通过一个简单的生活场景引入鸽巢问题,激发学生的学习兴趣,引发思考。
第二步:讲授基本概念(10分钟)•概念解释:介绍鸽巢问题的基本概念,让学生对其有一个直观、清晰的认识。
第三步:示例分析(15分钟)•通过实例分析,让学生参与其中,讨论解决方法,引导学生理解鸽巢问题的解题思路。
第四步:概念强化(10分钟)•整理并归纳鸽巢问题解决的基本方法和技巧,强化学生对知识点的理解。
第五步:练习与讨论(15分钟)•分发练习题,让学生独立或合作完成,引导他们主动分享解题思路,进行讨论。
第六步:课堂总结(5分钟)•总结本节课的重点内容,并展示本课知识点与实际应用的联系,引导学生将所学内容与实际生活结合。
五、课后作业•完成教师留的相关练习题;•收集身边的实例来解决一个鸽巢问题。
六、教学反思在教学过程中,需要及时调整教学方法,引导学生主动参与课堂,激发他们的学习兴趣和求知欲,使学生在轻松氛围中掌握知识点。
以上就是本节课鸽巢问题的教学设计,希會一切顺利!。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
《鸽巢问题(第1课时)》(教案)六年级下册数学人教版
《鸽巢问题(第1课时)》(教案)六年级下册数学人教版《鸽巢问题(第1课时)》教案一、教学内容1. 理解鸽巢问题的概念,掌握其基本性质。
2. 学会运用鸽巢原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学目标1. 了解并掌握鸽巢问题的基本概念和性质。
2. 能够运用鸽巢原理解决实际问题。
3. 提高自己的逻辑思维能力和解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。
难点在于如何引导学生理解并运用鸽巢原理。
四、教具与学具准备为了让大家更好地理解鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、PPT、鸽巢模型等。
五、教学过程1. 实践情景引入:请大家想象一下,如果我们有一个鸽巢,里面有若干个鸽子,我们要如何确定鸽子的数量呢?2. 讲解鸽巢问题的概念:通过引入的实践情景,我会向大家讲解鸽巢问题的基本概念和性质。
3. 例题讲解:我会给大家讲解一些典型的鸽巢问题例题,让大家通过例题理解并掌握鸽巢原理。
4. 随堂练习:在讲解完例题后,我会给大家一些随堂练习题,让大家运用所学知识解决实际问题。
5. 鸽巢原理的应用:通过一些实际问题,让大家学会运用鸽巢原理解决问题。
六、板书设计板书设计如下:鸽巢问题1. 概念与性质2. 鸽巢原理3. 应用与实例七、作业设计作业题目:1. 请用一句话概括鸽巢问题的定义。
2. 请用一句话概括鸽巢原理。
3. 请举例说明如何运用鸽巢原理解决实际问题。
答案:1. 鸽巢问题是指在一定条件下,确定鸽子数量的问题。
3. 举例:假设一个班级有30个学生,如果有31个学生,那么至少有两个学生坐在同一个座位上。
八、课后反思及拓展延伸通过本节课的学习,我希望大家能够理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。
在课后,大家可以尝试解决一些更复杂的问题,也可以和同学互相交流心得和经验,共同提高。
《鸽巢问题-》教学设计教案
《鸽巢问题》教学设计教案第一章:教学目标1.1 知识与技能(1)让学生理解鸽巢问题的概念,了解鸽巢问题与鸽笼原理的关系。
(2)培养学生运用数学知识解决实际问题的能力。
1.2 过程与方法(1)通过生活中的实例,引导学生发现并提出鸽巢问题。
(2)利用图形、表格等直观教具,帮助学生理解鸽巢问题的解决方法。
1.3 情感态度与价值观(1)培养学生积极探索、合作交流的学习态度。
(2)培养学生面对实际问题,勇于挑战、解决问题的信心。
第二章:教学内容2.1 教材分析本节课以鸽巢问题为载体,让学生在解决实际问题的过程中,体会和理解鸽巢问题的本质,掌握解决鸽巢问题的方法。
2.2 学情分析学生在学习过程中已具备了一定的数学基础知识,具备一定的逻辑思维能力,但解决实际问题的能力有待提高。
2.3 教学目标让学生掌握鸽巢问题的解题方法,能够运用鸽巢问题解决实际问题。
第三章:教学重点与难点3.1 教学重点(1)理解鸽巢问题的概念。
(2)掌握解决鸽巢问题的方法。
3.2 教学难点如何引导学生发现生活中的鸽巢问题,并运用数学知识解决。
第四章:教学过程4.1 导入新课通过一个生活中的实例,引导学生发现并提出鸽巢问题,激发学生的学习兴趣。
4.2 探究新知(2)利用图形、表格等直观教具,帮助学生理解鸽巢问题的解决方法。
4.3 巩固练习设计一些练习题,让学生运用新学的知识解决实际问题,巩固所学内容。
4.4 课堂小结第五章:课后作业设计一些课后作业,让学生进一步巩固所学知识,提高解决实际问题的能力。
教学反思:在课后对教学效果进行反思,看是否达到了预期的教学目标,学生是否掌握了鸽巢问题的解题方法,为下一步的教学做好准备。
第六章:教学评价6.1 评价目标(1)了解学生对鸽巢问题知识的掌握程度。
(2)考察学生运用鸽巢问题解决实际问题的能力。
6.2 评价方法(1)课堂问答:通过提问,了解学生对鸽巢问题的理解程度。
(2)课后作业:通过学生的作业,检查学生对鸽巢问题的掌握情况。
《鸽巢问题》教案——六年级数学下学期
《鸽巢问题》教案——六年级数学下学期一. 教材分析《鸽巢问题》是六年级数学下学期的一堂课,主要让学生了解和掌握鸽巢原理。
教材通过生活中的实例,引导学生思考和探究,从而理解并掌握鸽巢原理的应用。
本节课的内容对于学生来说较为抽象,需要通过实例和实际操作来理解和掌握。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有所了解。
但是,对于鸽巢问题这样的抽象问题,还需要通过具体的实例和操作来理解和掌握。
学生对于生活中的实际问题比较感兴趣,可以通过实例来吸引他们的注意力,激发他们的学习兴趣。
三. 教学目标1.让学生了解并理解鸽巢问题的概念和原理。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生合作交流的能力,提高他们的逻辑思维能力。
四. 教学重难点1.重点:理解并掌握鸽巢问题的原理和应用。
2.难点:如何将生活中的实际问题转化为数学问题,并运用鸽巢原理进行解决。
五. 教学方法1.实例教学:通过生活中的实例,引导学生理解和掌握鸽巢原理。
2.小组合作:让学生在小组内进行讨论和交流,共同解决问题。
3.问题驱动:教师提出问题,引导学生进行思考和探究。
六. 教学准备1.准备相关的实例和问题,用于引导学生思考和探究。
2.准备鸽巢问题的相关资料,用于学生自主学习和拓展。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)教师通过一个生活中的实例,如猜拳游戏,引出鸽巢问题。
让学生思考和讨论,如何在一定条件下,确定胜负。
引导学生认识到问题的复杂性,从而引入鸽巢原理。
2.呈现(10分钟)教师通过PPT或黑板,呈现鸽巢问题的定义和原理。
让学生理解和掌握鸽巢问题的基本概念和运用方法。
3.操练(10分钟)教师提出一些实际问题,让学生运用鸽巢原理进行解决。
学生在小组内进行讨论和交流,共同解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师通过一些练习题,让学生巩固所学知识。
鸽巢问题(教案)-六年级下册数学人教版
鸽巢问题(教案)六年级下册数学人教版教学内容:本节课将介绍鸽巢问题,这是一个典型的数学问题,旨在帮助学生理解抽屉原理。
抽屉原理是组合数学中的一个重要原理,也是解决许多实际问题的有力工具。
具体来说,我们将探讨如何将一定数量的鸽子放入有限数量的鸽巢中,并探讨鸽巢的数量与鸽子的数量之间的关系。
教学目标:1. 理解并掌握抽屉原理的基本概念和应用。
2. 能够运用抽屉原理解决实际问题,如鸽巢问题。
3. 培养学生的逻辑思维能力和抽象思维能力。
教学难点:1. 抽屉原理的理解和运用。
2. 鸽巢问题的抽象模型建立和解决。
教具学具准备:1. 教师准备一些图片或实物,用于展示鸽巢问题和抽屉原理。
2. 学生准备纸和笔,用于记录和计算。
教学过程:1. 引入:教师通过展示一些图片或实物,引入鸽巢问题的概念,激发学生的兴趣。
2. 讲解:教师讲解抽屉原理的基本概念,并通过一些简单的例子进行解释。
3. 演示:教师通过演示一些具体的鸽巢问题,展示如何运用抽屉原理进行解决。
4. 练习:学生根据教师提供的练习题,进行独立思考和解答。
5. 讨论与分享:学生分组讨论,分享自己的解题思路和答案,互相学习和交流。
板书设计:1. 鸽巢问题2. 抽屉原理的基本概念3. 鸽巢问题的解决方法4. 练习题和答案作业设计:1. 学生完成一些类似的鸽巢问题,巩固和应用所学的知识。
2. 学生思考并解答一些扩展性的问题,提高思维的深度和广度。
课后反思:本节课通过引入鸽巢问题,帮助学生理解和掌握抽屉原理的基本概念和应用。
通过教师的讲解和演示,学生能够建立抽象的模型,并运用抽屉原理进行解决。
在练习和讨论环节,学生能够积极参与,互相学习和交流,提高了他们的逻辑思维能力和抽象思维能力。
总体来说,本节课达到了预期的教学目标,但也存在一些需要改进的地方,如加强对学生的个别辅导和指导,提高他们的解题能力和自信心。
重点关注的细节:教学难点教学难点是教学中学生难以理解或掌握的知识点或技能。
六年级下册数学 教案 《鸽巢问题》 人教新课标
标题:六年级下册数学教案《鸽巢问题》人教新课标一、教学目标1. 知识与技能:理解鸽巢问题的概念,掌握解决鸽巢问题的方法,能运用鸽巢原理解决实际问题。
2. 过程与方法:通过自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探索精神。
二、教学内容1. 鸽巢问题的概念2. 鸽巢原理的应用3. 解决实际问题的方法三、教学重点与难点1. 教学重点:理解鸽巢问题的概念,掌握解决鸽巢问题的方法。
2. 教学难点:运用鸽巢原理解决实际问题。
四、教学过程1. 导入新课通过一个简单的实例,引导学生思考如何将若干个鸽子放入若干个巢中,从而引出鸽巢问题的概念。
2. 探究新知(1)引导学生理解鸽巢问题的概念,明确鸽巢原理的含义。
(2)通过小组合作,探究解决鸽巢问题的方法。
(3)教师总结解决鸽巢问题的方法,并举例说明。
3. 巩固练习(1)布置练习题,让学生独立完成。
(2)小组内交流答案,互相学习。
(3)教师点评,指出学生的错误和不足,并进行讲解。
4. 实际应用(1)出示实际问题,引导学生运用鸽巢原理解决问题。
(2)学生独立思考,尝试解决问题。
(3)教师点评,总结解决实际问题的方法。
5. 课堂小结对本节课的内容进行总结,强调鸽巢问题的概念和解决方法。
6. 布置作业(1)完成课后练习题。
(2)预习下一节课的内容。
五、教学反思本节课通过导入新课、探究新知、巩固练习、实际应用等环节,使学生掌握了鸽巢问题的概念和解决方法。
在教学过程中,要注意激发学生的学习兴趣,培养学生的合作意识和探索精神。
同时,要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
在教学过程中,教师要善于发现学生的错误和不足,并进行及时纠正。
同时,要注重培养学生的逻辑思维能力和解决问题的能力,为学生的终身发展奠定基础。
总之,本节课的教学目标是使学生掌握鸽巢问题的概念和解决方法,培养学生的逻辑思维能力和解决问题的能力。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。
但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。
设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学准备:多媒体课件、微视频、合作探究作业纸。
教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。
你们信吗?2、验证:学生报出生月份。
根据所报的月份,统计13人中生日在同一个月的学生人数。
六年级下册数学教案《第2课时鸽巢问题 》人教版
六年级下册数学教案《第2课时鸽巢问题》人教版一. 教材分析《人教版六年级下册数学》第2课时鸽巢问题,是在学生已经学习了简单的排列组合知识的基础上进行授课的。
本节课的主要内容是让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题,并能够运用所学的知识解决实际问题。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于鸽巢问题还是第一次接触,可能会存在一定的困难。
因此,在教学过程中,需要教师引导学生通过实际操作、交流讨论等方式,逐步理解并掌握鸽巢问题的解决方法。
三. 教学目标1.让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.让学生能够运用所学的知识解决实际问题。
四. 教学重难点1.重点:让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题。
2.难点:让学生能够运用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过实际操作、交流讨论等方式,逐步理解并掌握鸽巢问题的解决方法。
六. 教学准备1.教师准备相关的案例和问题,用于引导学生进行思考和讨论。
2.准备黑板、粉笔等教学工具。
七. 教学过程导入(5分钟)教师通过向学生提出一个问题:“如果有5个鸽巢和6只鸽子,那么至少有一只鸽子会在哪个鸽巢里?”引发学生的思考,激发学生的学习兴趣。
呈现(10分钟)教师向学生呈现鸽巢问题的具体案例,让学生通过观察和分析,理解鸽巢问题的实质。
操练(10分钟)教师引导学生进行实际的操作,通过列举法解决鸽巢问题。
教师可以给出一些具体的例子,让学生进行模仿和练习。
巩固(10分钟)教师可以通过一些练习题,让学生进行巩固练习,检查学生对鸽巢问题的理解和掌握程度。
拓展(10分钟)教师可以给出一些实际的问题,让学生运用所学的知识进行解决,提高学生的解决问题的能力。
小结(5分钟)教师引导学生对所学的内容进行小结,加深学生对鸽巢问题的理解。
六年级下册数学教案《5《数学广角—鸽巢问题》人教版
六年级下册数学教案《5《数学广角—鸽巢问题》人教版一、教案背景本节课将围绕数学广角中的鸽巢问题展开教学。
鸽巢问题是数学中一个经典的组合数学问题,通过这个问题的讲解,可以帮助学生理解组合数学的基本概念。
二、教学目标1.理解鸽巢问题的基本概念。
2.能够运用组合数学的知识解决实际问题。
3.培养学生的逻辑思维和数学建模能力。
三、教学重点1.理解鸽巢问题的描述。
2.运用组合数学的方法求解相关问题。
四、教学内容1. 什么是鸽巢问题鸽巢问题是指有n个鸽子和m个巢,如果n个鸽子全部进入m个巢,必然有至少一个巢内有超过一个鸽子。
这个问题可以通过组合数学的方法进行求解。
2. 解决鸽巢问题具体解决鸽巢问题的方法是采用反证法。
假设所有的m个巢中都只有一个鸽子,那么至少需要m个巢。
但是鸽子的数量大于m,所以必然存在至少一个巢内有超过一个鸽子。
五、教学过程1.引入问题:老师给出一个生活中的例子,引出鸽巢问题。
2.学生思考:让学生思考如果有5只鸽子和3个巢,是否存在至少一个巢有两只鸽子。
3.学生讨论:学生们在小组内讨论并给出自己的答案。
4.知识梳理:老师讲解鸽巢问题的解决方法,引导学生理解反证法的应用。
5.练习:布置一些练习题让学生巩固所学知识。
6.总结:对本节课的内容进行总结,强调鸽巢问题的重要性和实际应用。
六、教学反馈1.在课堂中观察学生对鸽巢问题的理解情况。
2.收集学生的练习作业并进行评价,及时纠正学生的错误。
七、拓展延伸1.鸽巢问题的变形:让学生尝试解决更复杂的鸽巢问题,如n个鸽子和m个巢的情况。
2.探究组合数学的其他应用:带领学生探索组合数学在其他领域的应用,如排列组合问题等。
通过本节课的学习,相信学生们能够更好地理解鸽巢问题的精髓,并将组合数学的方法运用到实际问题中去,为他们的数学学习打下坚实的基础。
《鸽巢问题》(抽屉原理)(教案)六年级下册数学人教版
《鸽巢问题》(抽屉原理)(教案)一、教学内容《鸽巢问题》是六年级下册数学人教版的一节内容,属于“数学广角”单元。
本节课将带领学生探究抽屉原理,理解“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的含义,并能够应用这个原理解决实际问题。
二、教学目标1. 知识与技能:理解抽屉原理的含义,掌握“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的计算方法,并能运用抽屉原理解决简单的实际问题。
2. 过程与方法:通过观察、操作、推理、交流等活动,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。
三、教学难点理解“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的含义,并能灵活运用抽屉原理解决实际问题。
四、教具学具准备1. 教具:多媒体课件、实物投影仪。
2. 学具:学习用品、计算器。
五、教学过程1. 导入:利用多媒体课件展示“把4支铅笔放进3个抽屉里”的情景,引导学生观察并思考:至少有一个抽屉里放几支铅笔?3. 应用:出示例题,让学生独立解答,并分享解题过程和答案。
5. 作业布置:让学生完成课后练习题,巩固所学知识。
六、板书设计1. 《鸽巢问题》(抽屉原理)2. 内容:抽屉原理的含义至少数的计算方法:“至少数=物体数除以抽屉数的商+1(有余数的情况下)”抽屉原理的应用七、作业设计1. 基础题:完成课后练习题,巩固抽屉原理的应用。
2. 提高题:联系生活实际,设计一道应用抽屉原理解决的问题,并解答。
八、课后反思本节课通过生动的实例导入,激发了学生的学习兴趣。
在教学过程中,注重学生的观察、操作、推理、交流等能力的培养,使学生在理解抽屉原理的基础上,能够灵活运用所学知识解决实际问题。
但在课堂实践过程中,发现部分学生对“至少数”的理解仍存在困难,需要在今后的教学中加强针对性辅导。
重点关注的细节:教学难点教学难点是教学中学生难以理解或掌握的地方,对于《鸽巢问题》(抽屉原理)这节课来说,教学难点是理解“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的含义,并能灵活运用抽屉原理解决实际问题。
六年级下册数学广角《鸽巢问题第一课时》教学设计
六年级下册数学广角《鸽巢问题第一课时》教学设计在今天的数学课上,我们将学习六年级下册数学广角中的《鸽巢问题》第一课时。
通过这节课的学习,同学们将掌握鸽巢问题的基本概念和解决方法,培养大家的逻辑思维能力。
一、教学内容我们使用的教材是苏教版六年级下册数学广角第107页。
这部分内容主要包括鸽巢问题的引入、鸽巢问题的基本性质以及如何利用鸽巢问题解决实际问题。
我们将通过讲解和练习,让同学们理解和掌握鸽巢问题的解题思路。
二、教学目标1. 了解鸽巢问题的基本概念,理解鸽巢问题的性质。
2. 学会用鸽巢问题解决实际问题,提高解决问题的能力。
3. 培养大家的逻辑思维能力,提高大家的数学素养。
三、教学难点与重点重点:了解鸽巢问题的基本概念,掌握鸽巢问题的解题思路。
难点:如何利用鸽巢问题解决实际问题,提高解决问题的能力。
四、教具与学具准备教具:黑板、粉笔、课件学具:课本、练习本、铅笔、橡皮五、教学过程1. 实践情景引入:假设有一个鸽巢,里面有若干只鸽子,我们需要通过数一数的方法,来确定鸽巢中最多可以有多少只鸽子。
2. 讲解鸽巢问题的基本概念:鸽巢问题是指将若干个物体放入若干个容器中,求解物体与容器之间关系的问题。
3. 讲解鸽巢问题的基本性质:如果有一个鸽巢问题,那么一定存在一个解,并且解的数量是有限的。
4. 例题讲解:通过讲解一些具体的鸽巢问题,让同学们理解和掌握鸽巢问题的解题思路。
5. 随堂练习:让同学们自己解决一些鸽巢问题,巩固所学知识。
6. 作业布置:课本第108页练习题六、板书设计鸽巢问题:1. 基本概念:将若干个物体放入若干个容器中,求解物体与容器之间关系的问题。
2. 基本性质:一定存在一个解,解的数量是有限的。
七、作业设计1. 题目:课本第108页练习题答案:略八、课后反思及拓展延伸通过本节课的学习,同学们掌握了鸽巢问题的基本概念和解决方法,但在解决实际问题时,仍需注意理解题意,明确问题与容器之间的关系。
课后,同学们可以尝试阅读一些关于鸽巢问题的拓展资料,提高自己的数学素养。
人教版数学六年级下册鸽巢问题优秀教案(精推3篇)
人教版数学六年级下册鸽巢问题优秀教案(精推3篇)〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记〖人教版数学六年级下册鸽巢问题优秀教案第【2】篇〗《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。
《鸽巢问题》(教案)六年级下册数学人教版
《鸽巢问题》(教案)六年级下册数学人教版鸽巢问题(教案)一、教学内容本节课的教学内容选自人教版六年级下册数学教材,主要涉及“总复习”章节中的“鸽巢问题”。
具体内容包括鸽巢原理的基本概念、应用及解决方法。
二、教学目标通过本节课的学习,使学生了解并掌握鸽巢问题的基本概念及解决方法,能够运用鸽巢原理解决实际问题,培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:掌握鸽巢问题的基本概念和解决方法。
难点:如何引导学生运用鸽巢原理解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:笔记本、练习本、文具。
五、教学过程1. 实践情景引入通过一个实际问题引入本节课的学习:“某小区有10栋楼,现有15户居民要入住,请问至少有一栋楼里有3户居民的情况出现吗?”2. 例题讲解(1)讲解鸽巢问题的基本概念:将问题中的“楼”比作“鸽巢”,将问题中的“居民”比作“鸽子”,通过这个比喻引导学生理解鸽巢问题的本质。
(2)引导学生运用鸽巢原理解决问题:通过画图、讨论等方式,引导学生得出结论:至少有一栋楼里有3户居民。
3. 随堂练习(1)请学生独立解决引入问题。
4. 讲解解答过程5. 板书设计鸽巢问题:n个鸽巢,m个鸽子,总有至少一个鸽巢里有k个鸽子(k为整数)。
六、作业设计(1)某小区有5栋楼,现有8户居民要入住,请问至少有一栋楼里有3户居民的情况出现吗?(2)某班级有40名学生,现有30个座位,请问至少有5名学生无法坐在座位上的情况出现吗?2. 答案:(1)至少有一栋楼里有3户居民。
(2)至少有5名学生无法坐在座位上。
七、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解并掌握了鸽巢问题的基本概念和解决方法。
在教学过程中,注重引导学生运用鸽巢原理解决实际问题,培养了学生的逻辑思维能力和解决实际问题的能力。
2. 拓展延伸:引导学生思考鸽巢问题在现实生活中的应用,如安排活动场地、分配资源等,进一步拓展学生的知识视野。
六年级下册数学教案-5《鸽巢问题》人教新课标
六年级下册数学教案5《鸽巢问题》人教新课标在今天的课堂上,我们将一起探讨鸽巢问题,这是一个与日常生活紧密相关的问题。
在教学之前,我先给大家讲一个关于鸽巢的小故事,引发大家的思考。
一、教学内容我们使用的教材是六年级下册的《数学》人教新课标,本节课的教学内容主要来自于第四章第二节《鸽巢问题》。
我们将学习如何利用鸽巢原理解决实际问题,例如,如何在一定数量的鸽巢中放入尽可能多的鸽子,以及如何根据鸽巢数量推断鸽子的数量。
二、教学目标通过本节课的学习,我希望同学们能够理解并掌握鸽巢问题的基本原理,能够将所学知识应用到实际问题中,提高解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的基本原理和解决方法。
难点在于如何引导学生将实际问题抽象为鸽巢问题,并应用鸽巢原理进行解决。
四、教具与学具准备为了让大家更好地理解鸽巢问题,我准备了一些图片和实际案例,以及一些练习题。
希望大家能够认真观察和思考。
五、教学过程1. 引入:我先给大家讲一个关于鸽巢的小故事,引发大家的思考。
2. 讲解:然后我详细讲解鸽巢问题的基本原理和解决方法,通过图片和实际案例进行辅助说明。
4. 讨论:在大家完成练习后,我会组织大家进行讨论,分享各自的解题思路和经验。
六、板书设计我将设计一个简洁明了的板书,主要包括鸽巢问题的基本原理和解决方法,以及一些关键的步骤和注意事项。
七、作业设计问题1:有10个鸽巢,每个鸽巢最多容纳5只鸽子,现有12只鸽子,请问如何安排才能使尽可能多的鸽子有巢可归?问题2:有3个鸽巢,现有7只鸽子,请问至少有多少只鸽子无巢可归?2. 答案:问题1:我们可以将12只鸽子分成两组,每组6只,然后将每组的6只鸽子分别放入5个鸽巢中,这样每个鸽巢都有两只鸽子,还有一只鸽子无处可去。
问题2:由于每个鸽巢最多容纳5只鸽子,所以3个鸽巢最多容纳15只鸽子。
现有7只鸽子,因此至少有157=8只鸽子无巢可归。
八、课后反思及拓展延伸通过本节课的学习,我发现同学们对鸽巢问题有一定的理解,但在实际应用中还存在一些困难。
(完整版)六年级下数学广角鸽巢问题讲义
数学广角——鸽巢问题知识导图[歸自行车里的数学'自行车里的数学{[皱自行车里的数学、鹄巢问题知识梳理(1)自行车里的数学①前齿轮转的圈数X前齿轮的齿数=后齿轮转的圈数X后齿轮的齿数前齿轮所转总长度=后齿轮所转总长度②前齿轮转;周时』后齿轮转的周数二聾黔(周》车轮所走路程=车轮周长X周数.后齿轮■数③前、后齿轮齿数相差大的,比值就大,这种组合走得就远。
因而车速快,但骑车人较费力。
前、后齿轮齿数相差较小时,车速较慢,但骑车人较省力。
(2)抽屉原理①如果物体数除以抽屉数有余数,用所得的商加1,就会发现:总有一个抽屉有商加1个物体。
物体数*抽屉数=商余数至少数=商+1②运用最不利原则解决鸽巢问题。
导学一自行车里的数学知识点讲解1:普通自行车里的数学例1.一辆自行车前齿轮36个齿,后齿轮18个齿,车轮直径5分米。
每蹬一圈自行车前进多少米?例2.一辆自行车前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米,求自行车的车轮直径是多少?(保留两位小数)例3.一种儿童专用自行车的前轮直径是28厘米,后轮直径是35厘米,前轮行走40圈的路程,后轮要行走多少圈?【学有所获】前齿轮转的圈数X=X后齿轮的齿数。
[学有所获答案]前齿轮的齿数;后齿轮转的圈数例4.一种自行车轮胎外直径35.36厘米,如果平均每分钟转100圈,通过长1670米的武汉长江大桥,需要多少分钟?(得数保留整数)我爱展示1.一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,脚蹬一圈自行车前进多少米?2.一辆自行车前齿轮有32个,后齿轮有16个,蹬一圈自行车约前进6.28m,求这辆自行车的车轮直径是多少?3.一种自行车轮胎的外直径是0.7米。
如果车轮每分钟转100周,每小时可以行多少米?4.赵叔叔骑自行车要经过一座长3030m的大桥,自行车的前齿轮有26个齿、前、后齿轮的齿数比是13:8,车轮直径是66cm。
从自行车上桥到离桥大约要蹬多少圈?(自行车车身长度忽略不计)知识点讲解2:变速自行车里的数学例1.现在流行的变速自行车,在主动轴和后轴分别安装了几个齿数不同的齿轮。
六年级下册数学教学设计《第2课时鸽巢问题 》人教版
六年级下册数学教学设计《第2课时鸽巢问题》人教版一. 教材分析《人教版六年级下册数学》第2课时“鸽巢问题”,主要让学生理解和掌握鸽巢问题的原理和解决方法。
通过实例分析,让学生学会用集合的思想来解决问题,培养学生逻辑思维能力。
二. 学情分析六年级的学生已经具备一定的数学基础,对于问题解决有一定的方法论。
但部分学生对于集合思想和逻辑推理可能还比较陌生,需要通过具体的实例和引导,让学生理解和掌握。
三. 教学目标1.让学生理解鸽巢问题的概念和原理。
2.培养学生运用集合思想解决问题的能力。
3.提高学生逻辑思维和推理能力。
四. 教学重难点1.重点:理解鸽巢问题的原理,学会用集合思想解决问题。
2.难点:对于复杂问题的分析和逻辑推理。
五. 教学方法1.案例教学法:通过具体的实例,让学生理解和掌握鸽巢问题的解决方法。
2.小组讨论法:引导学生分组讨论,培养学生的团队协作能力和解决问题的能力。
3.引导发现法:教师引导学生发现问题,培养学生独立思考和解决问题的能力。
六. 教学准备1.准备相关的案例和实例,用于教学演示和练习。
2.准备黑板和粉笔,用于板书和展示。
七. 教学过程1.导入(5分钟)通过一个实际问题引导学生思考:“如果有5个鸽巢和6只鸽子,那么至少有一个鸽巢里面有两只鸽子吗?”让学生发表自己的观点,引出本节课的主题——鸽巢问题。
2.呈现(10分钟)教师通过PPT或者黑板,呈现鸽巢问题的定义和原理。
让学生理解,鸽巢问题是指在一定条件下,将若干个物体放入若干个集合中,求解满足条件的集合的个数或者具体集合。
3.操练(10分钟)教师给出一个具体的鸽巢问题实例,如:“如果有8个鸽巢和9只鸽子,那么至少有一个鸽巢里面有两只鸽子吗?”让学生分组讨论,尝试解决问题。
教师巡回指导,给予提示和帮助。
4.巩固(10分钟)教师给出几个类似的鸽巢问题,让学生独立解决。
然后学生分享解题过程和思路,让大家互相学习和借鉴。
5.拓展(10分钟)教师引导学生思考:鸽巢问题在实际生活中的应用。
《鸽巢问题》教案——六年级数学下学期
鸽巢问题教案——六年级数学下学期一、教学目标知识与能力1.通过本课学习,学生能够了解什么是鸽巢问题,掌握解决鸽巢问题的方法。
2.学生能够理解抽屉原理,并能够在实际问题中运用抽屉原理。
3.学生能够培养逻辑思维能力,提高问题解决能力。
态度与价值观1.培养学生合作学习的意识,尊重他人意见,善于倾听。
2.培养学生勇于探索解决问题的能力,培养学生对数学的兴趣和热爱。
二、教学内容1. 什么是鸽巢问题?鸽巢问题又称为抽屉原理,指的是放入鸽子比鸽巢多的抽屉里,一定会有至少一个抽屉里有两只或两只以上的鸽子。
这个原理在解决很多实际问题中都有重要作用。
2. 如何解决鸽巢问题?鸽巢问题的解决方法是利用抽屉原理,假设有n只鸽子、m个巢,如果n>m,则至少有一个巢内有两只或两只以上的鸽子。
3. 经典例题分析例题:在30个自然数中,找出两数之和相等的数对。
解析:根据抽屉原理,只需要将这30个数分成29组,即可保证至少有一组中两个数之和相等。
三、教学过程1. 导入老师通过提问引出鸽巢问题,让学生通过思考和讨论来理解抽屉原理。
2. 讲解老师对鸽巢问题及抽屉原理进行讲解,示范解决鸽巢问题的方法,并引导学生进行练习。
3. 练习让学生在课堂上进行相关练习,巩固所学知识。
4. 拓展引导学生思考更广泛的应用场景,如生活中的其他实际问题是否也可以用抽屉原理解决。
四、教学反思教师在教学结束后对教学过程进行总结,反思教学效果,寻找不足之处并加以改进。
五、课后作业1.完成相关练习题。
2.思考生活中还有哪些问题可以运用抽屉原理解决。
六、教学反馈对学生的课堂表现和作业情况进行评价,及时反馈学生的学习情况,以便更好地指导学生学习。
通过本节课的学习,相信学生能够更好地理解鸽巢问题及抽屉原理的应用,提升数学解决问题的能力,希望学生在今后的学习中能够灵活运用所学知识,探索数学的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册《鸽巢问
题》教案
“鸽巢问题”教案
教学内容:教材第68-70页例1、例2,及“做一做”。
学习目标:
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
学习重点:引导学生把具体问题转化成“鸽巢问题”。
学习难点:找出“鸽巢问题”解决的窍门进行反复推理。
教具准备:多媒体课件。
学习过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。
其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。
-----出示课题《鸽巢问题》
“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
下面我们就来研究这一原理。
二、合作交流,探究新知
1、教学例1(课件出示例题1情境图)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有
1个笔筒里至少有2支铅笔。
为什么呢?
问题:“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔
筒里的铅笔数大于或等于2支。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
(3)探究证明。
个人调整意见
方法一:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解成3个数,有4中情况,每种分法中最多的数最小是2,也就是说每一种情况分得的3个数中,至少有1个数大于或等于2的数。
方法二:用“假设法”证明。
4÷3=1(支)......1(支),剩下1支,放进其中1个笔筒中,使其中1个笔筒都变成2支,因此把4支笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少放进2支笔。
通过以上几种方法证明都可以发现:把4只铅笔放进3 个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“鸽巢问题”
像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3
个笼子,总有1个笼子里至少有2只鸽子。
用“抽屉问题”的语言描述就是把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。
(5)归纳总结:
放的铅笔数比笔筒的数量多1,就总有1个笔筒里至少放进2支铅笔。
抽屉原理一:只要放的物体比抽屉的数量多1,总有一个抽屉里至少放入2个物体。
同学们现在可以理解为什么“抢椅子”游戏中总有一把椅子上至少有2人了吧?
考一考:5个人坐4把椅子,总有一把椅子上至少坐2人。
为什么?
5÷4=1(人)……1(人)
1+1=2(人)
2、教学例2(课件出示例题2情境图)
思考问题:
(一)把7本书放进3个抽屉,不管怎么放,有
1个抽屉里至少有3本书。
为什么呢?
(二)如果有8本书会怎样呢?10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。
(1)探究证明。
方法一:用数的分解法证明。
把7分解成3个数的和。
把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:用假设法证明。
把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。
如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。
(2)得出结论。
通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
(2)归纳总结:
抽屉原理二:如果物体数除以抽屉数有余数,用所得的商加1,就会发现:“总有一个抽屉里至少有商加1个物体”。
三、巩固新知,拓展应用
1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?
2、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。
为什么?
3、完成教材第71页练习十三的1-2题。
(学生独立思考解答问题,集体交流、纠正。
)
四、课堂总结
通过今天的学习你有什么收获?
五、作业布置
课本第71页练习十三,第2题、第3题。
板书设计:
鸽巢问题
方法一:用“分解法”证明。
(把4分解成3个数)
方法二:用“假设法”证明。
4÷3=1(支)......1(支)
1+1=2(支)
教学反思:
我的印象里《抽屉原理》是非常难懂的。
为了上好这一内容,我搜集学习了很多资料,抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
“抢椅子”的游戏为后面用假设法证明埋下了伏笔。
用笔和笔筒进行研究,学生操作起来方便,演示起来直观。
再有就是受前面“抢椅子”游戏的影响,大部分学生用假设法验证;也有部分学生尝试用分解法一种情况一种情况的分。
由分解法和假设法,引导学生理解“总有一个”和“至少”的含义。
研究稍复杂问题时,对学生提出新的要求:不用分解法,想一种更简便的方法来验证。
引导学生
结合“抢椅子”的游戏,用假设法来验证。
假设法的实质是用极端法做最坏的打算,也就是考虑最不利的情况。
在理解了假设法验证后,后面的推理和总结规律也就相对来说容易了些。
练习设计由直接运用原理的鸽巢问题到解决实际生活中的生日问题,让学生逐步体会到“抽屉原理”的应用价值,进而激发学生的研究兴趣。
但是对于学生的情况考虑较少,当学生发言较少没能完整说出原理时,我没能及时进行调整,由此也暴露出我对课堂的调控,对学生积极性的调动的能力有待进一步的提高。