嵌入式Linux驱动开发(一)——字符设备驱动框架入门
linux驱动开发(一)
linux驱动开发(⼀)1:驱动开发环境要进⾏linux驱动开发我们⾸先要有linux内核的源码树,并且这个linux内核的源码树要和开发板中的内核源码树要⼀直;⽐如说我们开发板中⽤的是linux kernel内核版本为2.6.35.7,在我们ubuntu虚拟机上必须要有同样版本的源码树,我们再编译好驱动的的时候,使⽤modinfo XXX命令会打印出⼀个版本号,这个版本号是与使⽤的源码树版本有关,如果开发板中源码树中版本与modinfo的版本信息不⼀致使⽆法安装驱动的;我们开发板必须设置好nfs挂载;这些在根⽂件系统⼀章有详细的介绍;2:开发驱动常⽤的⼏个命令lsmod :list moduel 把我们机器上所有的驱动打印出来,insmod:安装驱动rmmod:删除驱动modinfo:打印驱动信息3:写linux驱动⽂件和裸机程序有很⼤的不同,虽然都是操作硬件设备,但是由于写裸机程序的时候是我们直接写代码操作硬件设备,这只有⼀个层次;⽽我们写驱动程序⾸先要让linux内核通过⼀定的接⼝对接,并且要在linux内核注册,应⽤程序还要通过内核跟应⽤程序的接⼝相关api来对接;4:驱动的编译模式是固定的,以后编译驱动的就是就按照这个模式来套即可,下⾯我们来分下⼀下驱动的编译规则:#ubuntu的内核源码树,如果要编译在ubuntu中安装的模块就打开这2个#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build# 开发板的linux内核的源码树⽬录KERN_DIR = /root/driver/kernelobj-m += module_test.oall:make -C $(KERN_DIR) M=`pwd` modulescp:cp *.ko /root/porting_x210/rootfs/rootfs/driver_test.PHONY: cleanclean:make -C $(KERN_DIR) M=`pwd` modules cleanmake -C $(KERN_DIR) M=`PWD` modules这句话代码的作⽤就是到 KERN_DIR这个⽂件夹中 make modules把当前⽬录赋值给M,M作为参数传到主⽬录的Makefile中,实际上是主⽬录的makefile中有⽬标modules,下⾯有⼀定的规则来编译驱动;#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build我们在ubuntu中编译内核的时候⽤这两句代码,因为在ubuntu中为我们保留了⼀份linux内核的源码树,我们编译的时候直接调⽤那个源码树的主Makefile以及⼀些头⽂件、内核函数等;了解规则以后,我们设置好KERN_DIR、obj-m这两个变量以后直接make就可以了;经过编译会得到下⾯⼀些⽂件:下⾯我们可以使⽤lsmod命令来看⼀下我们ubuntu机器现有的⼀些驱动可以看到有很多的驱动,下⾯我们使⽤insmod XXX命令来安装驱动,在使⽤lsmod命令看⼀下实验现象可以看到我们刚才安装的驱动放在了第⼀个位置;使⽤modinfo来打印⼀下驱动信息modinfo xxx.ko这⾥注意vermagic 这个的1.8.0-41是你⽤的linux内核源码树的版本号,只有这个编译的版本号与运⾏的linux内核版本⼀致的时候,驱动程序才会被安装注意license:GPL linux内核开元项⽬的许可证⼀般都是GPL这⾥尽量设置为GPL,否则有些情况下会出现错误;下⾯使⽤rmmod xxx删除驱动;-------------------------------------------------------------------------------------5:下⾯我们分析⼀下驱动。
嵌入式Linux驱动开发教程PDF
嵌入式Linux驱动开发教程PDF嵌入式Linux驱动开发教程是一本非常重要和实用的教材,它主要介绍了如何在Linux操作系统上开发嵌入式硬件设备的驱动程序。
嵌入式系统是指将计算机系统集成到其他设备或系统中的特定应用领域中。
嵌入式设备的驱动程序是连接操作系统和硬件设备的关键接口,所以对于嵌入式Linux驱动开发的学习和理解非常重要。
嵌入式Linux驱动开发教程通常包括以下几个主要的内容:1. Linux驱动程序的基础知识:介绍了Linux设备模型、Linux内核模块、字符设备驱动、块设备驱动等基本概念和原理。
2. Linux驱动编程的基本步骤:讲解了如何编译和加载Linux内核模块,以及编写和注册设备驱动程序所需的基本代码。
3. 设备驱动的数据传输和操作:阐述了如何通过驱动程序与硬件设备进行数据的传输和操作,包括读写寄存器、中断处理以及与其他设备的通信等。
4. 设备驱动的调试和测试:介绍了常用的驱动调试和测试技术,包括使用调试器进行驱动程序的调试、使用模拟器进行驱动程序的测试、使用硬件调试工具进行硬件和驱动的联合调试等。
通常,嵌入式Linux驱动开发教程的PDF版本会提供示例代码、实验步骤和详细的说明,以帮助读者更好地理解和掌握嵌入式Linux驱动开发的核心技术和要点。
读者可以通过跟随教程中的示例代码进行实际操作和实验,深入了解和体验嵌入式Linux驱动开发的过程和方法。
总之,嵌入式Linux驱动开发教程是一本非常重要和实用的教材,对于想要在嵌入式领域从事驱动开发工作的人员来说,具有非常重要的指导作用。
通过学习嵌入式Linux驱动开发教程,读者可以系统地了解和学习嵌入式Linux驱动开发的基本原理和技术,提高自己在嵌入式Linux驱动开发方面的能力和水平。
Linux设备驱动程序原理及框架-内核模块入门篇
Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。
为此,的内核一般不能动态的增加新的功能。
为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。
利用这个机制“模块”(module)。
利用这个机制,可以)。
利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。
正是这种机制,走已经安装的模块。
正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。
和可扩充性。
内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。
严格来说,卸载的内核软件。
严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。
但是,另一方面,可安装模块的形式实现的。
但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。
密切相关的部分(如文件系统等)。
课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。
且创建好该系统中的硬件设备的列表树:/sys 文件系统。
(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。
)。
嵌入式Linux系统中字符设备驱动程序的开发
[ sr c!C mbnd w t ted vlp n fA d vro 3 41F b ad hspp rmany daswi eb i igo rs c mpl Abta t o ie i h eeo me to D r e f¥ C2 0 or,ti ae il el t t ul n fcos o i h i hh d e
实现、调试和 发布 方法进行 了详细的论述 。
关羹词 :嵌入式 系统 ;数据采 集 ;AD转换 ;驱动程序 /
De eo m e t f v lp n a v c i e so b d e y t m o Ch rDe ieDr v r f Em e d d S se Un e n x S se d rLi u y t m
中圈分类号: P9. T31 9
嵌入 式 Ln x系统 中字符设备 驱动程 序 的开发 iu
李胜朝 ,黄先祥 ,谢 建
( 第二炮兵工程学院二 系 ,西 安 7 0 2 ) 10 5
接
要: 结合嵌入式开 发板 ¥ C 40 3 2 1F的模数转换驱动程序 的开发 ,该文对 Lnx i 环境下交叉编译环境的建立 , u 字符设备驱动程序 的组成、
其它 文件一样对 此设备 文件进行 操作。Ln x系统驱动主要 iu
由字符设备、块设备和 网络设备的驱动程序组成 ,其 中字符 设备如 I / O、A / A设备和 US DD B设备 等应用最为广泛,下面 结合 2 1F开发板 中 A 40 D转换设备的驱动开发,对字符设备
的驱 动 开 发 流 程 进 行 深 入 讨 论 。
() 3通过 stp命 令选 配好主机 的 NF e u S功能 ,并建立一 NF 根 目录/fro, ec x ot文件中添]1 fro (wn S ns t t e p r o 在/ / s J/ s t r ,o [n o
嵌入式linux开发教程pdf
嵌入式linux开发教程pdf嵌入式Linux开发是指在嵌入式系统中使用Linux操作系统进行开发的过程。
Linux作为一种开源操作系统,具有稳定性、可靠性和灵活性,因此在嵌入式系统中得到了广泛的应用。
嵌入式Linux开发教程通常包括以下内容:1. Linux系统概述:介绍Linux操作系统的发展历程和基本原理,包括内核、文件系统、设备驱动等方面的知识。
了解Linux系统的基本结构和工作原理对后续的开发工作至关重要。
2. 嵌入式开发环境搭建:通过搭建开发环境,包括交叉编译器、调试器、仿真器等工具的配置,使得开发者可以在本机上进行嵌入式系统的开发和调试。
同时,还需要了解各种常用的开发工具和调试技术,如Makefile的编写、GDB的使用等。
3. 嵌入式系统移植:嵌入式系统往往需要根据不同的硬件平台进行移植,以适应各种不同的硬件环境。
这个过程包括引导加载程序的配置、设备驱动的移植和内核参数的调整等。
移植成功后,就可以在目标硬件上运行Linux系统。
4. 应用程序开发:在嵌入式Linux系统上进行应用程序的开发。
这包括编写用户空间的应用程序,如传感器数据采集、数据处理、网络通信等功能。
还需要熟悉Linux系统提供的各种库函数和API,如pthread库、socket编程等。
5. 系统优化和性能调优:在开发过程中,经常需要对系统进行调优和优化,以提高系统的性能和稳定性。
这包括对内核的优化、内存管理的优化、性能分析和调试等。
只有深入了解和熟练掌握这些技术,才能使得嵌入式系统运行得更加高效和稳定。
嵌入式Linux开发教程PDF通常会结合理论和实践相结合的方式进行教学,通过实际的案例和实践操作,帮助开发者快速掌握嵌入式Linux开发的技术和方法。
同时还会介绍一些常见的开发板和硬件平台,以及开源项目等,帮助开发者在实际项目中应用所学的技术。
总之,嵌入式Linux开发教程PDF提供了系统而详细的指导,帮助开发者快速入门嵌入式Linux开发,掌握相关的技术和方法,以便更好地进行嵌入式系统的开发工作。
《嵌入式Linux开发》课件
交叉编译工具链的安装
指导如何安装适用于目标板的交叉编译工具 链。
测试交叉编译环境
提供一种简单的方法来测试交叉编译环境是 否设置成功。
目标板与宿主机的连接方式
串口通信
介绍如何通过串口连接目标板和宿主机 ,以及串口通信的配置和常用命令。
USB连接
介绍如何通过USB连接目标板和宿主 机,以及USB通信的配置和常用命令
02
03
嵌入式系统
是一种专用的计算机系统 ,主要用于控制、监视或 帮助操作机器与设备。
特点
具有实时性、硬件可裁剪 、软件可定制、低功耗、 高可靠性等特点。
应用
汽车电子、智能家居、医 疗设备、工业自动化等领 域。
Linux作为嵌入式操作系统的优势
开源
Linux是开源的,可以免费使用和定制,降 低了开发成本。
路由与交换
介绍路由器和交换机的原理及在网 络中的作用。
03
02
IP地址
解释IP地址的分类、寻址方式以及子 网掩码的作用。
网络安全
简述常见的网络安全威胁和防范措 施。
04
TCP/IP协议栈简介
TCP/IP协议栈结构
详细描述TCP/IP协议栈的层次结构,包括应 用层、传输层、网络层和链路层。
IP协议
解释IP协议的核心功能,如地址解析、路由 选择等。
调试工具
介绍常用的调试工具,如gdbserver和gdb等,并说明如何使用这些 工具进行远程调试。
调试过程
详细描述调试过程,包括启动调试会话、设置断点、单步执行代码等 操作。
调试技巧与注意事项
提供调试过程中的一些技巧和注意事项,以提高调试效率和准确性。
03
嵌入式Linux系统开发基础
基于ARM9和嵌入式Linux的字符驱动程序开发
成设备 的注册 . 同样模 块在调用 r m m o d 命令 时被卸载 . 此 时的人 口点 是e x i tm o d u l e 0  ̄数 , 在该 函数 中完成设备 的卸载 。
_
模块
内核
i n s o t o d L _ 一i n i t _ m o d u 1 e 0 r一 — 注 册 设 备 1
h e l p wr i t e c o mp l e x d r i v e r s .
【 K e y w o r d s 】 A R M; “ n u x o p e r a t i n g s y s t e m; C h a r a c t e r d r i v e r s
0 引 言
操作系统是通过各种驱动程序来驾驭硬件设备的 . 它为用户 屏蔽 了各种各样 的设备 . 驱动硬件 是操作 系统 最基本 的功 能 . 并且提供 统 的操作方式。设 备驱动程序是内核的一部分 . 硬件驱动程 序是 操作 系统最基本 的组成部 分 . 在L i n u x内核源程序 中也有 6 0 %以上 因此 熟悉驱动的便携式很重要的。 L i n u x 内核采用可加载的模块化设计 , 一 般情 况下编译 的 “n u x 内核是 支持可插入模块 的 . 也 就是将最基本 的 核心代码编译在 内核中 . 其他 的代码可 以编译到 内核 中 . 或者编译 为 内核 的模块文 件 L i n u x 的一个重要 特点就是将所 有的设备都 当做 文 件进行处理 . 这一类特殊文件就是设备文件 . L i n u x 系统的设备分为 三 类: 字符设备 . 块设备 和网络设备 。
【 摘 要】 本文介 绍了嵌入 式 l i n u x下字符驱动程序 的设计 , 详 细介 绍了驱动程序的编写步骤 , 对于编写复杂的驱 动程序 有一 定的帮助 。 ( 关键词 】 A RM; l i n u x 操作 系统 ; 字符驱动 【 A b s t r a c t ] T h i s a r t i c l e d e s c i r b e s t h e c h a r a c t e r s i n t h e e m b e d d e d L i n u x d r i v e r d e s i g n , d e t a i l i n g t h e p r e p a r a t i o n o f t h e d i r v e r s t e p s w i l l c e r t a i n l y
嵌入式linux驱动开发流程
三、设备的中断和轮询处理
对于不支持中断的设备,读写时需要轮询设备状态,以及是否需要继续进行数据传输。例如,打印机。如果设备支持中断,则可按照中断方式进行。
struct file_operations Key7279_fops =
{
.open = Key7279_Open,
.ioctl = Key7279_Ioctl,
.release = Key7279_Close,
.read = Key7279_Read,
};
1、 设备的打开和释放
模块在使用中断前要先请求一个中断通道(或者 IRQ中断请求),并在使用后释放它。通过request_irq()函数来注册中断,free_irq()函数来释放。
四、驱动程序的测试
对驱动程序的调试可以通过打印的方式来进行,就是通过在驱动程序中添加printk()打印函数,来跟踪驱动程序的执行过程,以此来判断问题。
◇ 设备的打开和释放。
ห้องสมุดไป่ตู้◇ 设备的读写操作。
◇ 设备的控制操作。
◇ 设备的中断和轮询处理。
Linux主要将设备分为三类:字符设备、块设备和网络设备。字符设备是指发送和接收数据以字符的形式进行,没有缓冲区的设备;块设备是指发送和接收数据以整个数据缓冲区的形式进行的设备;网络设备是指网络设备访问的BSD socket 接口。下面以字符设备为例,写出其驱动编写框架:
二、 构造file_operations结构中要用到的各个成员函数
Linux操作系统将所有的设备都看成文件,以操作文件的方式访问设备。应用程序不能直接操作硬件,使用统一的接口函数调用硬件驱动程序,这组接口被成为系统调用。每个系统调用中都有一个与之对应的函数(open、release、read、write、ioctl等),在字符驱动程序中,这些函数集合在一个file_operations类型的数据结构中。以一个键盘驱动程序为例:
linux字符驱动框架(用户态的read,write,poll是怎么操作驱动的)
linux字符驱动框架(⽤户态的read,write,poll是怎么操作驱动的)前⾔这篇⽂章是通过对⼀个简单字符设备驱动的操作来解释,⽤户态的读写操作是怎么映射到具体设备的。
因为针对不同版本的linux内核,驱动的接⼝函数⼀直有变化,这贴出我测试的系统信息:root@ubuntu:~/share/dev/cdev-2# cat /etc/os-release |grep -i verVERSION="16.04.5 LTS (Xenial Xerus)"VERSION_ID="16.04"VERSION_CODENAME=xenialroot@ubuntu:~/share/dev/cdev-2#root@ubuntu:~/share/dev/cdev-2# uname -r4.15.0-33-generic字符驱动这⾥给出了⼀个不怎么标准的驱动,定义了⼀个结构体 struct dev,其中buffer成员模拟驱动的寄存器。
由wr,rd作为读写指针,len作为缓存buffer的长度。
具体步骤如下:1. 定义 init 函数,exit函数,这是在 insmod,rmmod时候调⽤的。
2. 定义驱动打开函数open,这是在⽤户态打开设备时候调⽤的。
3. 定义release函数,这是在⽤户态关闭设备时候⽤到的。
4. 定义read,write,poll函数,并挂接到 file_operations结构体中,所有⽤户态的read,write,poll都会最终调到这些函数。
chardev.c/*参考:深⼊浅出linux设备驱动开发*/#include <linux/module.h>#include <linux/init.h>#include <linux/fs.h>#include <linux/uaccess.h>#include <linux/wait.h>#include <linux/semaphore.h>#include <linux/sched.h>#include <linux/cdev.h>#include <linux/types.h>#include <linux/kdev_t.h>#include <linux/device.h>#include <linux/poll.h>#define MAXNUM 100#define MAJOR_NUM 400 //主设备号 ,没有被使⽤struct dev{struct cdev devm; //字符设备struct semaphore sem;int flag;poll_table* table;wait_queue_head_t outq;//等待队列,实现阻塞操作char buffer[MAXNUM+1]; //字符缓冲区char *rd,*wr,*end; //读,写,尾指针}globalvar;static struct class *my_class;int major=MAJOR_NUM;static ssize_t globalvar_read(struct file *,char *,size_t ,loff_t *);static ssize_t globalvar_write(struct file *,const char *,size_t ,loff_t *);static int globalvar_open(struct inode *inode,struct file *filp);static int globalvar_release(struct inode *inode,struct file *filp);static unsigned int globalvar_poll(struct file* filp, poll_table* wait);/*结构体file_operations在头⽂件 linux/fs.h中定义,⽤来存储驱动内核模块提供的对设备进⾏各种操作的函数的指针。
linux 开发新驱动步骤
linux 开发新驱动步骤Linux作为一款开源的操作系统,其内核源码也是开放的,因此,许多开发人员在Linux上进行驱动开发。
本文将介绍在Linux上进行新驱动开发的步骤。
第一步:确定驱动类型和接口在进行驱动开发前,需要确定驱动类型和接口。
驱动类型包括字符设备驱动、块设备驱动、网络设备驱动等。
接口包括设备文件、系统调用、ioctl等。
根据驱动类型和接口的不同,驱动开发的流程也有所不同。
第二步:了解Linux内核结构和API驱动开发需要熟悉Linux内核的结构和API。
Linux内核由许多模块组成,每个模块都有自己的功能。
API是应用程序接口,提供了许多函数和数据结构,开发人员可以使用这些函数和数据结构完成驱动开发。
第三步:编写驱动代码在了解了Linux内核结构和API后,就可以编写驱动代码了。
驱动代码需要按照Linux内核的编码规范编写,确保代码风格统一、可读性好、可维护性强等。
在编写代码时,需要使用API提供的函数和数据结构完成相应的功能。
第四步:编译驱动代码和内核模块驱动代码编写完成后,需要编译成内核模块。
编译内核模块需要使用内核源码中的Makefile文件。
编译完成后,会生成一个.ko文件,这个文件就是内核模块。
第五步:加载和卸载内核模块内核模块编译完成后,需要加载到Linux系统中。
可以使用insmod命令加载内核模块,使用rmmod命令卸载内核模块。
在加载和卸载内核模块时,需要注意依赖关系,确保依赖的模块已经加载或卸载。
第六步:调试和测试驱动开发完成后,需要进行调试和测试。
可以使用printk函数输出调试信息,在/var/log/messages文件中查看。
测试时需要模拟各种可能的情况,确保驱动程序的稳定性和可靠性。
Linux驱动开发需要掌握Linux内核结构和API,熟悉驱动类型和接口,按照编码规范编写驱动代码,并进行编译、加载、调试和测试。
只有掌握了这些技能,才能进行高效、稳定和可靠的驱动开发。
嵌入式开发中的驱动开发
嵌入式开发中的驱动开发嵌入式系统是一种特殊的计算机系统,它嵌入在其他设备或系统中,以完成特定的功能。
在嵌入式系统中,驱动程序起着至关重要的作用,它们负责使硬件设备能够与操作系统进行交互。
驱动开发是嵌入式开发中的一个重要环节,它要求开发人员具备扎实的硬件知识和编程技巧。
本文将介绍嵌入式开发中的驱动开发过程以及其中的一些关键技术。
一、驱动开发的基本概念和重要性在嵌入式系统中,驱动程序是指一种软件,它与特定的硬件设备进行交互,使得操作系统能够正确地控制和使用这些硬件设备。
驱动程序的主要任务包括初始化硬件设备、提供对设备的访问接口、监控设备状态和处理中断等。
驱动程序的开发质量直接影响到嵌入式系统的性能和稳定性,因此驱动开发在整个嵌入式开发过程中具有重要的地位。
二、驱动开发的基本流程1. 硬件设备调研在进行驱动开发之前,首先需要对目标硬件设备进行调研。
调研的目的是了解硬件设备的工作原理、寄存器结构、通信接口等重要信息。
通过对硬件设备的调研,可以为后续的驱动开发提供必要的参考和指导。
2. 驱动程序框架设计驱动程序框架设计是驱动开发的关键步骤之一。
在设计驱动程序框架时,需要考虑到硬件设备的特点和功能需求,确定驱动程序的接口和工作流程。
通常情况下,驱动程序框架包括驱动初始化、设备注册、设备控制、中断处理等模块。
3. 驱动程序编码实现在完成驱动程序框架设计后,开发人员需要开始编码实现驱动程序。
驱动程序的编码实现需要根据硬件设备的功能需求和规格来完成。
在编码过程中,需要熟悉硬件设备的寄存器编程和通信接口的使用,保证驱动程序与硬件设备之间的正确交互。
4. 驱动程序调试和验证驱动程序的调试和验证是确保驱动程序正常工作的关键环节。
在进行调试和验证时,需要使用相关的调试工具和设备进行实时监测和数据分析。
通过对驱动程序的调试和验证,可以发现和修复驱动程序中可能存在的错误和问题。
5. 驱动程序优化和性能测试驱动程序的优化和性能测试是为了提高驱动程序的执行效率和系统的整体性能。
嵌入式Linux网络编程和嵌入式Linux设备驱动开发
结构字段常见值:sa_family:
(2)数据存储优先顺序
两种字节顺序:高位字节优先和低位字节优先,四个函数:htons,
ntohs,htonl,ntohl,分别实现网络字节序和主机字节序的转化, h—host, n—network, s—short, l--long
(3)地址格式转化
(4)名字地址转化
实现主机名和IP地址的转化,gethostbyname,gethostbyaddr,
getaddrinfo.实现IPv4和IPv6的地址好主机名之间的转化, gethostbyname是将主机名转化为IP地址,gethostbyaddr把IP地 址转化为主机名,getaddrinfo可自动识别IPv4和IPv6的地址。
3、设备驱动程序的主要组成 (1)设备注册:register_chrdev,调用该函数后向系统申请主设
备号,调用成功,设备名会出现在/proc/devices文件里。 关闭设备时,要解除设备注册unregister_chrdev (2)打开设备open主要完成: 递增计数器(用于设备计数,设备可能会被打开多次,可能由不 同进程打开,若想关闭此设备,就要保证其他进程或设备没有 使用该设备,用计数器实现此功能管理,有三个宏来实现操作)、 检查特殊设备的特殊情况、初始化设备、识别次设备号。 (3)释放设备release,与关闭设备不同,主要完成: 递减计数器和最后一次释放设备操作时关闭设备 (4)读写设备read write,即把内核空间的数据复制到用户空间, 或相反的操作。注意:用户空间的内存是可以被换出的,可能 出项页面失效,不能用memcpy函数,要用copy_to_user (5)获取内存:在设备驱动程序中动态开辟内存有两类:基于内 存地址(kmalloc返回物理地址),基于页面(3个函数) (6)打印信息:内核空间printk,不能用printf 4、proc文件系统:是内核和内核模块向进程发送信息的机制,让 用户可以与内核内部数据结构进行交互,获取进程的有用信息 p363 LCD驱动编写实例。
原子嵌入式linux驱动开发详解
原子嵌入式linux驱动开发详解原子嵌入式Linux驱动开发详解:Linux操作系统一直都是工业控制、物联网、安防等领域中嵌入式设备的首选操作系统。
Linux系统的优良特性使其成为用户和开发者的首选,而Linux内核驱动则是面向嵌入式应用领域核心技术之一。
它是嵌入式设备在硬件及软件之间接口的重要组成部分。
本文将详细介绍使用原子嵌入式Linux驱动进行嵌入式设备驱动的开发,并且介绍使用原子嵌入式Linux驱动实现并行的多线程驱动。
一、嵌入式设备驱动的基本原理:所谓嵌入式设备驱动,就是处理器与外部设备之间进行数据传递的程序,将设备中的信息读取到处理器中,或将处理器中的信息发送至设备中。
嵌入式设备驱动的核心逻辑是控制输入输出模块,以完成外部信息的读取和发送任务。
在Linux系统下,设备驱动一般以内核模块存在,片上驱动是一个相对独立的模块,不妨做一番详细的介绍。
二、原子嵌入式Linux驱动的使用:原子嵌入式Linux驱动根据功能的不同划分成了两类,即原子操作和读写自旋锁。
这两类驱动的使用方法不同,且有自己的特殊应用场景。
1、原子操作:在多线程的情况下,通过锁来保证同一时间只能有一个线程操作共享资源是一种常见的方法。
原子操作则是一种替代锁的方式,在多线程操作共享资源的情况下采用原子操作方式相对于锁来说会更加高效。
原子操作是一种特殊的指令操作,执行完原子操作之后,CPU不允许其他线程读写该地址的值,因此可以避免竞争。
下面是一个使用原子操作的例子:radio_chan = atomic_read(&radio->chan);digital_chan =atomic_read(&radio->digital_chan);radio_write_register(radio, 0x0011, 2,&radio_chan);radio_write_register(radio, 0x5111, 2,&digital_chan);在上述代码中,使用了atomic_read来获得变量radio_chan和digital_chan的值,这两个变量是共享资源,这里使用原子操作来避免竞争和冲突。
C语言嵌入式Linux开发驱动和系统调用
C语言嵌入式Linux开发驱动和系统调用在嵌入式系统领域中,C语言是最常用的编程语言之一。
它具有高效性、可移植性和灵活性,使得它成为开发嵌入式Linux驱动和系统调用的理想选择。
本文将详细介绍C语言在嵌入式Linux开发中的应用,包括驱动开发和系统调用的实现。
一、驱动开发1.1 驱动的定义和作用驱动是连接硬件和操作系统的关键组件,它允许操作系统与具体的硬件设备进行通信。
驱动的主要作用是提供对硬件设备的控制、管理和数据传输。
在嵌入式Linux系统中,驱动的开发需要使用C语言来编写。
1.2 驱动的开发流程驱动的开发可以分为以下几个步骤:1)了解硬件设备:首先要对驱动所涉及的硬件设备有一定的了解,包括设备的主要功能和寄存器的操作方式等。
2)驱动代码编写:使用C语言编写驱动代码,根据硬件设备的数据发送和接收过程设计函数和数据结构。
3)编译和链接:将驱动代码编译成可执行文件,并将其链接到操作系统的内核中。
4)加载和卸载:通过调用命令加载和卸载驱动,使其生效或失效。
5)测试和调试:进行驱动功能的测试和调试工作,确保驱动的正确性和稳定性。
1.3 驱动示例:LED驱动以一个简单的LED驱动为例,说明驱动的开发过程:1)定义LED设备的数据结构:创建一个结构体来表示LED设备的相关信息,例如设备的名称、设备的状态等。
2)实现LED控制函数:编写LED控制函数,通过操作硬件寄存器来控制LED的开关。
3)注册驱动:将驱动注册到操作系统的驱动框架中,使其与操作系统进行通信。
4)加载和卸载驱动:通过命令加载和卸载驱动,对LED进行控制。
二、系统调用2.1 系统调用的定义和作用系统调用是用户程序与操作系统之间的接口,它允许用户程序访问操作系统提供的服务和资源。
系统调用的主要作用是提供对底层硬件和操作系统功能的访问。
2.2 系统调用的分类系统调用可以分为以下几类:1)进程控制:如创建、终止和等待进程等。
2)文件操作:如打开、读取和关闭文件等。
嵌入式Linux设备驱动程序开发分析
嵌入式Linux设备驱动程序开发分析摘要:为了探讨嵌入式linux设备驱动程序开发,文中对其设备驱动程序完成了以下分析:linux设备驱动程序开发过程;基本组成结构;设备驱动程序的框架。
关键词:嵌入式;linux设备;驱动程序;开发过程中图分类号:tp311.521 设备驱动程序1.1 linux设备驱动程序开发过程linux操作系统的主要设备是块设备、字符设备和网络设备这三类类型的文。
字符设备能够保证在文件存取时减少缓存垃圾,这样一来就能使字符设备能够驱动程序能够像访问文件一样的字符设备以此来负责实现这些行为,并实现操作。
块设备可以看作是类似磁盘这样的文件系统的宿主。
同时能被linux允许一次传输的字节数目不限,在读取设备时也能像读取字符设备那样并且能使两者的读取数方式是一致。
而网络设备异于其他两者,因为其设备面向的上一层是一个网络协议层,要想实现数据访问就必须得需要通过bsd套接口。
但实际上,无论所有嵌入式linux设备的驱动程序有多少不同,都会有一些共性,所以在开发过程中,能够实现任何类型的驱动程序通用化,这些特性举例如下:(1)读/写。
输入和输出是几乎所有设备都支持的两种基本操作,并由各个驱动程序自身来完成。
接口是由系统规定好并实行读/写操作的,这样一来就能直接由驱动程序来实践并完成具体的操作和功能。
一旦当驱动程序逐渐初始化的过程中,那么则需要注册读/写函数到操作系统的接口中。
(2)中断。
作为计算机中的一个非常重要的功能,中断处理程序也应当同读写一样注册到系统中,因为使操作系统在程序无响应时能够提供使驱动程序中断的能力。
这样一来操作系统会在硬件中断发生后自动调用驱动程序并处理程序。
(3)时钟。
许多开发设备驱动程序时上也会运用到时钟,由于驱动程序必须由操作系统提供定时机制,所以在注册时钟函数时通常是在预定的时问过了之后。
完成一个linux嵌入式设备驱动程序的流程如下:给主、次设备号下定义,或实现动态获取;完成初始化或清除驱动函数→设计好预定要实现的文件的各种操作→审核定义file—operations结构→调试所需的文件操作→向内核保证实现中断服务并注册→用命令将驱动编译到内核并完成加载→优化生成设备节点的文件。
嵌入式系统驱动开发
驱动到旳移植只需做少许旳工作。
Linux驱动程序旳特点
嵌入式Linux驱动程序需求多样 嵌入式设备硬件各异 嵌入式计算平台往往资源有限,例如处理
速度、存储器容量、总线带宽、电池容量 等 一般要求短旳开发周期、压力大 开发驱动程序需要丰富旳专业知识,涉及 硬件和软件知识
经典旳字符设备涉及鼠标,键盘,串行口等 块设备主要涉及硬盘、软盘设备、CD-ROM
等 一种文件系统要安装进入操作系统必须在块
设备上
Linux驱动程序简介
嵌入式Linux驱动已经支持旳设备门类齐全,已成 为其相对其他嵌入式操作系统旳一大优势
工业控制常用旳串口,并口 人机输入设备如鼠标、键盘,触摸屏 彩色、黑白液晶显示输出 网络旳完善支持,涉及tcp/ip,udp,firewall,WLAN,
Linux允许设备驱动程序作为内核可加载模 块实现,即除了能够在系统开启时进行注 册外,还能够在开启后进行加载注册。
操作系统旳目旳之一是向顾客掩盖系统 硬件设备旳特殊性。例如,虚拟文件系 统呈现给顾客一种统一旳文件系统图 ,而和底层旳物理设备无关。
CPU不是系统中唯一旳智能设备,每一 种物理设备都由它自己旳硬件控制器。 键盘、鼠标和串行口由SuperIO芯片控制 ,IDE磁盘由IDE控制器控制,SCSI磁盘 由SCSI控制器控制,等等。
int func_init(void) Makefile: insmod xx.o lsmod rmmod xx.o
将驱动静态编译到内核里面
int __init func_init(void) Makefile: 开启时自动加载
内核模块
模块是内核旳一部分,但是并没有被编译到内 核里去。它们被分别编译和连接成目旳文件。
Linux设备驱动开发详解-第6章字符设备驱动(一)-globalmem
Linux设备驱动开发详解-第6章字符设备驱动(⼀)-globalmem1 驱动程序设计之前奏 (2)1.1 应⽤程序、库、内核、驱动程序的关系 (2)1.2 设备类型 (2)1.3 设备⽂件 (2)1.4 主设备号和从设备号 (2)1.5 驱动程序与应⽤程序的区别 (3)1.6 ⽤户态与内核态 (3)1.7 Linux驱动程序功能 (3)2 字符设备驱动程序框架 (3)2.1 file_operations结构体 (4)2.2 驱动程序初始化和退出 (5)2.3 将驱动程序模块注册到内核 (5)2.4 应⽤字符设备驱动程序 (5)3 globalmem虚拟设备实例描述 (6)3.1 头⽂件、宏及设备结构体 (6)3.2 加载与卸载设备驱动 (6)3.3 读写函数 (8)3.4 seek()函数 (9)3.5 ioctl()函数 (10)3.6 globalmem完整实例 (12)4 测试应⽤程序 (17)4.1 应⽤程序接⼝函数 (17)4.2 应⽤程序 (18)5 实验步骤 (19)5.1 编译加载globalmem 模块 (19)5.2 编译测试应⽤程序 (20)6 扩展 (21)1 驱动程序设计之前奏㈠应⽤程序、库、内核、驱动程序的关系㈡设备类型㈢设备⽂件㈣主设备号与从设备号㈤驱动程序与应⽤程序的区别㈥⽤户态与内核态㈦Linux驱动程序功能1.1 应⽤程序、库、内核、驱动程序的关系■应⽤程序调⽤应⽤程序函数库完成功能■应⽤程序以⽂件形式访问各种资源■应⽤程序函数库部分函数直接完成功能部分函数通过系统调⽤由内核完成■内核处理系统调⽤,调⽤设备驱动程序■设备驱动直接与硬件通信1.2 设备类型■字符设备对字符设备发出读/写请求时,实际的硬件I/O操作⼀般紧接着发⽣■块设备块设备与之相反,它利⽤系统内存作为缓冲区■⽹络设备⽹络设备是⼀类特殊的设备,它不像字符设备或块设备那样通过对应的设备⽂件节点访问,也不能直接通过read或write进⾏数据访问请求1.3 设备⽂件■设备类型、主从设备号是内核与设备驱动程序通信时使⽤的■应⽤程序使⽤设备⽂件节点访问对应设备■每个主从设备号确定的设备都对应⼀个⽂件节点■每个设备⽂件都有其⽂件属性(c或者b)■每个设备⽂件都有2个设备号(后⾯详述)主设备号:⽤于标识驱动程序从设备号:⽤于标识同⼀驱动程序的不同硬件■设备⽂件的主设备号必须与设备驱动程序在登记时申请的主设备号⼀致■系统调⽤是内核与应⽤程序之间的接⼝■设备驱动程序是内核与硬件之间的接⼝1.4 主设备号和从设备号■在设备管理中,除了设备类型外,内核还需要⼀对被称为主从设备号的参数,才能唯⼀标识⼀个设备■主设备号相同的设备使⽤相同的驱动程序■从设备号⽤于区分具体设备的实例例:PC的IDE设备,主设备号⽤于标识该硬盘,从设备号⽤于标识每个分区■在/dev⽬录下使⽤ll命令(ls -l)可以查看各个设备的设备类型、主从设备号等■cat /proc/devices可以查看系统中所有设备对应的主设备号1.5 驱动程序与应⽤程序的区别■应⽤程序以main开始■驱动程序没有main,它以⼀个模块初始化函数作为⼊⼝■应⽤程序从头到尾执⾏⼀个任务■驱动程序完成初始化之后不再运⾏,等待系统调⽤■应⽤程序可以使⽤GLIBC等标准C函数库■驱动程序不能使⽤标准C库1.6 ⽤户态与内核态■驱动程序是内核的⼀部分,⼯作在内核态■应⽤程序⼯作在⽤户态■数据空间访问问题★⽆法通过指针直接将⼆者的数据地址进⾏传递★系统提供⼀系列函数帮助完成数据空间转换get_userput_usercopy_from_usercopy_to_user1.7 Linux驱动程序功能■对设备初始化和释放■把数据从内核传送到硬件和从硬件读取数据■读取应⽤程序传送给设备⽂件的数据和回送应⽤程序请求的数据■检测和处理设备出现的错误2 字符设备驱动程序框架①Linux各种设备驱动程序都是以模块的形式存在的,驱动程序同样遵循模块编程的各项原则②字符设备是最基本、最常⽤的设备,其本质就是将千差万别的各种硬件设备采⽤⼀个统⼀的接⼝封装起来,屏蔽了不同设备之间使⽤上的差异性,简化了应⽤层对硬件的操作③字符设备将各底层硬件设备封装成统⼀的结构体,并采⽤相同的函数操作,如下等:open/close/read/write/ioctl④添加⼀个字符设备驱动程序,实际上是给上述操作添加对应的代码⑤Linux对所有的硬件操作统⼀做以下抽象抽象file_operations结构体规定了驱动程序向应⽤程序提供的操作接⼝struct file_operations ext2_file_operations ={.llseek = generic_file_llseek,.read = generic_file_read,.write = generic_file_write,.aio_read = generic_file_aio_read,.aio_write = generic_file_aio_write,.ioctl = ext2_ioctl,.mmap = generic_file_mmap,.open = generic_file_open,.release = ext2_release_file,.fsync = ext2_sync_file,.readv = generic_file_readv,.writev = generic_file_writev,.sendfile = generic_file_sendfile,};⑥⽤户态与内核态数据的交互⽤户应⽤程序与驱动程序分属于不同的进程空间,因此⼆者之间的数据应当采⽤以下函数进⾏交换long copy_to_user(kernel_buffer, user_buffer,n)//从内核空间拷贝n字节数据到⽤户空间copy_from_user(kernel_buffer, user_buffer,n)//从⽤户空间拷贝n字节数据到内核空间put_user(kernel_value, user_buffer)//从内核空间拷贝⼀数据变量到⽤户空间get_user(kernel_value, user_buffer)//从⽤户空间拷贝⼀数据变量到内核空间(内核空间数据可是任意类型)2.1 file_operations结构体⑴write函数■从应⽤程序接收数据送到硬件ssize_t (*write)(struct file*, const char __user *, size_t, loff_t*);⑵read函数■从硬件读取数据并交给应⽤程序ssize_t (*read)(struct file *, char __user *, size_t, loff_t*); /// 从设备中同步读取数据⑶ioctl函数■为应⽤程序提供对硬件⾏为的相关配置int (*ioctl)(struct inode *, struct file *, unsigned int, unsigned long);⑷open函数■当应⽤程序打开设备时对设备进⾏初始化■使⽤MOD_INC_USE_COUNT增加驱动程序的使⽤次数,当模块使⽤次数不为0时,禁⽌卸载模块Int (*open)(struct inode *, struct file*);⑸release函数■当应⽤程序关闭设备时处理设备的关闭操作■使⽤MOD_DEC_USE_COUNT减少驱动程序的使⽤次数,配合open使⽤,来对模块使⽤次数进⾏计数int (*release)(struct inode *, struct file*);⑹⑻⑻⑼⑽2.2 驱动程序初始化和退出①驱动程序初始化函数■Linux在加载内核模块时会调⽤初始化函数■在初始化函数中⾸先进⾏资源申请等⼯作■使⽤register_chrdev向内核注册驱动程序②驱动程序退出函数■Linux在卸载内核模块时会调⽤退出函数■释放驱动程序使⽤的资源■使⽤unregister_chrdev从内核中卸载驱动程序2.3 将驱动程序模块注册到内核内核需要知道模块的初始化函数和退出函数,才能将模块放⼊⾃⼰的管理队列中①module_init()向内核声明当前模块的初始化函数②module_exit()向内核声明当前模块的退出函数2.4 应⽤字符设备驱动程序㈠加载驱动程序■insmod 内核模块⽂件名■cat /proc/devices 查看当前系统中所有设备驱动程序及其主设备号㈡⼿动建⽴设备⽂件■设备⽂件⼀般建⽴/dev⽬录下■mknod ⽂件路径c [主设备号] [从设备号]㈢应⽤程序接⼝函数■编写应⽤层测试程序■可以使⽤标准C的⽂件操作函数来完成①int open(const char *path, int oflag,…);★打开名为path的⽂件或设备★成功打开后返回⽂件句柄★常⽤oflag:O_RDONLY, O_WRONLY, O_RDWR②int close(int fd);★关闭之前被打开的⽂件或设备★成功关闭返回0,否则返回错误代号③ssize_t read(int fd, void *buffer, size_t count)★从已经打开的⽂件或设备中读取数据★buffer表⽰应⽤程序缓冲区★count表⽰应⽤程序希望读取的数据长度★成功读取后返回读取的字节数,否则返回-1④ssize_t write(int fd, void *buffer, size_t count);★向已经打开的⽂件或设备中写⼊数据★buffer表⽰应⽤程序缓冲区★count表⽰应⽤程序希望写⼊的数据长度★成功写⼊后返回写⼊的字节数,否则返回-1④int ioctl(int fd, unsigned int cmd, unsigned long arg);★向驱动程序发送控制命令★cmd:⽤来定义⽤户向驱动分配的命令例如G PF驱动中:设置指定管脚的⾼低电平、输⼊输出特性等为了规范化及错误检查常⽤_IO宏合成该命令:_IO(MAGIC, num) ★arg:配置命令参数配合cmd命令完成指定功能3 globalmem虚拟设备实例描述3.1 头⽂件、宏及设备结构体在globalmem字符设备驱动中,应包含它要使⽤的头⽂件,并定义globalmem设备结构体及相关宏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嵌入式Linux驱动开发(一)——字符设备驱动框架入门提到了关于Linux的设备驱动,那么在Linux中I/O设备可以分为两类:块设备和字符设备。
这两种设备并没有什么硬件上的区别,主要是基于不同的功能进行了分类,而他们之间的区别也主要是在是否能够随机访问并操作硬件上的数据。
1.字符设备:提供连续的数据流,应用程序可以顺序读取,通常不支持随机存取。
相反,此类设备支持按字节/字符来读写数据。
举例来说,调制解调器是典型的字符设备。
2.块设备:应用程序可以随机访问设备数据,程序可自行确定读取数据的位置。
硬盘是典型的块设备,应用程序可以寻址磁盘上的任何位置,并由此读取数据。
此外,数据的读写只能以块(通常是512Byte)的倍数进行。
与字符设备不同,块设备并不支持基于字符的寻址。
两种设备本身并没用严格的区分,主要是字符设备和块设备驱动程序提供的访问接口(file I/O API)是不一样的。
本文主要就数据接口、访问接口和设备注册方法对两种设备进行比较。
那么,首先,认识一下字符设备的驱动框架。
对于上层的应用开发人员来说,没有必要了解具体的硬件是如何组织在一起并工作的。
比如,在Linux中,一切设备皆文件,那么应用程序开发者,如果需要在屏幕上打印一串文字,虽然表面看起来只是使用printf函数就实现了,其实,他也是使用了int fprintf(FILE *fp, const char* format[, argument,...])封装后的结果,而实际上,fprintf函数操作的还是一个FILE,这个FILE对应的就是标准输出文件,也就是我们的屏幕了。
那么最简单的字符设备驱动程序的框架是如何呢?应用程序和底层调用的结构正如上图所显示的那样,用户空间的应用开发者,只需要通过C库来和内核空间打交道;而内核空间通过系统调用和VFS(virtual file system),来调用各类硬件设备的驱动。
如果,有过单片机的经验,那么一定知道,操作硬件简单来说就是操作对应地址的寄存器中的内容。
而硬件驱动实际就是和这些寄存器打交道的。
通过操作对应硬件的寄存器来直接的控制硬件设备。
那么,对于上面这幅图可以看出,驱动程序实际也是内核的一部分,当然可以把代码直接放到内核中一起编译出来。
但是对于很多开发板来说,内核来说早已经编译完成运行在开发板上,那么是不是必须要重新编译并烧写整个内核呢?换到我们使用pc来说,显然不是这样,如果我们购买了一个键盘,为了键盘还需要重新安装对应的操作系统,那么未免也太不方便,并且我们的使用经验也并非如此。
而在之前谈到的内核编译过程中,可以将一些模块编译为module的方式编译,在运行时加载该模块即可,而不用每次都需要完整的对内核进行编译。
因此,对于驱动程序的开发来说,这一点就显得很重要,也是我们日常工作最常用的一种方式。
那么我们先回顾一下,在应用层我们一般是如何来操作一个设备文件的?我们通常会使用一些类似于read、open、write等函数。
(可以参见我之前写的文章:)。
那么在使用这些函数的时候,会包含一些头文件,例如:sys/types.h、sys/stat.h以及fcntl.h等这些头文件,实际他们就是C库的部分,用户程序这时候只需要关心的是C库到底如何使用,而C库背后实际完成的是调用一些系统调用,类似于sys_open、sys_read等函数来对内核空间进行调用的。
在这里毕竟不是为了分析框架的具体实现原理,以后有机会慢慢展开,在此主要为了讨论,如何快速使用这些框架来写出字符设备的驱动程序。
其实编写字符驱动的步骤并不复杂,我们首先将框架建立起来,建立框架的大致我认为可以分为以下两部(其中的细节问题后续展开):1.编写驱动的入口和出口函数,此函数会在驱动模块加载和卸载时调用2.编写具体的read、write、open等函数,在用户程序使用对应的函数时,该函数可以被调用。
(非必须)我们先看看一个简单的驱动程序的框架:以上的代码基本是关于字符型设备驱动的框架结构了。
可以看到以上的代码其实就是一个简单的驱动程序框架了,其实如果没有first_drv_open和first_dev_write两个函数也是可以的,在硬件上可以正确的安装该驱动,在安装驱动的时候会调用注册在module_init中的函数,在卸载程序时会调用module_exit中所注册的函数。
但是file_operations结构体依然还是需要定义的,但实际的驱动程序需要操作实际的硬件,一般都会有open、read、write这类函数。
但在此仅仅是为了说明驱动的最小框架而已。
那么驱动程序写完了,我们来使用测试程序调用一下,以下是测试程序#include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio. h> int main(int argc, char **argv) { int fd; //声明设备描述符 int val = 1; //随便定义变量传入到 fd = open("/dev/xxx", O_RDWR); //根据设备描述符打开设备 if(fd < 0) //打开失败 printf("can't open\n"); write(fd, &val, 4); / /根据文件描述符调用write return 0; }Makefile#驱动程序实际属于内核的一部分,那么在编译的时候就需要使用已经编译好的内核,来编译驱动程序了,这点尤为重要。
KERN_DIR=/code/LinuxDev/Lab/Kernel OfLinux/linux-2.6.22.6 #内核目录 all: make -C $(KERN_DIR) M=`pwd` modu les #M=`pwd`表示,生成的目标放在pwd命令的目录下# -C代表使用目录中的Makefile来进行编译 clean: make -C $(KERN_DIR)M=`pwd` modules clean rm -f modules.order obj-m += first.o #加载到module 的编译链中,内核会编译生成出来ko文件,作为一个模块使用Makefile编译驱动程序编译测试程序完成了测试程序和驱动程序的编译,那么接下来就是将写好的驱动程序安装在开发板上在开发板上使用lsmod命令查看已安装的模块PS:我的开发板使用的是NFS系统,这个NFS系统是linux服务器所提供的,所以在Linux服务器上编译完成后就直接切换在了开发板上操作,如果你的开发板使用的不是NFS系统,那么,还需要把编译出来的测试程序的可执行文件和.ko模块文件拷贝到开发板的文件系统中,才能执行后续的操作。
lsmod查看系统中已经安装的模块目前在系统中还没有添加任何的模块。
使用insmod 模块名来加载我们刚才写好的驱动程序,添加的驱动程序模块是.ko文件在系统装装在first.ko模块现在可以看到,lsmod以后可以看到已经安装好的驱动程序了,并且在insmod的时候,调用驱动程序里面我们写好的入口程序first_drv_init函数中的printk("init\n")函数的打印结果。
因此我们知道了在装载驱动程序的时候就会调用驱动程序对应的入口函数。
这时候迫不及待的试一下测试程序,看看能不能正确的open和read吧。
使用测试程序驱动程序既然已经安装好了,为什么打开测试程序的时候却没法正确的打开呢,回看我们之前的代码,也没发现错误。
如果我们查看/proc/devices文件,我们会发现,有一个主设备号为55的字符设备。
image.png这时候如果查看/dev/目录下我们会发现我们写的设备并没有添加在其中。
那么我们为开发板新增加一个设备文件。
添加一个设备文件,然后执行测试程序添加了设备文件后,在执行测试程序,发现正确的open了,并且调用了write函数,正确打印了。
mknod命令,第一个参数是设备文件的名字,这个名字要和测试程序中的打开的相一致第二参数c代表的是字符设备 55代表的是主设备号 0代表的是次设备号驱动程序测试通过了,当我们不需要驱动程序的时候,我们应该将他卸载掉rmmod 驱动名写在驱动程序在我们卸载驱动程序的时候,可以看到调用了驱动程序的出口函数,打印出来了exit。
此时在查看/proc/devices没有设备了。
而在/dev/目录下的设备节点则需要手动来删除。
以上就是一个简单的字符设备驱动程序的框架,驱动程序的在insmod的时候调用了入口函数,在rmmod的时候调用了出口函数,而当我们调用write或者open的时候,会调用到驱动程序中在file_operatios结构体中注册的对应的write和open函数。
如果观察刚才的执行过程,会发现几个问题问题1.装载了驱动程序以后,在/proc/devices中设备,分配设备号,但设备号是在驱动程序中写死的,那么如果设备号被占用,肯定会装载失败;2.装载完成了驱动程序以后,实际上还不能直接用测试程序打开对应的设备文件,因为设备文件并没有自动创建,需要我们手动创建设备节点,这时候才能使用测试程序来通过打开文件的方式操作驱动程序所对应的硬件。
以上的问题,肯定是有办法解决的,不然我们每次设备都需要这样操作实在也不方便。
那么我们就来改进一下我们的代码来实现自动分配设备号以及创建设备文件吧。
首先关于第一个问题的解决方案很简单,注册驱动程序的时候,如果传入的major为0,那么系统将会自动为这个驱动程序分配主设备号,同时这个程序也会返回所分配的主设备号。
第二个问题,解决起来也不是很困难,在Linux中提供了一种机制是udev,可以用于自动的创建设备,在嵌入式Linux的文件系统,比如busybox,也有一套简化版的机制,是mdev,在配置文件系统的时候会进行相应的配置,写完了关于文件系统的文章,我会将链接贴上来。
我们如果在调用驱动程序的入口函数的时候,就使用mdev来创建这个设备文件其实就行了。
使用mdev的时候,需要用到两个结构体,一个是class和class_device。
这两个结构体,都定义在%kernel%/include/linux/device.h的头文件中为了代码篇幅,这个驱动程序中,就没有定义相关的open、write等函数,那么同样也就不需要在定义相关的测试函数了。
执行结果从以上的运行结果我们看出,自动在/proc/devices中,创建了一个主设备号为252的设备,名字为third_driver,而实际代码中并没有指定对应的主设备号,那么也就是说明该设备号是由系统自动创建的。