趣味数阵——小学五年级奥数

合集下载

五年级下册数学奥数有趣的数阵图人教版

五年级下册数学奥数有趣的数阵图人教版
按照前面学习的方法, 先列出一个等式,再考虑三 个未知的数吧。
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
假设重叠数是a、b、c 5+6+7+8+9+10+a+b+c=24×3
45+a+b+c=72 a+b+c=27
8+9+10=27
8 76 9 5 10
2 9 561 3 8 45~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
中间的三个数只加一次, 三个角上的数都加了两次, 有三个数要设字母吗?
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
1
3
2
1+2+…+7+8+a+b=21×2 6
5
36+a+b=42 a+b=6
4
8
7
1+5=6或2+4=6
将1、3、5、7、9、11、13、15这八个数,分别填入图中的 八个○内,使得每个大圆上五个○内数的和都是39。
1+3+5+……+15=64
3
5
1
39×2-64=14
7
9
中间的两个圆圈数重叠一次, 15 13 11
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6

小学五年级奥数第10讲 数阵(含答案分析)

小学五年级奥数第10讲 数阵(含答案分析)

第10讲数阵一、知识要点填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

二、精讲精练【例题1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a 使横行三个数的和与竖行三个数的和都是21。

练习1:1.把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2.把1—9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3.将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

【例题2】将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

练习2:1.把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2.把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

3.将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。

第1题第二题第三题【例题3】将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。

练习3:1.将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等。

2.将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17。

3.将1——8八个数分别填入下图的○内,使每条安上三个数的和相等。

第1题第二题第三题【例题4】将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等。

练习4:1.将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。

五年级奥数:数阵图(一)

五年级奥数:数阵图(一)

数阵图(一)一、考点、热点回顾1、在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

2、那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

五年级奥数第4讲:数阵-课件

五年级奥数第4讲:数阵-课件

练习五(选做)
如下图的五个连环,他们相交后分成九个区域,现在两个区域 里已分别填进数字10和6,请在另外七个区域里分别填上2、3、4、 5、6、7、9这七个数,使每个圆内数字的和都是15。
10 5
6 72
96
3
4
排除法
从两头做为突破口
两数之和等于 15-9=6
6=2+4
总结
运用数的总和与每行和的总和关系,利用数和倍数的 特点,先确定几个数,然后用排除法找出正确答案。
8
9
b2 4 8 c3
2573
小结
1. 理解幻方里总和、幻和、阶数的概念,总和=幻和×阶数, 奇数阶幻方中心数=幻和÷阶数。 2. 解决封闭数阵的时候,学会用总和的思想求顶点数,同时 利用自然数、倍数等数的特性辅助求解,并对得出的组合逐一 排除,最后得到正确答案。
2、3、5倍数的特征 什么是偶数?
还有其它填法吗?
(61,2,89)(67,2,83)(71,2,79) 两两组合共有3种
例题五(选讲)
将1~9这九个数分别填入下图的○里,使外三角形边上○内数 之和等于里面三角形边上○内数之和。
1
两个三角形2共同的点
637 45
三个数的和等于 三个数的和
618
想想符合这样的组合?
37
2
8
94
9
5
你们还能想到更多的答案吗?
所2是有质的偶数数都2不8是是质偶数数吗? 3个质数相加是偶数 奇数+偶数+奇数=不同的质数,其中的四个数都在60~90之间, 要使横行、竖行的三个数的和都是152,可以怎么填?
61 67 2 83
89
3个质数相加是偶数 奇数+偶数+奇数=152 又是偶数又是质数的是2

五年级奥数“数阵问题” 第六讲

五年级奥数“数阵问题” 第六讲

上一页
练习5:将九个不同的自然数填入下面方格中,使每行、每列、每条对
习 题
角线上三个数的积都相等。
上一页
首页 结束
下一页

个顶点上的数的和相等。问这六个质数的积是多少?
解:
设每个小三角形三个顶点处○内数的和为X。因为中间的小三 角形顶点处的数在求和时都用了三次,所以,四个小三角形 顶点处数的总和是4X=20+2X,解方程得X=10。由此可知, 每个小三角形顶点处的三个质数的和是10,这三个质数只能 是2、3、5。因此这6个质数的积是2×2×3×3×5×5=900。 如图(b)。
当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9) 和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个 数分别为(1,5,9,10)和(4,6,7,8)。
上一页
首页 结束
下一页
第4讲 数阵问题
练 习
练习2:把1——8八个数分别填入下图的○内,使每个大圆上五个○内 数的和相等。
上一页
首页 结束
下一页
第4讲 数阵问题
练 习
练习1:把1——10各数填入“六一”的10个空格里,使在同一直线上 的各数的和都是12。

上一页
首页 结束
下一页
第4讲 数阵问题
例 例2:将1——10这十个数填入下图小圆中,使每个大圆上六个数的
题 精
和是30。

解: 设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3 +……+10+a+b=30×2,即55+a+b=60,a+b=5。在1— —10这十个数中1+4=5,2+3=5。
试验法就是根据题中所给条件选准突破口,确定填 数的可能范围。把分析推理和试验法结合起来,再 由填数的可能情况,确定应填的数。

小学五年级奥数数阵题doc

小学五年级奥数数阵题doc

第十六讲数阵问题上一讲我们学习了三阶幻方数阵图的辐射数阵图,这一讲我们学习封闭型数阵图和复合型数阵图。

例1.将1~6这六个数分别填入图中的○内,使每条边上三个○内的数字之和相等。

例2.将5~14这十个自然数填入右图中的○内,使每个大圆上六个数的和是55。

例3.将1~10这十个自然数分别填入图中的十个○内,使各条线段上四个○内数的和相等,每个三角形三个顶点上○内数的和也相等。

例4.把0~9这十个整数分别填入右图圆圈中,使每个正方形顶点上四个数字之和相等。

练习与思考1.将5~10这六个自然数分别填入图中的○内,使图中每条边上三个数的和都是21。

2.将1—10这十个自然数填入图中的○内,使五边形每条边上的三个数之和相等,并使和尽可能地小。

3.将1—9这九个自然数分别填入图中九个小三角形中,使每4个小三角形组成的三角形内的4个数的和等于20。

4.将1—9这九个自然数分别填入图中九个小三角形中,要求靠近三角形每条边上五个数的和相等,并尽可能地大。

这五个数之和最大是多少?5.将1—8这八个自然数分别填入图中的○内,使每个大圆上五个○内所填数的和等于21。

6.将3—10这八个自然数填在图中立方体八个顶点上的○中,使立方体每个面四个顶点上○中数的和相等。

7.将1—9这九个自然数填入图中的○内,使对角结上五个○内数的和相等,每个正方形四个顶点上数的和也相等。

8.如图,三个正方形组成八个三角形。

现在把每个正方形的四个顶点上都分别填上2,3,4,5这四个数。

这连续的八个自然数各是多少|9.如图,三个圆相互交割成七部分,请在空白部分中分别五上2,3,5,7,使每个圆圈内四个数之和都等于15。

10.上右图是五圆连环图,相互交割成九个部分。

将1—9这九个自然数分别填入九个部分内,使每个圆圈里数的和都相等。

11.下左图中有三个正三角形,其中有三条通过四点的线段。

请你把1—9这九个自然数分别填在九个黑点的旁边,使每个正三角形顶点上三个数的和相等,每条线段上四个数的和也相等。

五年级奥数数阵图(三)学生版

五年级奥数数阵图(三)学生版

1.五年级奥数数阵图(三)学生版2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点[或方格]和关键点[或方格]; 第二步:在数阵图的少数关键点[一般是交叉点]上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.【例 2】 将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.例题精讲知识点拨教学目标5-1-3-3.数阵图【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8[1已填出].从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n[n≤8]。

则从这个圆圈开始顺时针走n步进入另一个圆圈.依此下去,走7次恰好不重复地进入每个圆圈,最后进入的一个圆圈中写8.请给出两种填法.【例 4】在圆的5条直径的两端分别写着1~10(如图)。

现在请你调整一部分数的位置,但保留1、10、5、6不动,使任何两个相邻的数之和都等于直径另一端的相邻两数之和(画在另一个圆上)。

【例 5】图中是一个边长为1的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F位置上(例如:a b g f A+++=).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a g d⨯⨯=___________.【例 6】在如图所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。

小学奥数:数阵图(三).专项练习及答案解析

小学奥数:数阵图(三).专项练习及答案解析

1.了解数阵图的种类2.学会一些解决数阵图的解题方法3.能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1.定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.【考点】数阵图与数论【难度】3星【题型】填空【关键词】迎春杯,三年级,初赛,第8题【解析】设顶点分别为A、B、C 、D、E,有45+A+B+C+D+E=55,所以A+B+C+D+E=10,所以A、B、C、D、E分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a1,公差为d.利用求和公式5(a1+a1+4d)2=55,得a1+2d=11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.例题精讲知识点拨教学目标5-1-3-3.数阵图【答案】2种可能【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。

五年级奥数分册第10周 数 阵-精品推荐

五年级奥数分册第10周  数    阵-精品推荐

第10周数阵专题简析:填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

例题1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。

先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习一1,把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2,把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3,将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

例题2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2,即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8)。

练习二1,把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2,把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

[精编]五年级奥数分册第10周 数 阵

[精编]五年级奥数分册第10周  数    阵

第10周数阵专题简析:填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

例题1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。

先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习一1,把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2,把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3,将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

例题2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2,即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8)。

练习二1,把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2,把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

小学五年级奥数教案 第10讲 数阵

小学五年级奥数教案  第10讲 数阵

第10讲数阵一、知识要点填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

二、精讲精练【例题1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a 使横行三个数的和与竖行三个数的和都是21。

练习1:1.把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2.把1—9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3.将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

【例题2】将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

练习2:1.把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2.把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

3.将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。

第1题第二题第三题【例题3】将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。

练习3:1.将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等。

2.将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17。

3.将1——8八个数分别填入下图的○内,使每条安上三个数的和相等。

第1题第二题第三题【例题4】将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等。

练习4:1.将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。

五年级奥数数阵问题

五年级奥数数阵问题

课时3 数阵问题一一.数阵填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题;这里,主要讨论一些数阵的填法;解答数阵问题通常用两种方法:一是待定数法,二是试验法;待定数法就是先用字母或符号表示满足条件的数,通过分析、计算来确定这些字母或符号应具备的条件,为解答数阵问题提供方向;试验法就是根据题中所给条件选准突破口,确定填数的可能范围;把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数;二.例题精析例1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21;先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A +E+B+C+E+D=21×2=42;把两式相比较可知,E=42-35=7,即中间填7;然后再根据5+9=6+8便可把五个数填进方格,如图b;小试牛刀把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12;2、把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13;3、将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等;例2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30;分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5;在1——10这十个数中1+4=5,2+3=5;当a和b是1和4时,每个大圆上另外四个数分别是2、6,8,9和3、5,7,10;当a和b是2和3时,每个大圆上另外四个数分别为1、5,9,10和4,6,7,8;小试牛刀1、把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等;2、把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大;3、将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18;例3将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大;分析设中间三个圆内的数是a、b、c;因为计算三条线上的和时,a、b、c都被计算了两次,根据题意可知:1+2+3+4+5+6+a+b+c除以3没有余数;1+2+3+4+5+6=21、21÷3=7没有余数,那么a+b+c的和除以3也应该没有余数;在1——6六个数中,只有4+5+6的和最大,且除以3没有余数,因此a、b、c分别为4、5、6;1+2+3+4+5+6+4+5+6÷3=12、所以有下面的填法:小试牛刀1、将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等;2、将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17;3、将1——8八个数分别填入下图的○内,使每条安上三个数的和相等;例4将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等;分析首先要确定中心圆内的数,设中心○内的数是a,那么,三条线段上的总和是1+2+3+4+5+6+7+2a=28+2a,由于三条线段上的和相等,所以28+2a除以3应该没有余数;由于28÷3=9……1、那么2a除以3应该余2、因此,a可以为1、4或7;当a=1时,28+2×1÷3-1=9,即每条线段上其他两数的和是9,因此,有这样的填法;小试牛刀1、将1——9填入下图的○中,使横、竖行五个数相加的和都等于25;2、将1——11这十一个数分别填进下图的○里,使每条线上3个○内的数的和相等;3、将1——8这八个数分别填入下图○内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18;例5如下图a四个小三角形的顶点处有六个圆圈;如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数的和相等;问这六个质数的积是多少分析设每个小三角形三个顶点处○内数的和为X;因为中间的小三角形顶点处的数在求和时都用了三次,所以,四个小三角形顶点处数的总和是4X=20+2X,解方程得X=10;由此可知,每个小三角形顶点处的三个质数的和是10,这三个质数只能是2、3、5;因此这6个质数的积是2×2×3×3×5×5=900;如图b;小试牛刀1、将九个不同的自然数填入下面方格中,使每行、每列、每条对角线上三个数的积都相等;2、将1——9九个自然数分别填入下图的九个小三角形中,使靠近大三角形每条边上五个数的和相等,并且尽可能大;这五个数之和最大是多少3、将1——9九个数分别填入下图○内,使外三角形边上○内数之和等于里面三角形边上○内数之和;。

五年级下册数学奥数课件有趣的数阵图人教版共25张

五年级下册数学奥数课件有趣的数阵图人教版共25张
两数之和为14
解答数阵图的关键是重叠数,所以 填数阵时,一般优先考虑重叠数。可 以把这个数用括号或字母表示,列出 等式,再根据条件解答出来。
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6
4
36+a+b=42
5
7
8
a+b=6
1+5=6或2+4=6
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
不论这5个数填在哪里,从整体来 看,5个数都加了1次,其中有1 个数还多加了一次,得到了2个和, 也就是6个数相加等于2×9=18。
例1:把1~5这五个自然数,分别填入下图中的五个圆圈内, 使相交成十字的两条直线上三个数之和等于9。
假设重叠数是a 1+2+3+4+5+a=9×2
15+a=18 a=3
将1~9分别填入下图的九个圆圈中,使每条边相加的和等于17。
1+2+…+8+9=45
17×3-45=6 三个顶点重叠一次,即三个 顶点数之和为6
6=1+2+3
1
89
6
4
2573
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
按照前面学习的方法, 先列出一个等式,再考虑三 个未知的数吧。

五年级奥数-数阵图与数字谜(含解析)

五年级奥数-数阵图与数字谜(含解析)

数阵图与数字谜教学目标1. 熟悉数阵图与数字谜的题目特点;2. 掌握数阵图与数字谜的解题思路。

精讲讲练数阵图数阵图是把一些数按照一定规则填在某一特定图形的规定位置上而来的图形,有时简称数阵。

【例1】 (2007年“希望杯”第二试)在右图所示○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点的三个数的和是__________。

【分析】 由于每条边上的三个数的和都是12,所以把这三条边上的三个数的和都加起来,总和应为12336⨯=,在其中,A 、B 、C 各算了一次,三个顶点的三个数各算了两次,所以三个顶点的三个数的和为(3618)29-÷=。

【例2】 (2007年天津“陈省身杯”国际青少年数学邀请赛)将112:这十二个自然数分别填入右图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为__________。

【分析】 由于每条直线上的四个数之和都相等,设这个相等的和为S ,把所有6条直线上的四个数之和相加,得到总和为6S ;另一方面,在这样相加中,由于每个数都恰好在两条直线上,所以每个数都被计算了两遍。

所以,6(12312)2S =++++⨯L ,得到26S =,即所求的相等的和为26。

【例3】 (2007年“走进美妙的数学花园”决赛)如右图所示,A ,B ,C ,D ,E ,F ,G ,H ,I ,J 表示110:这10个各不相同的数字。

表中的数为所在行与列的对应字母的和,例如“14G C +=”。

请将表中其它的数全部填好。

C BA【分析】 由于5A F +=,14B F +=,所以1459B A -=-=,所以A 和B 只能是0和9。

因此可以推出:0A =,9B =,6C =,3D =,2E =,5F =,8G =,1H =,4I =,7J =。

可得右下图。

【例4】 (2007年“走进美妙的数学花园”初赛)从1、2、3…20这20个数中选出9个不同的数放入33⨯的方格表中,使得每行、每列、每条对角线上的三个数的和都相等。

小学奥数举一反三五年级数阵问题PPT课件

小学奥数举一反三五年级数阵问题PPT课件
数阵问题
• 一、知识介绍
数阵是由幻方演化出来的另一种数字图。幻方一般均为正 方形。图中纵、横、对角线数字和相等。数阵则不仅有正 方形、长方形,还有三角形、圆、多边形、星形、花瓣形、 十字形,甚至多种图形的组合。变幻多姿,奇趣迷人。这 里,和同学们讨论一些数阵的填法。
第1页/共19页
• 一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
第15页/共19页
• 例4 将1~8八个数字,分别填入下图○中,使每个小三角形顶点上三数之和为12。 第16页/共19页
• 解:图中共有四个小三角形,每个三角形顶点数字的和若 都是12,数字总和便是12×4=48,可是1~8八个数字 总和只有36。36比48少12。只有靠共用顶角上数的重复 使用,才能解决。因此,必须把四个公用顶角的数字和填 成12。把1~8八个数四个一组,和为12的有: 6+3+2+1 5+4+2+1 上述两组中,经验证,只有6+3+2+1可以作公用顶点的 数字。
第7页/共19页
• 例3 将1~11十一个数字,填入下图各○中,使每条线段上的数字和相等。 第8页/共19页
• 解:图中共有五条线段,全部数字的总和必须是5的倍数, 每条线上的数字和才能相等。
1~11十一个数字和为66,66÷5=13余1,必须再增加4, 可使各线上数字和为14。共五条线,中心数重复使用4次, 填1恰符合条件。
三个角顶的数字都重复使用两次,只有这三个数字的和是9, 才能符合条件。
确定了角顶的数字,其他各数通过尝试便容易求得了! 这题还可有许多解法,上图只是其中一种。
第11页/共19页
• 例2下图是四个互相联系的三角形。把1~9九个数字,填入○中,使每个三角形中数 字的和都是15。

小学五年级奥数精品专项训练-数阵_周期问题

小学五年级奥数精品专项训练-数阵_周期问题

一、数阵一、知识要点填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

二、精讲精练【例题1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a 使横行三个数的和与竖行三个数的和都是21。

【思路导航】先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习1:1.把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2.把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3.将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

【答案】1.7、1、5、6、2、10、3、9、4、8(答案不唯一)2.1、2、3、8、5、4、9、6、7(答案不唯一)3.2、6、4、1、5、3、7(答案不唯一)【例题2】将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

【思路导航】设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2.即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2.6,8,9)和(3.5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1.5,9,10)和(4,6,7,8)。

(精选)五年级奥数分册第10周 数 阵

(精选)五年级奥数分册第10周  数    阵

第10周数阵专题简析:填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

例题1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。

先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习一1,把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2,把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3,将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

例题2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2,即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8)。

练习二1,把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2,把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谢谢 大家!
分析:所有的数都是重叠数,中心数重叠两次,其 它数重叠一次。所以三条边及两个圆周上的所有数之和 为:(1+2+…+7)×2+中心数=56+中心数。 因为每条边及每个圆周上的三数之和都相等,所以 这个和应该是5的倍数,再由中心数在1 至7之间,所以中心数是4。每条边及每 个圆周上的三数之和等于(56+4)÷5= 12。 中心数是4,每边其余两数之和是 12-4=8,两数之和是8的有1,,使每条边上4 个○内的数的和相等。(求出两个基本 解)
答案:
解答:设顶点上的数分别为a,b,c,每条边上四个数 的和为k。 3k=(1+2+3+4+5+6+7+8+9)+(a+b+c) =45+a+b+c k=(45+a+b+c)÷3 当a=1,b=2,c=3时,k=51÷3=17(最小值) 当a=7,b=8,c=9时,k=69÷3=23(最大值) 因此,k的值是17、18、19、20、21、22、23。 (1)当k=19时,a+b+c=12,a=2,b=3,c=7。 (2)当k=21时,a+b+c=18,a=3,b=7,c=8。
例四,将1~11这11个数字填入下图的 ○中,使每条线段上的三个○内的数的 和相等。
答案:
解答:设中心数为a,中心数在求 和过程中使用了5次。 每条边上的3数之和为k。 5k=(1+2+3+4+5+6+7+8+ 9+10+11)+4a=66+4a k=(66+4a)÷5 经实验:当a=1时,k=70÷5=14; 当a=6时,k=90÷5=18, 当a=11时,k=110÷5=22。
因此,k的值是9、10、11、12。
例六,将1~8这八个数字填在下图的8个 ○内,使每条边上的和都相等。
答案:
解答:设顶点上的数分别为a,b,c,d,每条边 上三个数的和为k。 4k=(1+2+3+4+5+6+7+8)+(a+b+c +d) =36+a+b+c+d k=(36+a+b+c+d)÷4 当a=1,b=2,c=3,d=4时,k=46÷4=11.5, k为整数,最小值为12。 当a=5,b=6,c=7,d=8时,k=62÷4=15.5, k最大值为15。 因此,k的值是12、13、14、15。
例二,请你将1~7这七个数分别填在○ 内,使每条线段上的三个数的和相等。
答案:
解答: 设中心数为a,中心数在求和过 程中使用了3次。 每条边上的3数之和为k。 3k=(1+2+3+4+5+6+7)+2a =28+2a k=(28+2a)÷3 经实验:当a=1时,k=30÷3=10; 当a=4时,k=36÷3=12, 当a=7时,k=42÷3=14。
例三,请你将1~7这七个数字填入下 图的○中,使每条线段上的三个○内的 数的和相等。
答案:
分析:设中心数为a,中心数在计算和的过 程中用到了3次。 解答:每条边上的3数之和为k。 3k=(1+2+3+4+5+6+7)+2a =28+2a k=(28+2a)÷3 当a=1时,k=30÷3=10; 当a=2时,k=32÷3,有余数,舍去; …… ……
趣味数阵
——小学奥数
数阵图
数阵图就是将一些数,按照 一定要求排列而成的某种图形, 有时简称数阵。 类型一般分为三种:辐射型 数阵图;封闭型数阵图;复合型 数阵图。
想一想:把1至9这9个数字分别填入下面 两个算式的各个方框中,使等式成立,这 里有3个数字已经填好。
□×□=5□
12+□-□=□
分析:根据第一个等式,只有两种可能: 7×8=56,6×9=54;如果为7×8=56,则余下的 数字有:3、4、9,显然不行; 而当6×9=54时, 余下的数字有:3、7、8,那么,12+3-7=8或 12+3-8=7都能满足。
封闭型数阵图
例五,将1~6这六个数分别填在下 图的6个○中,使每条边上的三个○内 的数的和相等。
思考:在这6个○内的数字中,哪 几个数最关键呢? 分析:三个顶点上的数在求和过 程中要使用两次,只要确定了这 三个数,并且知道每条边上三个 数的和,另外三个数就很容易确 定了。
解答:设顶点上的数分别为a,b,c,每条边上 三个数的和为k。 3k=(1+2+3+4+5+6)+(a+b+c) =21+a+b+c k=(21+a+b+c)÷3 当a=1,b=2,c=3时,k=27÷3=9(最小值) 当a=4,b=5,c=6时,k=36÷3=12(最大值)
答案:
6×9=54 12+3-7=8
辐射型数阵图
例一,把1~8这8个数填入下面的□中, 使每一横行、每一竖列相邻的三个数的 和相等。
答案:
解答:设中心数为a,中心数在求和过程中 使用了2次。 每条边上的3数之和为k。 3k=(1+2+3+4+5+6+7+8)+a =36+a k=(36+a)÷3 经实验: 当a=3时,k=39÷3=13; 当a=6时,k=42÷3=14。
3,5。于是得到下图的填法。
答案:
相关文档
最新文档