面心立方晶格的布里渊区和等能面1

合集下载

固体物理题目总汇

固体物理题目总汇

填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。

2、晶体结构=点阵+ 基元。

3、晶体的比热包括晶格比热和电子比热。

4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。

5、密堆结构有两种:六方密堆积和立方密堆积。

6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。

7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。

1、人们利用X射线衍射测定晶体结构。

3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。

4、声子是一种准粒子,不具有通常意义下的动量,常把ħq称为声子的准动量。

5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。

6、V心是F心的反型体。

1、晶体的基本结构单元称为基元。

2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于32 3/a3。

3、布拉维空间点阵共有14 种,归为7种晶系。

5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。

6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。

8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。

9、对复式晶格,格波可分为声学波和光学波。

1、体心立方结构的第一布里渊区是菱形十二面 体。

2、已知某晶体的基矢取为1a 、2a 、3a ,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为()6233、倒格矢体现了晶面的面间距 和 法向。

8、晶体中的载流子是 电子 和 空穴 。

2、正格子原胞体积Ω与倒格子原胞体积*Ω之积为 ()32π 3、金刚石晶体的基元含有 2 个原子,其晶胞含有 8 个碳原子。

6、准晶是介于周期性晶体 和非晶玻璃之间的一种新的固体物质形态。

8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。

1、面心立方结构的第一布里渊区是 十四面 体。

固体物理题库-zzk-第一至第五章

固体物理题库-zzk-第一至第五章

第一章 晶体结构和X 射线1、试证体心立方和面心立方各自互为正、倒格子2、如果基矢a,b,c 构成正交关系,证明晶面族(h k l )的面间距满足:222)()()(1c l b k a hd hkl ++=3、证明以下结构晶面族的面间距:(1) 立方晶系:d hkl =a [h 2+k 2+l 2]-1/2(2) 六角晶系:2/12222])()(34[-+++=c l ahk k h d hkl 4、等体积的硬球堆积成体心立方结构和面心立方结构,试求他们在这两种结构中的致密度分别为0.68和0.74。

5、试证密积六方结构中,c/a=1.633。

6、在立方晶胞中,画出(1 0 1),(0 2 1),(221)和(012)晶面。

7、如下图,B 和C 是面心立方晶胞上的两面心。

(1) 求ABC 面的密勒指数;(2) 求AC 晶列的指数,并求相应原胞坐标系中的指数。

8、六角晶胞的基矢为.,223,223k c c j a i a b j a i a a =+-=+=求其倒格子基矢。

9、求晶格常数为a 的面心立方和体心立方晶体晶面族(h 1 h 2 h 3)之间的面间距(指导p30,10)。

10、讨论六角密积结构,X 光衍射的消光条件。

11、求出体心立方、面心立方的几何因子和消光条件。

12、原胞和晶胞的区别?13、倒空间的物理意义?14、布拉格衍射方程,原子和几何结构因子在确定晶格结构上分别起何作用?15、什么是布拉格简单格子,什么是复式格子?第二章 自由电子气1、设有一个长度为L 的一维金属线,它有N 个导电电子,若把这些导电电子看成自由电子气,试求:(1) 电子的状态密度(2) 绝对零度下的电子费米能级,以及费米能级随温度的变化关系。

(3) 电子的平均能量。

(4) 电子的比热。

2、二维电子气的能态密度2)( πm E N =,证明费米能 ]1ln[/2-=T mk n B F b eT k E π 3、求出一维金属中自由电子的能态密度、费米能级、电子的平均动能以及一个电子对于比热的贡献。

《固体物理学》房晓勇主编教材-习题参考解答07第七章 能带结构分析

《固体物理学》房晓勇主编教材-习题参考解答07第七章 能带结构分析

可以看出,由于 k0 得存在,电流的方向和电场方向并不一致。 (2)当 t → ∞ 时有
⎛ =k G JG ⎞ JJ G e=Δ ⎜ − 0 i + k ′ ⎟ G eEz t e=Δ k0 Δ JG ⎝ ⎠ j ( t ) = lim = =e k′ ∗ 2 t →∞ 2 2 2 2 2 2 2 m = Δ ⎛ ⎞ =k e Ez t =Δ Δ ∗ m∗ = 2 ⎜ 2 20 2 + ⎟ ∗ + 2 2 2 m m∗ 2 = ⎠ m e Ez t ⎝ e Ez t G (3)设所求的电流为 j ,在空穴处加一个电子,则能带为满带,满带的电流为零,因而有
eEz t ,因而 = G eE t JG ⎞ ⎛ z − k k′⎟ ⎜ 0i + = ⎝ ⎠
从初始条件可解出 k x ( t ) = k0 , k y ( t ) = 0, k z ( t ) = −
G j=
e=Δ ⎛ e2 Ez2t t m∗ = 2 ⎜ k02 + =2 ⎝ ⎞ Δ 2 ⎟ ∗ +Δ ⎠m
x=
nZn ,依 7.3 题,有 nCu
2nZn + nCu 3π = = 1.36 4 nα
1
第七章 能带结构分析 即
( 2 x + 1) nCu

=
3π = 1.36 4
而 nα = nZn + nCu = (1 + x ) nCu 因此得到
2x +1 3π = x +1 4

x=
3π − 4 = 0.563 8 − 3π
⎛ 2 e2 B 2 cos 2 θ e2 B 2 sin 2 θ ⎞ eB sin θ cos ϕ iω = iω ⎜ −ω + + ⎟=0 ml∗ mt∗2 mt∗2 ml∗2 ⎠ ⎝ eB sin θ cos ϕ iω − mt∗

固体物理题目总汇

固体物理题目总汇

固体物理题目总汇填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。

2、晶体结构=点阵+基元3、晶体的比热包括晶格比热和电子比热。

4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。

5、密堆结构有两种:六方密堆积和立方密堆积。

6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。

7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。

1、人们利用某射线衍射测定晶体结构。

3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。

4、声子是一种准粒子,不具有通常意义下的动量,常把q称为声子的准动量。

5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。

6、V心是F心的反型体。

1、晶体的基本结构单元称为基元2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于323/a33、布拉维空间点阵共有14种,归为7种晶系。

5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。

6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。

8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。

9、对复式晶格,格波可分为声学波和光学波。

1、体心立方结构的第一布里渊区是菱形十二面体。

2、已知某晶体的基矢取为a1、a2、a3,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为2363、倒格矢体现了晶面的面间距和法向。

8、晶体中的载流子是电子和空穴2、正格子原胞体积与倒格子原胞体积之积为233、金刚石晶体的基元含有2个原子,其晶胞含有8个碳原子。

6、准晶是介于周期性晶体和非晶玻璃之间的一种新的固体物质形态。

8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。

1、面心立方结构的第一布里渊区是十四面体。

2、代表基元中的几何点称为格点。

布里渊区

布里渊区
固体物理 固体物理
布里渊区
主讲人: 主讲人:许本超 答疑人: 答疑人:李海龙 封福明
固体物理 固体物理
内容
• • • • • • • • • 1.倒易空间 2. 布里渊区基本概念 3. 典型格子的第一布里渊区 4.布里渊区的几何性质 5. 衍射条件在布里渊区诠释 6.布里渊区中的K点 7.布里渊区和能带的关系 8.布里渊区和费米面 9.MS计算能带实例图
14
固体物理 固体物理
7.2布里渊区和能带的关系
能带论的基本出发点: 能带论的基本出发点 固体中的电子可以在整个固体中运动 电子在运动过程中要受晶格原子势场的作用 由于周期场的微扰, 由于周期场的微扰,
E
E6
E(k)函数在布里渊区 函数在布里渊区
允许带
E5
边界k=± 边界 ±nπ/a处出现 处出现
3.2体心立方晶格的F.B.Z 体心立方晶格的F.B.Z 体心立方晶格的 体心立方晶格的倒格子为面心立方晶格
可以看出, 可以看出,面心立方倒 格子(即体心立方晶格) 格子(即体心立方晶格) 的F.B.Z为正菱形十二 为正菱形十二 面体(非正十二面体) 面体(非正十二面体)
8
固体物理 固体物理
3.3面心立方晶格的F.B.Z 面心立方晶格的 面心立方晶格的F.B.Z 面心立方晶格的倒格子为体心立方晶格
如右图所示, 如右图所示,黑框为体心立方 倒格子,取其体心(黄点) 倒格子,取其体心(黄点)作 为原点,红点(8个 为原点,红点(8个)为此原 点最相邻的倒格点,蓝点(6 点最相邻的倒格点,蓝点( 个)为此原点次相邻倒格点 可以看出, 可以看出,体心立方倒 格子(即面心立方晶格) 格子(即面心立方晶格) 的F.B.Z为截角的八面体 为截角的八面体 十四面体) (十四面体)

30 布里渊区的知识

30 布里渊区的知识
������
*简谐近似是晶格动力学处理许多物理问题的出发点!
* 对热膨胀和热传导等问题必须考虑高阶项 --- 特别是3次和4次项的作用 → 这称为非谐项或非谐作用 – V非谐 * 具体处理问题时,把非谐项看成是对起主要作用 的简谐项的微扰!
简正振动模式:在简谐近似下, 由N个原子构成的晶体的晶格振 动, 可变为3N个独立的谐振子的振动. 每个谐振子的振动模式称 为简正振动模式 简正振动模式对应着所有的原子都以该模式的频率做振动, 它是 晶格振动模式中最简单最基本的振动方式. 原子的振动 —格波振动通常是这3N个简正振动模式的线形迭加.
2


a
i
倒格矢的垂直平分面 构成第一布里渊区
a
O
一维晶格点阵
b
-π/a
O
倒格子点阵
π/a
二维晶格点阵的布里渊区 取正格子基矢为 a1 ai 和a2 a j 可求出倒格子基矢为
2 2 b1 i 和b2 j a a
作原点0至其它倒格点连线的中垂线,它们将二维倒 格子平面分割成许多区域
第三章 晶格动力学和 晶体的热学性质
固体的许多性质都可以基于静态模型来理解(即晶体点阵模型), 即认为构成固体的原子在空间做严格的周期性排列,在该框架内, 我们讨论了X 光衍射发生的条件,求出了晶体的结合能,以后还将 在此框架内,建立能带论,计算金属大量的平衡性质。然而它只 是实际原(离)子构形的一种近似,因为原子或离子是不可能严 格的固定在其平衡位置上的,而是在固体温度所控制的能量范围 内在平衡位置附近做微振动。只有深入地了解了晶格振动的规律, 更多的晶体性质才能得到理解。如:固体热容,热膨胀,热传导, 融化,声的传播,电导率,压电现象,某些光学和介电性质,位 移性相变,超导现象,晶体和辐射波的相互作用等等。

能带理论(准自由电子近似)-2

能带理论(准自由电子近似)-2

Vn E E
0 k 0 k'

0 k'
2 2 k 0 Ek 2m
当 Ek0 Ek0' , i.e. k k 时( k n a ),修正项发散。 由简并微扰得到: k n a K n 2 存在能隙,为2|Vn|




3 1/ 3 k (3 n) 提示:这里的kF采用自由电子气的结果,即 F
3.4.1 小结
1. 周期性势场中单电子具有Bloch波函数形式
ik r k ( r ) e uk ( r )
uk (r Rn ) uk (r )
晶体中准自由电子近似
无能带重叠(有禁带)

随k增
长较慢

带1 布里渊 区边界
B A
A
b a c b a
0
c
带2

ab c
k 0
a
c a
有能带重叠(无禁带)


c a b a
0 ab c
k
b
c
A
B
0
a a c

(4)费米面

自由电子气——费 米面为球面

B

准自由电子近似: Li、Na、K(bcc价带 半满):球面 Cu、Ag、Au(fcc): 沿[111]方向的费米 面离布里渊边界较 近,发生强烈变形。
A
0
a
c a
作业:
1. 证明碱金属(bcc的单价晶体)中,费米波矢 2 1/ 3 6 kF k N 0.8873k N 2 其中N为正十二面体FBZ的面心。 2. 证明贵金属(fcc的单价晶体)中,费米波矢 2 1/ 3 12 kF k L 0.9025k L 3 其中L为截角八面体FBZ在[111]方向的面心。

固体物理选择题

固体物理选择题

选择题1。

()布拉伐格子为体心立方的晶体是 A 。

钠 B 。

金 C. 氯化钠 D 。

金刚石2。

()布拉伐格子为面心立方的晶体是 A. 镁 B 。

铜 C. 石墨 D. 氯化铯3.()布拉伐格子为简立方的晶体是 A 。

镁 B 。

铜 C. 石墨 D. 氯化铯4.()银晶体的布拉伐格子是 A 。

面心立方 B 。

体心立方 C. 底心立方 D. 简立方5。

()金属钾晶体的布拉伐格子是 A 。

面心立方 B. 体心立方 C. 底心立方 D 。

简立方6。

()金刚石的布拉伐格子是 A 。

面心立方 B. 体心立方 C. 底心立方 D 。

简立方7.()硅晶体的布拉伐格子是 A 。

面心立方 B 。

体心立方 C 。

底心立方 D. 简立方8。

()氯化钠晶体的布拉伐格子是 A 。

面心立方 B 。

体心立方 C. 底心立方 D. 简立方9.()氯化铯晶体的布拉伐格子是 A 。

面心立方 B. 体心立方 C. 底心立方 D 。

简立方10。

()ZnS 晶体的布拉伐格子是 A 。

面心立方 B. 体心立方 C 。

底心立方 D. 简立方11.()下列晶体的晶格为简单晶格的是 A. 硅 B 。

冰 C 。

银 D 。

金刚石12。

()下列晶体的晶格为复式晶格的是 A. 钠 B. 金 C. 铜 D 。

磷化镓13.()晶格常数为a 的简立方晶格,原胞体积Ω等于 A 。

2a 2 B 。

a 3 C 。

a 3/2 D. a 3/414。

()晶格常数为a 的体心立方晶格,原胞体积Ω等于 A. 2a 2 B.a 3 C. a 3/2 D 。

a 3/415。

()晶格常数为a 的面心立方晶格,原胞体积Ω等于 A 。

2a 2 B.a 3 C. a 3/2 D 。

a 3/416.()晶格常数为a 的CsCl 晶体的原胞体积等于 A. 2a 2 B 。

a 3 C. a 3/2 D 。

a 3/417.()晶格常数为a 的NaCl 晶体的原胞体积等于 A 。

固体物理2014题库

固体物理2014题库

固体物理2014题库⼀、填空1. 固体按其微结构的有序程度可分为_______、_______和准晶体。

2. 组成粒⼦在空间中周期性排列,具有长程有序的固体称为_______;组成粒⼦在空间中的分布完全⽆序或仅仅具有短程有序的固体称为_________。

3. 在晶体结构中,所有原⼦完全等价的晶格称为______________;⽽晶体结构中,存在两种或两种以上不等价的原⼦或离⼦的晶格称为____________。

4晶体结构的最⼤配位数是____;具有最⼤配位数的晶体结构包括______________晶体结构和______________晶体结构。

5. 简单⽴⽅结构原⼦的配位数为______;体⼼⽴⽅结构原⼦的配位数为______。

6.NaCl 结构中存在_____个不等价原⼦,因此它是_______晶格,它是由氯离⼦和钠离⼦各⾃构成的______________格⼦套构⽽成的。

7. ⾦刚⽯结构中存在______个不等价原⼦,因此它是_________晶格,由两个_____________结构的布拉维格⼦沿空间对⾓线位移1/4的长度套构⽽成,晶胞中有_____个碳原⼦。

8. 以结晶学元胞(单胞)的基⽮为坐标轴来表⽰的晶⾯指数称为________指数。

9. 满⾜2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠?当时(,当时关系的123,,b b b 为基⽮,由11223h K h b h b h b =++构成的点阵,称为_______。

10. 晶格常数为a 的⼀维单原⼦链,倒格⼦基⽮的⼤⼩为________。

11. 晶格常数为a 的⾯⼼⽴⽅点阵初基元胞的体积为_______;其第⼀布⾥渊区的体积为_______。

12. 晶格常数为a 的体⼼⽴⽅点阵初基元胞的体积为_______;其第⼀布⾥渊区的体积为_______。

13. 晶格常数为a 的简⽴⽅晶格的(010)⾯间距为________14. 体⼼⽴⽅的倒点阵是________________点阵,⾯⼼⽴⽅的倒点阵是________________点阵,简单⽴⽅的倒点阵是________________。

固体物理学复习提纲

固体物理学复习提纲

固体物理学复习提纲 2018一、填空题1. 固体按其微结构的有序程度可分为_______、_______和准晶体。

2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。

3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。

4.晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。

5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。

6.NaCl结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。

7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉伐格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。

8. 以晶体学单胞(晶胞)的基矢为坐标轴来表示的晶面指数称为________指数。

9. 满足2,2,1,2,3)i j iji ja b i ji jππδ=⎧⋅===⎨≠⎩当时(,当时关系的123,,b b b为基矢,由112233hK hb h b h b=++构成的点阵,称为_______。

10. 晶格常数为a的一维单原子链,其倒格子基矢的大小为________。

11. 晶格常数为a的面心立方晶格,原胞的体积为_______;其第一布里渊区的体积为_______。

12. 晶格常数为a的体心立方晶格,原胞的体积为_______;其第一布里渊区的体积为_______。

13. 晶格常数为a的简立方晶格的(010)面间距为________14. 体心立方的倒格子是________________,面心立方的倒格子是________________,简单立方的倒格子是________________。

布里渊区与能带,光学晶体局域态

布里渊区与能带,光学晶体局域态

1,布里渊区与能带2,光子晶体局域态(2008-03-26 12:51:28)转载▼分类:我的日志标签:股票在波矢空间中取某一倒易阵点为原点(通常为高对称点),作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;在第一布里渊区之外,由于一组平面所包围的波矢区叫第二布里渊区;依次类推可得第三、四、…等布里渊区。

各布里渊区体积相等,简单立方、体心立方和面心立方点阵的简约区分别为立方体,都等于倒易点阵的元胞体积。

周期结构中的一切波在布里渊区界面上产生布喇格反射,在文献中不加定语的布里渊区指的往往就是它。

对于电子德布罗意波,这一反射可能使电子能量在布里渊区界面上(即倒易点阵矢量的中垂面)产生不连续变化。

根据这一特点,1930年L.-N.布里渊首先提出用倒易点阵矢量的中垂面来划分波矢空间的区域,因此只需要用第一布里渊区中的波矢来描述能带电子、点阵振动和自旋波……的状态,从此被称为布里渊区。

第一布里渊区就是倒易点阵的维格纳-赛茨元胞,如果对每一倒易点阵作此元胞,它们会毫无缝隙的填满整个波矢空间。

第一布里渊区就是倒易点阵的维格纳-赛茨元胞,由于完整晶体中运动的电子、声子、磁振子、……等元激发(见固体中的元激发)的能量和状态都是倒易点阵的周期函数,从此被称为布里渊区。

因此只需要用第一布里渊区中的波矢来描述能带电子、点阵振动和自旋波……的状态。

布里渊区的形状取决于晶体所属布喇菲点阵的类型。

都等于倒易点阵的元胞体积。

简单立方、体心立方和面心立方点阵的简约区分别为立方体,菱十二面体和截角八面体(十四面体)。

由于一组平面所包围的波矢区叫第二布里渊区;依次类推可得第三、四、…等布里渊区。

它们都是对称的多面体,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;在第一布里渊区之外,并具有相应点阵的点群对称性,这一特征使简约区中高对称点的能量求解得以简化(见晶体的对称性)。

固体物理答案第五章1

固体物理答案第五章1
l = ∞
∑ f ( x la )

为某一确定的函数) ( f 为某一确定的函数)
试求电子在这些状态的波矢。 试求电子在这些状态的波矢。
r r r r r ir Rn 解: 由式 ψk r + Rn = e ψk (r )
(
)
可知, 可知,在一维周期势场中运动的电子波函数满足
ψ k ( x + a ) = e ikna ψ k ( x )
v* a =
1 v i o 2A v* 1 v b = j o 4A
v* v* 以 a ,b
为基矢构成的倒格子
B3
ky
B2
A2
b
B1
A1
如图6-11所示 图中“。” 所示,图中 如图 所示 图中“
A3
o
代表倒格点。由图可见, 代表倒格点。由图可见, 矩形晶格的倒格子也是 矩形格子。 矩形格子。 第一区
(s = 0,1,2...
n = ±1,±2...)
5.2 电子在周期场中得势能
1 2 2 2 mω b ( x na ) V (x) = 2 0
[
]
当na b ≤ x ≤ na + b
当(n - 1)a + b ≤ x ≤ na b
是常数。 试画出此势能曲线,并求此势能的平均值。 且 a = 4b, ω 是常数。 试画出此势能曲线,并求此势能的平均值。 V(x) 解:
r k ya kza k xa at E k = E s A 8J cos cos cos 2 2 2
并求能带宽度。 并求能带宽度。 用紧束缚方法处理晶格的s态电子,当只计及最近邻格点 用紧束缚方法处理晶格的 态电子, 解: 态电子 的相互作用时,其能带的表示式为 的相互作用时,

固体物理习题及解答概要

固体物理习题及解答概要

固体物理习题及解答概要⼀、填空题1. 晶格常数为a 的⽴⽅晶系 (hkl)晶⾯族的晶⾯间距为a该(hkl)晶⾯族的倒格⼦⽮量hkl G 为 k al j a k i a h πππ222++ 。

2. 晶体结构可看成是将基元按相同的⽅式放置在具有三维平移周期性的晶格的每个格点构成。

3. 晶体结构按晶胞形状对称性可划分为 7 ⼤晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。

4. 体⼼⽴⽅(bcc )晶格的结构因⼦为 []{})(ex p 1l k h i f S hkl ++-+=π,其衍射消光条件是奇数=++l k h 。

5. 与正格⼦晶列[hkl]垂直的倒格⼦晶⾯的晶⾯指数为 (hkl) ,与正格⼦晶⾯(hkl )垂直的倒格⼦晶列的晶列指数为 [hkl] 。

6. 由N 个晶胞常数为a 的晶胞所构成的⼀维晶格,其第⼀布⾥渊区边界宽度为a /2π,电⼦波⽮的允许值为 Na /2π的整数倍。

7. 对于体积为V,并具有N 个电⼦的⾦属, 其波⽮空间中每⼀个波⽮所占的体积为 ()V /23π,费⽶波⽮为 3/123?=V N k F π。

8. 按经典统计理论,N 个⾃由电⼦系统的⽐热应为 B Nk 23,⽽根据量⼦统计得到的⾦属三维电⼦⽓的⽐热为 F B T T Nk /22,⽐经典值⼩了约两个数量级。

9.在晶体的周期性势场中,电⼦能带在布⾥渊区边界将出现带隙,这是因为电⼦⾏波在该处受到布拉格反射变成驻波⽽导致的结果。

10. 对晶格常数为a 的简单⽴⽅晶体,与正格⽮R =a i +2a j +2a k 正交的倒格⼦晶⾯族的⾯指数为 (122) , 其⾯间距为 .11. 铁磁相变属于典型的⼆级相变,在居⾥温度附近,⾃由能连续变化,但其⼀阶导数(⽐热)不连续。

13.等径圆球的最密堆积⽅式有六⽅密堆(hcp )和⾯⼼⽴⽅密堆(fcc )两种⽅式,两者的空间占据率皆为74%。

14. ⾯⼼⽴⽅(fcc )晶格的倒格⼦为体⼼⽴⽅(bcc )晶格;⾯⼼⽴⽅(fcc )晶格的第⼀布⾥渊区为截⾓⼋⾯体。

晶体学基础3

晶体学基础3

晶体学基础31.5.2倒格子的性质倒格子具有以下基本性质:(1)以倒格子基矢b 1,b 2,b 3为棱边构成的平行六面体称为倒格子原胞,其体积为v *。

()31232*()cv v π=⋅⨯=b b b …………………(1-5-3)(2)倒格矢112233h h h h =++G b b b 和正格子空间中面指数为(h 1h 2h 3)的晶面族正交,即G h 沿晶面族的法线方向。

我们知道,晶面族中最靠近原点的晶面ABC 在123,,a a a 上的截距分别为312123,,a a a h h h ,如图1-18所示,易写出矢量CA 和CB :31133223h h h h =-=-=-=-a a CA OA OC a a CB OB OC ………………………………………………………(1-5-4)矢量CA 和CB 都在ABC 面上,因此,只要证明00h h ⋅=⎧⎨⋅=⎩G CA G CB ,则就能说明112233h h h h =++G b b b 与面指数为(h 1h 2h 3)的晶面族正交。

实际上,利用关系式(1-5-2),有31112233133211223323()()0,()()0.h h h h h h h h h h h h ⋅=++⋅-=⋅=++⋅-=a a G CA b b b a a G CB b b b …………………………………………(1-5-5)(3)晶面族(h 1h 2h 3)的面间距d h 与倒格矢G h 的模成反比,关系为2h hd π=G 。

图1-18中ABC 面就是晶面族(h 1h 2h 3)中距原点最近的晶面,所以这族晶面的面间距d h 就等于原点到面ABC 的距离,而之族晶面的法线方向即为G h 的方向,其面间距为1112233111112233()2h h h hh h h d h h h h h π⋅++=⋅==++G a b b b a G b b b G 。

固体物理总结能带理论、固体物理知识点总结

固体物理总结能带理论、固体物理知识点总结

一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。

原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。

每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。

晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。

WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。

4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。

六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。

固体物理习题及解答

固体物理习题及解答

一、填空题1. 晶格常数为a 的立方晶系 (hkl>晶面族的晶面间距为;222/l k h a ++该(hkl>晶面族的倒格子矢量为 。

hkl G k al j a k i a hπππ222++2. 晶体结构可看成是将 基元 按相同的方式放置在具有三维平移周期性的 晶格 的每个格点构成。

3. 晶体结构按晶胞形状对称性可划分为 7 大晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。

4. 体心立方<bcc )晶格的结构因子为,[]{})(exp 1l k h i f S hkl ++-+=π 其衍射消光条件是。

奇数=++l k h 5. 与正格子晶列[hkl]垂直的倒格子晶面的晶面指数为 (hkl> , 与正格子晶面<hkl )垂直的倒格子晶列的晶列指数为 [hkl] 。

6. 由N 个晶胞常数为a 的晶胞所构成的一维晶格,其第一布里渊区边界宽度为,电子波矢的允许值为 的整数倍。

a /2πNa /2π7. 对于体积为V,并具有N 个电子的金属, 其波矢空间中每一个波矢所占的体积为,费M 波矢为()V/23π 。

3/123⎪⎪⎭⎫⎝⎛=V N k F π8. 按经典统计理论,N 个自由电子系统的比热应为,而根据量子统计得到的金属三维电子气的比热为 B Nk 23,比经典值小了约两个数量级。

F B T T Nk /22π9.在晶体的周期性势场中,电子能带在 布里渊区边界 将出现带隙,这是因为电子行波在该处受到 布拉格反射 变成驻波而导致的结果。

10. 对晶格常数为a 的简单立方晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为 (122> , 其面间距为.11. 铁磁相变属于典型的 二级 相变,在居里温度附近,自由能连续变化,但其 一阶导数<比热) 不连续。

12. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进一步划分为 230 个空间群。

固体物理倒格矢

固体物理倒格矢

2 2 2
a2 a3 V a3 a1 V a1 a2
V
正(2)点两阵个:点阵正格格矢矢之Rl间的l1a关1 系l2:a2
l3a3
l1、l2、l3 Z
倒易点阵:倒格矢 Gh h1b1 h2b2 h3b3 h1、h2、h3 Z
则有:
Rl Gh=2 Z
结论: 若两矢量点积为2的整数倍, 且其中一个矢量
固体物理倒格矢
1.9 1 倒格子(倒易点阵)*的定义:
1 正格矢与倒矢
S
原子可向空间任何方向散射X光线,只有一些固定 方向可形成衍射。
S0
P
点P: Rl=l1a1+l2a2+l3a3,Rl是布喇菲点阵中由原胞基矢a1,a2,a3构成的矢量,
S0和S是入射线和衍射线的单位矢量,经过O点和P点衍射后光程差为:
V
4
2
a
3
V倒易原胞
返回
面心立方晶格的第一布里渊区
—— 第一布里渊区为十四面体
—— 布里渊区中某些对称点和若干对称轴上的点能 量较为容易计算,这些点的标记符号
布里渊区原点 六方面的中心 四方面的中心
[000]
L ( , , )
aaa
X ( 2 , 0, 0 )
a
X 计为 轴 ——
二维正方晶格的布里渊区
二维长方晶格的布里渊区
二维六方晶格的十个布里渊区
(3) 三维晶格
a. 简立方晶格
倒易空间示意图
aaa321
ai aj ak
b1
b2
b3
2
a
2
a
2
a
i j k
b1
倒易点阵仍为简立方晶格
b3 b2 b1

能带理论5电子能带理论

能带理论5电子能带理论
为张量,一般情况下
3.一维情况
为标量,但标量并不等于是常量,m*也与能带结构有关。
4.仍以一维情况为例。设m为电子的惯性质量,FL为电子所受到的晶格场力;F外为电子所受到的晶体以外产生的场所施加的力。dv/dt=1/m·F=1/m(F外+FL)与dv/dt=1/m*F外比较,显然FL的影响包含m*中去了。比较可得
考虑固体中单电子的薛定谔方程:
式中哈密顿量的第一项是电子的动能,第二项是晶体势场;
是第n个能带且具有动量k的能级;
晶体势场可以表述为原子势场
这里
是晶格矢量,
是第l个原胞中第a 个原子的位矢。
的线性叠加,即
描述固体中电子的波函数。
波函数
可用LCAO的基矢
来展开
第l个原胞中第a个原子的第j个轨道,N是单位体积的晶格数目。
体心立方晶格的第一布里渊区
体心立方晶格的倒格子是面心立方格子。本图中用实心圆点标出了倒格点。在倒空间中画出它的第一布里渊区。如果正格子体心立方体的边长是a,则倒格子为边长等于4π/a的面心立方。
主要的对称点: Γ: ;H: ; P: ;N:
§6 紧束缚方法
三.导体 半导体和绝缘体
在非导体中,电子恰好填满最低的一系列能带(通常称为价带),其余的能量较高的能带(通常称为导带)中没有电子。由于满带不产生电流,尽管晶体中存在很多电子,无论有无外场力存在,晶体中都没有电流。
在导体中,部分填满能带(通常也称为导带)中的电子在外场中将产生电流。
本征半导体和绝缘体的能带填充情况是相同的,只有满带和空带,它们之间的差别只是价带和导带之间的能带隙(band gap)宽度不同,本征半导体的能隙较小,绝缘体的能隙较大。本征半导体由于热激发,少数价带顶的电子可能激发到导带底,在价带顶造成空穴,同时在导带底出现传导电子,产生所谓本征导电。

固体物理补充习题05

固体物理补充习题05

固体物理补充习题(十四系用)1. 将半径为R 的刚性球分别排成简单立方(sc )、体心立方(bcc )和面心立方(fcc )三种结构,在这三种结构的间隙中分别填入半径为r p 、r b 和r f 的小刚球,试分别求出r p /R 、r b /R 和r f /R 的最大值。

提示:每一种晶体结构中都有多种不同的间隙位置,可填充小刚球的大小也各不相同。

2. 格常数为a 的简单二维密排晶格的基矢可以表为a 1 = a ia 2 = -12a i + 32a j (1)求出其倒格子基矢b 1 和b 2 , 证明倒格子仍为二维密排格子;(2)求出其倒格子原胞的面积Ωb 。

3. 由N 个原子(或离子)所组成的晶体的体积V 可以写为V =Nv = N βr 3,其中v 为平均一个原子(或离子)所占的体积,r 为最近邻原子(或离子)间的距离,β是依赖于晶体结构的常数,试求下列各种晶体结构的β值:(1) sc 结构 (2) fcc 结构 (3) bcc 结构(4) 金刚石结构 (5) NaCl 结构。

4. 设两原子间的相互作用能可表示为()m nu r r r αβ=-+ 其中,第一项为吸引能;第二项为排斥能; 、 、n 和m 均为大于零的常数。

证明,要使这个两原子系统处于稳定平衡状态,必须满足n > m 。

5. 设晶体的总相互作用能可表示为()m n A B U r r r=-+ 其中,A 、B 、m 和n 均为大于零的常数,r 为最近邻原子间的距离。

根据平衡条件求:(1)平衡时,晶体中最近邻原子的间距r 0和晶体的相互作用能U 0;(2)设晶体的体积可表为V =N r 3,其中N 为晶体的原子总数, 为体积因子。

若平衡时晶体的体积为V 0,证明:平衡时晶体的体积压缩模量K 为 009mn U K V = 。

6. 设有一由2N 个离子组成的离子晶体,若只计入作近邻离子间的排斥作用,设两个离子间的势能具有如下的形式:式中, 和 为参数;R 为最近邻离子间距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档