高中数学-学生-不等式基本性质及证明

合集下载

高中数学 第一章 不等式的基本性质和证明的基本方法 1_2 基本不等式课件 新人教B版选修4-5

高中数学 第一章 不等式的基本性质和证明的基本方法 1_2 基本不等式课件 新人教B版选修4-5

2 + 2 + 2+ 2
4
=
2 + 2
2
(当且仅当a=b 时等号成立).
≤ ≤
+
2

(当且仅当a=b 时等号成立).
2 + 2
2
,
2

,
题型一
题型二
题型三
题型四
反思基本不等式有着重要的应用,在使用时还应记住重要的变
2
+
形公式.如 a,b 是正数,且 b≥a 时,a≤
1 22 +1-2 +1-2
2
∴y ≤2
3
3
4
= .
27
3
2
2
当且仅当 2x =1-x ,即 x= 时,等号成立.
3
2 3
2 3
∴y≤ 9 , 即ymax = 9 .
反思利用基本不等式解题时要注意考察“三要素”:(1)函数中的
相关项必须都是正数;(2)变形后各项的和或积有一个必须是常
数;(3)当且仅当各项相等时,才能取到等号,可简化为“一正二定三
D.若 x≤0,则 2x+2-x≥2 2 ·2- = 2




解析:对于选项 A,当 ab>0 时,有 + ≥2;
对于选项 B,当 x>1,y>1 时,有 lg x+lg y≥2 lg·lg;
4

对于选项 C,当 x<0 时,有 x+ = − -故可排除选项 A,B,C,故选 D.
答案:D
∵年生产成本=年生产费用+固定费用,
∴年生产成本为 32x+3=32

高中数学-选修4-5不等式的基本性质

高中数学-选修4-5不等式的基本性质
即 加法法则:同向可相加
性质6 若a > b>0 ,且 c >d>0,那么 ac > bd . 也就是说,两边都是正数的同向不等式相乘,所得 的不等式和原不等式同向。
即 乘法法则:同向可相乘
性质7 如果 a > b>0, 那么an bn.(n N, n 1)
也就是说,当不等式的两边都是正数时,不等式两 边同时乘方所得的不等式与原不等式同向
第一讲 不等式和绝对值不等式 1、不等式的基本性质
一、实数比较大小的理论依据
ab0 a b ab0 a b ab0 a b
要比较两个实数的大小,只要考察他们的差与0 的大小就可以了.
二、不等式的基本性质
性质1: 如果 a > b ,那么 b < a ;
如果 b < a ,那么 a > b.
题型3:利用不等式的性质求取值范围
例4:已知12 a 60,15 b 36,求a b 及 a的取值范围。
b
例5:已知f (x) ax2 c,且 4 f (1) 1, 1 f (2) 5,求f (3)的取值范围。
a>b b<a
性质2:如果 a > b ,且 b > c ,那么 a > c .
a > b ,b > c
等价命题是: c<b, b<a
a>c c<a
性质3:如果 a > b,那么 a + c > b + c。
(1) 等价命题:如果 a < b,那么 a + c < b + c
(2) 移项法则:如果 a + b > c,那么 a > c-b

高中数学 第一章 不等式的基本性质和证明不等式的基本

高中数学 第一章 不等式的基本性质和证明不等式的基本

1.5.2 综合法和分析法[对应学生用书P19][读教材·填要点]1.综合法从命题的已知条件出发,利用公理、已知的定义及定理,逐步推导,从而最后导出要证明的命题,这种方法称为综合法.2.分析法从需要证明的命题出发,分析使这个命题成立的充分条件,利用已知的一些定理,逐步探索,最后达到命题所给出的条件(或者一个已证明过的定理或一个明显的事实),这种证明方法称为分析法.[小问题·大思维]1.如何理解分析法寻找的是使要证命题成立的充分条件?提示:用分析法证题时,语气总是假定的,常用“欲证A 只需证B ”表示,说明只要B 成立,就一定有A 成立,所以B 必须是A 的充分条件才行,当然B 是A 的充要条件也可.2.用综合法和分析法证明不等式有怎样的逻辑关系?提示:综合法:A ⇒B 1⇒B 2⇒…⇒B n ⇒B (逐步推演不等式成立的必要条件), 即由条件出发推导出所要证明的不等式成立.分析法:B ⇐B 1⇐B 2⇐…⇐B n ⇐A (步步寻求不等式成立的充分条件), 总之,综合法与分析法是对立统一的两种方法.[对应学生用书P19][例1] 已知a ,b ,c 均为正实数,且互不相等,又abc =1. 求证:a +b +c <1a +1b +1c.[思路点拨] 本题考查用综合法证明不等式,解答本题可从左到右证明,也可从右到左证明.由左端到右端,应注意左、右两端的差异,这种差异正是我们思考的方向.左端含有根号,脱去根号可通过a =1bc <1b +1c 2实现;也可以由右到左证明,按上述思路逆向证明即可.[精解详析] 法一:∵a ,b ,c 是不等正数,且abc =1,∴a +b +c =1bc+1ac+1ab <1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c. 法二:∵a ,b ,c 是不等正数,且abc =1, ∴1a +1b +1c=bc +ca +ab=bc +ca 2+ca +ab 2+ab +bc2> abc 2+a 2bc +ab 2c =a +b+c .(1)用综合法证明不等式时,主要利用基本不等式,函数的单调性以及不等式的性质等知识,在严密的演绎推理下推导出结论.(2)综合法证明不等式中所依赖的已知不等式主要是重要不等式,其中常用的有如下几个:①a 2≥0(a ∈R ).②(a -b )2≥0(a ,b ∈R ),其变形有:a 2+b 2≥2ab ,(a +b2)2≥ab .a 2+b 2≥12(a +b )2.③若a ,b 为正实数,a +b 2≥ab .特别b a +a b≥2.④a 2+b 2+c 2≥ab +bc+ca .1.已知a >0,b >0,求证a (b 2+c 2)+b (c 2+a 2)≥4abc . 证明:因为b 2+c 2≥2bc ,a >0, 所以a (b 2+c 2)≥2abc . 又因为c 2+a 2≥2ac ,b >0, 所以b (c 2+a 2)≥2abc .因此a (b 2+c 2)+b (c 2+a 2)≥4abc .[例2] a ,b 均为正实数,且2c >a +b .求证:c-c2-ab<a<c+c2-ab.[思路点拨] 本题考查分析法在证明不等式中的应用.解答本题需要对原不等式变形为-c2-ab<a-c<c2-ab,然后再证明.[精解详析] 要证c-c2-ab<a<c+c2-ab,只需证-c2-ab<a-c<c2-ab,即证|a-c|<c2-ab,两边平方得a2-2ac+c2<c2-ab,也即证a2+ab<2ac,即a(a+b)<2ac.∵a,b均为正实数,且a+b<2c,∴a(a+b)<2ac显然成立.∴原不等式成立.(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或很难发现条件与结论之间的关系时,可用分析法来寻找证明途径.(2)对于无理不等式的证明,常采用分析法通过平方将其有理化,但在乘方的过程中,要注意其变形的等价性.(3)分析法证题的本质是从被证的不等式出发寻求使结论成立的充分条件,证明的关键是推理的每一步都必须可逆.2.已知x>0,y>0,求证:(x2+y2)12>(x3+y3)13.证明:要证明(x2+y2)12>(x3+y3)13,只需证(x2+y2)3>(x3+y3)2,即证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,即证3x4y2+3x2y4>2x3y3.∵x>0,y>0,∴x2y2>0.即证3x2+3y2>2xy.∵3x2+3y2>x2+y2≥2xy,∴3x2+3y2>2xy成立.∴(x2+y2)12>(x3+y3)13.[例3] 已知a ,b ,c 均为正实数,且b 2=ac .求证:a 4+b 4+c 4>(a 2-b 2+c 2)2. [思路点拨] 本题考查综合法与分析法的综合应用.解答本题可先采用分析法将所要证明的不等式转化为较易证明的不等式,然后再用综合法证明.[精解详析] 欲证原不等式成立,只需证a 4+b 4+c 4>a 4+b 4+c 4-2a 2b 2+2a 2c 2-2b 2c 2, 即证a 2b 2+b 2c 2-a 2c 2>0,∵b 2=ac ,故只需证(a 2+c 2)ac -a 2c 2>0. ∵a 、c >0,故只需证a 2+c 2-ac >0, 又∵a 2+c 2>2ac ,∴a 2+c 2-ac >0显然成立. ∴原不等式成立.(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明.(2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析与综合之间互为前提,互相渗透,相互转化的辩证统一关系.3.已知a >b >c ,求证:1a -b +1b -c +1c -a>0. 证明:法一:要证明1a -b +1b -c +1c -a>0, 只需要证明1a -b +1b -c >1a -c. ∵a >b >c ,∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c, 1b -c >0,∴1a -b +1b -c >1c -a 成立. ∴1a -b +1b -c -1c -a>0成立. 法二:若令a -b =x ,b -c =y ,则a -c =x +y , ∵a >b >c ,∴x >0,y >0,证明1a -b +1b -c +1c -a>0, 只要证明:1x +1y -1x +y >0,也就是要证:y x +y +x x +y -xyxy x+y>0,即证:x 2+y 2+xyxy x +y>0,∵x >0,y >0,∴x +y >0,x 2+y 2+xy >0, ∴上式成立,即1x +1y -1x +y >0,故1a -b +1b -c +1c -a>0.[对应学生用书P20]一、选择题1.设a ,b 均为正实数,A =a +b ,B =a +b ,则A 、B 的大小关系是( ) A .A ≥B B .A ≤B C .A >BD .A <B解析:用综合法(a +b )2=a +2ab +b , 所以A 2-B 2>0. 又A >0,B >0, ∴A >B . 答案:C2.已知x >y >z ,且x +y +z =0,下列不等式中成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:由已知得3x >x +y +z =0, 3z <x +y +z =0,∴x >0,z <0. 由⎩⎪⎨⎪⎧x >0,y >z得xy >xz .答案:C3.若a >0,b >0,下列不等式中不成立的是( ) A.b a +a b≥2B .a 2+b 2≥2ab C.b 2a +a 2b≥a +bD.1a +1b ≥2+2a +b解析:由b a∈(0,+∞)且a b ∈(0,+∞),得b a +a b ≥2b a ·ab,所以A 成立,B 显然成立,不等式C 可变形为a 3+b 3≥a 2b +ab 2⇔(a 2-b 2)(a -b )≥0.答案:D4.已知a 、b 、c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( ) A .S ≥2P B .P <S <2P C .S >PD .P ≤S <2P解析:∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , ∴a 2+b 2+c 2≥ab +bc +ca , 即S ≥P .又三角形中|a -b |<c ,∴a 2+b 2-2ab <c 2. 同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2, ∴a 2+b 2+c 2<2(ab +bc +ca ).即S <2P . 答案:D 二、填空题5.已知a ,b ,c ∈R +,则1a +1b +1c与1ab+1bc +1ac的大小关系是________________.解析:因为1a +1b ≥21ab ,1b +1c≥21bc ,1a +1c≥21ab,三式相加可得1a +1b +1c≥1ab+1bc+1ac.答案:1a +1b +1c≥1ab +1bc +1ac6.若x >0,y >0,且5x +7y =20,则xy 的最大值是________________. 解析:xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135⎝ ⎛⎭⎪⎫2022=207.当且仅当5x =7y =10即x =2,y =107时取等号.答案:2077.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的正的等比中项,1R 是1a ,1b的等差中项,则P 、Q 、R 按从大到小的排列顺序为________.解析:由已知P =a +b2,Q =ab ,1R =1a +1b 2=a +b 2ab ,即R =2aba +b,显然P ≥Q ,又2ab a +b ≤2ab2ab=ab ,∴Q ≥R .∴P ≥Q ≥R . 答案:P ≥Q ≥R 8.若不等式1a -b +1b -c +λc -a>0在条件a >b >c 时恒成立,则λ的取值范围是________. 解析:不等式可化为1a -b +1b -c >λa -c. ∵a >b >c ,∴a -b >0,b -c >0,a -c >0, ∴λ<a -c a -b +a -cb -c恒成立. ∵a -c a -b +a -c b -c =a -b +b -c a -b +a -b +b -cb -c =2+b -c a -b +a -bb -c≥2+2=4. ∴λ<4. 答案:(-∞,4) 三、解答题9.a ,b ,c 为互不相等的正数,且abc =1. 求证:1a +1b +1c>a +b +c .证明:法一:由左式推证右式∵abc =1,且a ,b ,c 为互不相等的正数,∴1a +1b +1c =bc +ac +ab =bc +ac 2+ac +ab 2+ab +bc 2>bc ·ac +ac ·ab +ab ·bc (基本不等式)=c +a +b . ∴1a +1b +1c>a +b +c .法二:由右式推证左式∵a ,b ,c 为互不相等的正数,且abc =1, ∴a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2(基本不等式) =1a +1b +1c .∴1a +1b +1c>a +b +c .10.已知a >b >0,求证:a -b28a <a +b2-ab <a -b28b.证明:要证a -b28a <a +b2-ab <a -b28b,只要证a -b24a<a +b -2ab <a -b24b,即证⎝⎛⎭⎪⎫a -b 2a 2<(a -b )2<⎝ ⎛⎭⎪⎫a -b 2b 2, 即证0<a -b 2a <a -b <a -b2b, 即证a +b a <2<a +bb, 即证1+b a <2<1+a b, 即证b a<1<ab 成立. 因为a >b >0,所以a b>1,b a<1,故ba <1,ab>1成立. 所以有a -b28a <a +b2-ab <a -b28b成立.11.已知实数a 、b 、c 满足c <b <a ,a +b +c =1,a 2+b 2+c 2=1.求证:1<a +b <43.证明:∵a +b +c =1,∴欲证结论等价于 1<1-c <43,即-13<c <0.又a 2+b 2+c 2=1,则有ab =a +b2-a 2+b 22=-c2--c22=c 2-c .①由a +b =1-c .②由①②得a 、b 是方程x 2-(1-c )x +c 2-c =0的两个不等实根,从而Δ=(1-c )2-4(c 2-c )>0,解得-13<c <1.∵c <b <a ,∴(c -a )(c -b )=c 2-c (a +b )+ab =c 2-c (1-c )+c 2-c >0,解得c <0或c >23(舍).∴-13<c <0,即1<a +b <43.。

2020高中数学 第1章 不等式的基本性质和证明的基本方法 1.4 绝对值的三角不等式讲义 4-5

2020高中数学 第1章 不等式的基本性质和证明的基本方法 1.4 绝对值的三角不等式讲义 4-5

1.4 绝对值的三角不等式学习目标:1。

理解绝对值不等式的性质定理.2。

会用绝对值不等式的性质定理证明简单的含绝对值的不等式;会求简单绝对值不等式的最值.教材整理绝对值的三角不等式1.定理1若a,b为实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2设a,b,c为实数,则|a-c|≤|a-b|+|b-c|,等号成立⇔(a -b)(b-c)≥0,即b落在a,c之间.若|a+b|=|a|+|b|成立,a,b∈R,则有()A.ab〈0 B.ab〉0C.ab≥0 D.以上都不对[解析] 由定理1易知答案选C。

[答案] C绝对值不等式的理解与应用【例1】已知|a|≠|b|,m=错误!,n=错误!,则m,n之间的大小关系是________.[精彩点拨]利用绝对值三角不等式定理分别判定m,n与1的大小.[自主解答] 因为|a|-|b|≤|a-b|,所以错误!≤1,即m≤1.又因为|a+b|≤|a|+|b|,所以错误!≥1,即n≥1.所以m≤1≤n.[答案]m≤n1.本题求解的关键在于|a|-|b|≤|a-b|与|a+b|≤|a|+|b|的理解和应用.2.在定理1中,以-b代b,得|a-b|≤|a|+|b|;以a-b 代替实数a,可得到|a|-|b|≤|a-b|.1.若将“本例的条件”改为“n=错误!”,则n与1之间的大小关系是________.[解析]∵|a+b|≤|a|+|b|,∴错误!≤1,∴n≤1.[答案]n≤1运用绝对值不等式求最值与范围【例2】对任意x∈R,求使不等式|x+1|+|x+2|≥m恒成立的m的取值范围.[精彩点拨] 令t=|x+1|+|x+2|,只需m≤t min.[自主解答] 法一:对x∈R,|x+1|+|x+2|≥|(x+1)-(x+2)|=1,当且仅当(x+1)(x+2)≤0时,即-2≤x≤-1时取等号.∴t=|x+1|+|x+2|的最小值为1,故m≤1。

2019_2020学年高中数学第1章不等式的基本性质和证明的基本方法1.5.3反证法和放缩法课件新人教B版选修4_5

2019_2020学年高中数学第1章不等式的基本性质和证明的基本方法1.5.3反证法和放缩法课件新人教B版选修4_5
第一章 不等式的基本性质和证明的基 本方法
1.5 不等式证明的基本方法 1.5.3 反证法和放缩法
学习目标:1.理解反证法在证明不等式中的应用,掌握用反证法 证明不等式的方法.2.了解放缩法证明不等式的原理,并会用其证明不 等式.
自主预习 探新知
教材整理 1 反证法 首先假设要证明的命题是 不正确的 ,然后利用公理 ,已有的 _定__义__、__定__理__,命题的条件 逐步分析,得到和_命__题__的__条__件__(_或__已__证__明__过_ _的__定__理__,__或__明__显__成__立__的__事__实__)_矛盾的结论,以此说明 假设的结论 不 成立,从而原来结论是 正确 ,这种方法称作反证法.
[精彩点拨] 针对不等式的特征,关键是对左端根号内变形,配 方后适当放缩去掉根号,达到证明的目的.
[自主解答]
x2+xy+y2=
x+2y2+43y2

x+2y2=x+2y≥x+2y,
同理可得: y2+yz+z2≥y+2z,
z2+zx+x2≥z+2x.
∴1+ab>a2+b2≥2ab, 从而 ab<1. ∴a2+b2<1+ab<2. ∴(a+b)2=a2+b2+2ab<2+2ab<4. 而由假设 a+b>2,得(a+b)2>4,出现矛盾,故假设不成立,原 结论成立,即 a+b≤2.
反证法与放缩法的特点
[探究问题] 1.反证法的一般步骤是什么? [提示] 证明的步骤是:(1)作出否定结论的假设;(2)从否定结论 进行推理,导出矛盾;(3)否定假设,肯定结论.
∴(1-a)a(1-b)b(1-c)c≤614,

因此①式与②式矛盾.
故假设不成立,即原命题成立.

高中数学 第一章 不等式的基本性质和证明的基本方法 1.5.1 不等式证明的基本方法 新人教B版选修

高中数学 第一章 不等式的基本性质和证明的基本方法 1.5.1 不等式证明的基本方法 新人教B版选修

负数,要证 a>b,只需证
a b<1
.
基础自测
1.下列关系中对任意 a<b<0 的实数都成立的是
A.a2<b2
B.lg b2<lg a2
C.ba>1
D.12a2>12b2
解析 a<b<0,∴a2>b2>0,∴lg a2>lg b2,故选 B.
答案 B
()
2.已知 a>0 且 a≠1,P=loga(a3+1),Q=loga(a2+1),则 P、Q
解析
|a|+|b|
mn =
|a+b| |a-b|
=(|a|a|++|bb||)·|a|-|a|b-| |b||
||a|-|b||
=||aa22- -bb22||=1,∴m=n.
答案 =
课堂小结 1.比较法有两种形式,一是作差;二是作商.用作差证明不 等式是最基本、最常用的方法.它的依据是不等式的基本性质. 2.步骤是:作差(商)―→变形―→判断.变形的目的是为了判 断.若是作差,就判断与 0 的大小关系,为了便于判断,往往把 差式变为积或完全平方式.若是作商,两边为正,就判断与 1 的 大小关系. 3.有时要先对不等式作等价变形再进行证明,有时几种证 明方法综合使用.
●反思感悟:实数大小的比较常用 a>b⇔a-b>0 或“ab>1, 且 b>0⇒a>b”来解决,比较法的关键是第二步的变形,一 般来说,变形越彻底,越有利于下一步的符号判断.
1.设 a>0,b>0 且 a≠b,试比较 aabb 与 abba 的大小. 解 aaabbbba=aa-b·bb-a=aba-b. 当 a>b>0 时,ab>1,a-b>0,则aba-b>1, 于是 aabb>abba.当 b>a>0 时,0<ab<1,a-b<0, 则aba-b>1,于是 aabb>abba. 综上所述,对于不相等的正数 a、b,都有 aabb>abba.

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

高中数学知识点总结(不等式选讲 第二节 不等式的证明)

 高中数学知识点总结(不等式选讲 第二节 不等式的证明)

第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。

平均不等式常用于综合法的标度。

分析方法:不等式两边的关系不够清晰。

通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。

4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。

同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。

高中数学知识点不等式的性质及解法

高中数学知识点不等式的性质及解法

高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。

它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。

下面将详细介绍不等式的性质及解法。

一、不等式的性质1.两边加减同一个数不等号方向不变。

2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。

3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。

4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。

5.无论何时,两边加上相等的数,不等式的大小不变。

二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。

具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。

2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。

3.解不等式:根据等价变形后的不等式,确定x的取值范围。

三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。

具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。

2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。

3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。

四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。

这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。

综上所述,不等式的性质及解法在高中数学中占据很重要的地位。

掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。

高一不等式性质知识点总结

高一不等式性质知识点总结

高一不等式性质知识点总结在高中数学中,不等式是一个重要且常见的概念。

不等式性质是解不等式以及进行数学推理的基础。

在高一学习阶段,学生需要掌握一些基本的不等式性质,并能够运用它们解决问题。

本文将对高一不等式性质进行总结和归纳,帮助学生更好地理解和运用相关知识。

一、基本的不等式性质1. 加减性质:如果a>b,那么a+c>b+c,a-c>b-c。

这个性质表示不等式两边同时加(减)相同的数时,不等关系保持不变。

2. 倍数性质:如果a>b,且c>0,那么ac>bc。

这个性质表示不等式两边同时乘以正数时,不等关系保持不变。

3. 倒数性质:如果a>b,且c<0,那么ac<bc。

这个性质表示不等式两边同时乘以负数时,不等关系改变。

4. 等价性质:如果a>b,并且c是一个正数,那么ac>bc;如果c是一个负数,那么ac<bc。

这个性质可以用于推导和证明不等式。

二、不等式的求解方法1. 基于图形的方法:对于简单的一元一次不等式,可以通过在数轴上绘制相关函数的图像来直观地找到解。

2. 基于性质的方法:利用不等式的性质进行数学推理和变形,以求得解的范围。

3. 基于代数的方法:对于复杂的不等式,可以利用代数的方法进行推导和解答。

常用的方法包括因式分解、配方法、平方根法等。

三、常见的不等式类型1. 一元一次不等式:形如ax+b>0的不等式,其中a和b是已知的实数,x是未知数。

通过代数的方法解题,可以得到解的范围。

2. 一元二次不等式:形如ax^2+bx+c>0的不等式,其中a、b 和c是已知的实数,x是未知数。

解一元二次不等式的方法包括图像法、配方法和因式分解等。

3. 绝对值不等式:形如|ax+b|<c的不等式,其中a、b和c是已知的实数,x是未知数。

解绝对值不等式的方法包括分情况讨论和代数方法等。

4. 分式不等式:形如f(x)>g(x)的不等式,其中f(x)和g(x)是已知的分式函数,x是未知数。

高中数学第一章不等式的基本性质和证明的基本方法课件新人教B版选修4

高中数学第一章不等式的基本性质和证明的基本方法课件新人教B版选修4



4-2 > 10,
2-4 > 10
10 > 10
⇔x>7或x<-3.
所以不等式的解集为{x|x<-3或x>7}.
专题一
专题二
专题三
专题四
(2)设f(x)=|x+3|+|x-7|,有f(x)≥|(x+3)-(x-7)|=10,当且仅当(x+3)(x7)≤0,即-3≤x≤7时,f(x)取得最小值10,
域为[8,+∞),因为原不等式无解,所以只需a≤8,故a的取值范围是(∞,8].
方法二:由绝对值不等式,得|x-5|+|x+3|≥|(x-5)-(x+3)|=8,
故不等式|x-5|+|x+3|<a无解时,a的取值范围为(-∞,8].
答案:(-∞,8]
1
2
3
4
5
6
7
3(陕西高考)已知a,b,m,n均为正数,且a+b=1,mn=2,则
号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出
来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数
式在每一个区间上的符号,转化为不含绝对值的不等式去解.
专题一
专题二
专题三
专题四
应用1解下列关于x的不等式:
(1)|x-x2-2|>x2-3x-4;
(2)|x-2|-|2x+5|>2x.
(-)
16
≥2 4(-)·
=
(-)
16
(-)
16,
当且仅当 a=2b,(a-b)b=2,即 a=2 2,b= 2时等号成立,

高中数学不等式

高中数学不等式
2 2
(2)证明:∵t=2
∴f(ax)﹣af(3;|2a-ax| ≥|ax﹣2+2a-ax| =|2a﹣2|
=f(2a)
∴f(ax)﹣f(2a)≥af(x)
不等式的基本性质 不等式性质 绝对值不等式的基本性质
不 等 式
解不等式 证明不等式方法
重要不等式
不等式的应用
性质1 对称性 a>b<=>b<a
性质2 传递性 a>b,b>c =>a>c 性质3 如果a>b,那么a+c>b+c 性质4 如果a>b,c>0,那么ac>bc 性质5 如果a>b,c>d,那么a+c>b+d
f ( x) 0 f ( x ) g( x ) 0 g( x ) (3)分式不等式: f ( x) g( x) 0 f ( x ) 0 g( x ) 0 g( x )
( x a1 )(x a2 )( x an ) (4)一元高次不等式:
(6)指数不等式:
a
f (x)
a
g( x )
f (x) g(x),(a 1) f (x) g(x), (0 a 1)
f ( x ) 0 g( x) 0 (a 1) f ( x ) g( x ) f ( x) 0 g( x) 0 (0 a 1) f ( x ) g ( x )
分析:
(1)由题意,得|x﹣1|+|x|≤2,对x讨论,去掉绝对值, 解不等式,求并集即可得到所求解集; (2)由题意可证f(ax)﹣af(x)≥f(2a),运用绝
对值不等式的性质,求得左边的最小值,即可求证。
解:(1)由题意,得f(x)+f(x+1)=|x﹣1|+|x| 即|x﹣1|+|x|≤2, 当x≤0时,∴-2x+1≤2,∴- 1 x 0 2 当0<x≤1时,∴1≤2,∴0<x≤1 2 当x>1时,∴2x-1≤2,∴ 1 x 3 综上得,原不等式的解集为{x| - 1 x 3 }

高中数学 第一章 不等式的基本性质和证明的基本方法 1

高中数学 第一章 不等式的基本性质和证明的基本方法 1

>
������ ������2+1
,
故正确;对于选项
D,当 c=0 时不正确.
答案:C
【做一做2-2】 下列命题中正确的有
.
①若a>b,则ac2>bc2;
②若
������ ������2
>
������ ������2
,
则a>b;
③若
a>b,ab≠0,则
1 ������
<
1 ������
;
④若 a>b,c>d,则 ac>bd;
C.
������ ������2+1
>
������ ������2+1
D.a|c|>b|c|
解析:对于选项A,还需有ab>0这个前提条件;对于选项B,当a,b都
为负数时不成立,或一正一负时可能不成立,如2>-3,但22>(-3)2不正
确;对于选项
C,由
1 ������2+1
>
0,a>b,可知
������ ������2+1
(3) 加(减) 如果 a>b,那么 a+c>b+c,即 a>b⇔a+c>b+c
(4)
乘(除)
如果 a>b,c>0,那么 ac>bc; 如果 a>b,c<0,那么 ac<bc
(5) 乘方 如果 a>b>0,那么 an>bn(n∈N*,且 n≥2)
(6) 开方 如果 a>b>0,那么������ ������ > ������ ������(n∈N*,且 n≥2)

高中数学第一章不等式的基本性质和证明不等式的基本方法1

高中数学第一章不等式的基本性质和证明不等式的基本方法1

——教学资料参考参考范本——高中数学第一章不等式的基本性质和证明不等式的基本方法1______年______月______日____________________部门[读教材·填要点]1.反证法首先假设要证明的命题是不正确的,然后利用公理,已有的定义、定理,命题的条件逐步分析,得到和命题的条件(或已证明过的定理,或明显成立的事实)矛盾的结论,以此说明假设的结论不成立,从而原来结论是正确的,这种方法称为反证法.2.放缩法在证明不等式时,有时需要将所需证明的不等式的值适当放大(或缩小)使它由繁化简,达到证明目的,这种方法称为放缩法.[小问题·大思维]1.用反证法证明不等式应注意哪些问题?提示:用反证法证明不等式要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能要逐一论证,缺少任何一种可能,证明都是不完全的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)推导出来的矛盾可以是多种多样的,有的与已知条件相矛盾,有的与假设相矛盾,有的与定理、公理相违背,有的与已知的事实相矛盾等,但推导出的矛盾必须是明显的.2.运用放缩法证明不等式的关键是什么?提示:运用放缩法证明不等式的关键是放大(或缩小)要适当.如果所要证明的不等式中含有分式,那么我们把分母放大时相应分式的值就会缩小;反之,如果把分母缩小,则相应分式的值就会放大.有时也会把分子、分母同时放大,这时应该注意不等式的变化情况,可以与相应的函数相联系,以达到判断大小的目的,这些都是我们在证明中的常用方法与技巧,也是放缩法中的主要形式.[对应学生用书P21]用反证法证明否定性结论[例1] 设a,b,c,d都是小于1的正数,求证:4a(1-b),4b(1-c),4c(1-d),4d(1-a)这四个数不可能都大于1.[思路点拨] 本题考查反证法的应用.解答本题若采用直接法证明将非常困难,因此可考虑采用反证法从反面入手解决.[精解详析] 假设4a(1-b)>1,4b(1-c)>1,4c(1-d)>1,4d(1-a)>1,则有a(1-b)>,b(1-c)>,c(1-d)>,d(1-a)>.∴>,>,>,>.又∵≤,≤,≤,≤,∴>,>,c+1-d>,>.2将上面各式相加得2>2,矛盾.∴4a(1-b),4b(1-c),4c(1-d),4d(1-a)这四个数不可能都大于1.(1)当证明的结论中含有“不是”,“不都”,“不存在”等词语时,适于应用反证法,因为此类问题的反面比较具体.(2)用反证法证明不等式时,推出的矛盾有三种表现形式①与已知相矛盾,②与假设矛盾,③与显然成立的事实相矛盾.1.已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式;(2)求证数列{an}中不存在三项按原来顺序成等差数列.解:(1)当n=1时,a1+S1=2a1=2,则a1=1.又an+Sn=2,所以an+1+Sn+1=2,两式相减得an+1=an,所以{an}是首项为1,公比为的等比数列,所以an=.(2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N+),则2·=+,所以2·2r-q=2r-p+1.①又因为p<q<r,所以r-q,r-p∈N+.所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.用反证法证明“至多”、“至少”型命题[例2]若a,b,c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a,b,c中至少有一个大于0.[思路点拨] 由于问题是“至少型”命题,故可用反证法证明.[精解详析] 假设a,b,c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0,而a+b+c=x2-2y++y2-2z++z2-2x+=(x-1)2+(y-1)2+(z-1)2+π-3∴π-3>0,且(x-1)2+(y-1)2+(z-1)≥0∴a+b+c>0这与a+b+c≤0矛盾.因此,a,b,c中至少有一个大于0.(1)在证明中含有“至少”、“至多”、“最多”等字眼时,或证明否定性命题、惟一性命题时,可使用反证法证明.在证明中常见的矛盾可以与题设矛盾,也可以与已知矛盾,与显然的事实矛盾,也可以自相矛盾.(2)在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,因此在证明过程中必须使用这个增加的条件,否则将无法推出矛盾.2.实数a,b,c,d满足a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.证明:假设a,b,c,d都是非负数,即a≥0,b≥0,c≥0,d≥0,则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd.这与已知中ac+bd>1矛盾,∴原假设错误,故a,b,c,d中至少有一个是负数.用放缩法证明不等式[例3] 求证:-<1++…+<2-(n∈N*且n≥2).[思路点拨]本题考查放缩法在证明不等式中的应用,解答本题要注意欲证的式子中间是一个和的形式,但我们不能利用求和公式或其他方法求和,因此可考虑将分母适当放大或缩小成可以求和的形式,进而求和,并证明该不等式.[精解详析] ∵k(k+1)>k2>k(k-1),∴<<.即-<<-(k∈N+且k≥2).分别令k=2,3,…,n得1-<<1-,-<<-,2…1-<<-,将这些不等式相加得n1-+-+…+-<++…+<1-+-+…+-,2即-<++…+<1-.∴1+-<1+++…+<1+1-.即-<1+++…+<2-(n∈N+且n≥2)成立.(1)放缩法证不等式主要是根据不等式的传递性进行变换,即欲证a>b,可换成证a>c且c>b,欲证a<b,可换成证a<c且c<b.(2)放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标.而且要恰到好处,目标往往要从证明的结论考察.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质进行放缩等.比如:舍去或加上一些项:2+>2;将分子或分母放大(缩小):<,>1,<,>(k∈R,k>1)等.3.设n是正整数,求证:≤++…+<1.证明:由2n≥n+k≥n(k=1,2…,n),得≤<.当k=1时,≤<;当k=2时,≤<;…当k=n时,≤<,∴=≤++…+<=1.[对应学生用书P23]一、选择题1.否定“自然数a 、b 、c 中恰有一个为偶数”时正确的反设为( )A .a 、b 、c 都是奇数B .a 、b 、c 都是偶数C .a 、b 、c 中至少有两个偶数D .a 、b 、c 中至少有两个偶数或都是奇数解析:三个自然数的奇偶情况有“三偶、三奇、二偶一奇、二奇一偶”4种,而自然数a 、b 、c 中恰有一个为偶数包含“二奇一偶”的情况,故反面的情况有3种,只有D 项符合.答案:D2.设M =+++…+,则( ) A .M =1 B .M<1 C .M>1D .M 与1大小关系不定解析:∵210+1>210,210+2>210,…,211-1>210, ∴M =+++…+1211-1<=1.101010102111···222+++个答案:B3.设a ,b ,c∈(-∞,0),则三数a +,b +,c +的值( ) A .都不大于-2 B .都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2解析:假设都大于-2,则a++b++c+>-6,∵a,b,c<0,∴a+≤-2,b+≤-2,c+≤-2,∴a++b++c+≤-6,这与假设矛盾,则选C.答案:C4.已知p=a+,q=-a2+4a(a>2),则( )A.p>q B.p<qC.p≥q D.p≤q解析:∵p=(a-2)++2,又a-2>0,∴p≥2+2=4,而q=-(a-2)2+4,由a>2,可得q<4,∴p>q.答案:A二、填空题5.给出下列两种说法:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时,可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以上两种说法正确的是________.解析:反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①错误;对于②,其假设正确.答案:②6.用反证法证明“已知平面上有n(n≥3)个点,其中任意两点的距离最大为d ,距离为d 的两点间的线段称为这组点的直径,求证直径的数目最多为n 条”时,假设的内容为________.解析:对“至多”的否定应当是“至少”,二者之间应该是完全对应的,所以本题中的假设应为“直径的数目至少为n +1条”.答案:直径的数目至少为n +1条7.A =1+++…+与(n∈N+)的大小关系是________. 解析:A =+++…+≥==.111++?··+n n n n项答案:A≥n8.设a>0,b>0,M =,N =+,则M 与N 的大小关系是________. 解析:∵a>0,b>0, ∴N =+>+ ==M. ∴M<N. 答案:M<N 三、解答题9.已知0<x<2,0<y<2,0<z<2,求证:x(2-y),y(2-z),z(2-x)不都大于1.证明:法一:假设x(2-y)>1且y(2-z)>1且z(2-x)>1均成立, 则三式相乘有:xyz(2-x)(2-y)(2-z)>1.①由于0<x<2,∴0<x(2-x)=-x2+2x =-(x -1)2+1≤1.同理:0<y(2-y)≤1,且0<z(2-z)≤1,∴三式相乘得:0<xyz(2-x)(2-y)(2-z)≤1② ②与①矛盾,故假设不成立.∴x(2-y),y(2-z),z(2-x)不都大于1.法二:假设x(2-y)>1且y(2-z)>1且z(2-x)>1. ∴++>3.③又++≤++=3④④与③矛盾,故假设不成立,∴原题设结论成立.10.已知实数x 、y 、z 不全为零,求证: + + >(x +y +z). 证明:x2+xy+y2= ≥ ⎝ ⎛⎭⎪⎫x+y 22 =|x +|≥x+.同理可得:≥y+,z2+zx+x2≥z+.由于x 、y 、z 不全为零,故上述三式中至少有一式取不到等号,所以三式累加得:x2+xy+y2++>++=(x +y +z).11.设数列{an}的前n 项和为Sn ,a1=1,Sn =nan -2n(n -1).(1)求数列{an}的通项公式an ;(2)设数列的前n 项和为Tn ,求证:≤Tn<.解:(1)由Sn =nan -2n(n -1)得an +1=Sn +1-Sn =(n +1)an +1-nan -4n , 即an +1-an =4.∴数列{an}是以1为首项,4为公差的等差数列, ∴an =4n -3.(2)证明:Tn =++…+1anan+1 =+++…+1 =14⎝ ⎛⎭⎪⎫1-15+15-19+19-113+…+14n-3-14n+1=<.又易知Tn 单调递增,故Tn≥T1=,得≤Tn<.。

高中数学知识点归纳不等式的性质与求解方法

高中数学知识点归纳不等式的性质与求解方法

高中数学知识点归纳不等式的性质与求解方法高中数学知识点归纳——不等式的性质与求解方法不等式是数学中常见的一种关系表达式,它描述了两个数或者表达式之间大小的关系。

不等式是数学中重要且广泛应用的概念,在高中数学学习中,学生需要掌握不等式的性质及求解方法。

本文将对不等式的性质及求解方法进行归纳总结。

一、不等式的基本性质1. 不等式的传递性不等式的传递性是指如果a>b,b>c,则有a>c。

这个性质在求解不等式问题时经常会使用到。

2. 不等式的加减性对于不等式a>b和一个非负实数c,有以下结论:a+c > b+ca-c > b-c利用这个性质可以对不等式进行加减运算,从而简化不等式的形式。

3. 不等式的乘除性对于不等式a>b和一个正实数c,有以下结论:a*c > b*c (当c>0时)a*c < b*c (当c<0时)同样地,利用这个性质可以对不等式进行乘除运算,从而简化不等式的形式。

4. 不等式的倒置性对于不等式a>b,将不等式两边同时取负,得到-b>-a,即b<a。

这就是不等式的倒置性。

二、不等式的求解方法1. 图像法图像法是一种简单可行的不等式求解方法。

对于一元一次不等式,可以将其转化为一条直线,根据直线在数轴上的位置来判断不等式的解集。

2. 实数集合法通过观察不等式中的变量范围,结合实数集合的性质,可以得到不等式的解集。

例如,对于不等式2x-3<5,可以通过观察得到x的范围应该是(-∞, 4)。

3. 符号法符号法是一种常用的不等式求解方法,通过对不等式两边进行推导和变形,利用不等式的性质进行运算,最终得到不等式的解集。

4. 区间法对于一元一次不等式,可以通过构造不等式的区间来求解。

例如,对于不等式x+2>5,可以通过将不等式两边同时减去2,得到x>3,表示x的取值范围是(3, +∞)。

三、不等式的分类与求解1. 一元一次不等式一元一次不等式是最简单的一类不等式,通常形式为ax+b>c或者ax+b<c,其中a、b和c为已知实数,x为未知数。

高中数学不等式公式 高一数学不等式知识点总结

高中数学不等式公式 高一数学不等式知识点总结

高中数学不等式公式高一数学不等式知识点总结1. 不等式的基本性质:- 两边加(减)一个相同的数,不等式的不等关系不变。

- 两边乘(除)一个正数,不等式的不等关系不变。

- 两边乘(除)一个负数,不等式的不等关系反向。

2. 不等式的解集表示:- 不等式的解集可以用区间表示,例如:(a, b)表示大于a小于b的所有实数。

- 不等式的解集也可以用集合表示,例如:{x|x > a}表示大于a的所有实数。

3. 常见的不等式公式:- 两个数的大小关系:若 a < b,则有 a + c < b + c, a - c < b - c, ac < bc (若 c > 0), ac > bc (若 c < 0), a/c < b/c (若 c > 0), a/c > b/c (若 c < 0)。

- 平方不等式:若 a > b,则有 a^2 > b^2。

- 乘方不等式:若 a > b > 0 且 n > 0,则有 a^n > b^n。

- AM-GM 不等式:对于非负实数 a1, a2, ..., an,有 (a1 + a2 + ... + an)/n ≥√(a1a2...an)。

4. 不等式的证明方法:- 利用性质证明法:利用前述不等式的基本性质进行推导,将不等式化为已知的形式。

- 利用数轴法:将不等式的解集在数轴上表示出来,通过移动自变量的位置来判断不等式的成立性。

- 利用函数法:将不等式视为一个函数的性质,通过证明函数的单调性来得出不等式的结论。

- 利用数学归纳法:当不等式涉及到自然数时,可以使用数学归纳法来证明不等式的成立性。

以上是高一数学不等式的一些基本知识点总结,希望对你有帮助。

2018-2019学年高中数学 第一章 不等式的基本性质和证明的基本方法 1.2 基本不等式(一

2018-2019学年高中数学 第一章 不等式的基本性质和证明的基本方法 1.2 基本不等式(一

1.2 基本不等式(一)1.理解并掌握定理1、定理2,会用两个定理解决函数的最值或值域问题.2.能运用平均值不等式(两个正数的)解决某些实际问题.自学导引1.定理1(重要不等式):对于任意实数a ,b ,a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2(基本不等式):如果a ,b 是正数,那么ab ≤a +b2,当且仅当a =b 时,等号成立.3.我们常把a +b2叫做正数a ,b 的算术平均值,把ab 叫做正数a ,b 的几何平均值,所以基本不等式又可叙述为:两个正数的算术平均值不小于它们的几何平均值. 4.关于用不等式求函数最大、最小值(1)若x ≥0、y ≥0,且xy =p (定值),则当x =y 时,x +y 有最小值2p . (2)若x ≥0、y ≥0,且x +y =s (定值),则当x =y 时,xy 有最大值s 24.基础自测1.设0<a <1,0<b <1,且a ≠b ,下列各式中值最大的是( ) A.a 2+b 2B.a +bC.2abD.2ab解析 ∵0<a <1,0<b <1,且a ≠b ,∴a +b >2ab ,a 2<a ,b 2<b ,∴a 2+b 2<a +b ,a 2+b 2>2ab ,且ab <ab .答案 B2.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4解析 由条件1a +2b=ab 知a ,b 均为正数.因而可利用基本不等式求解.由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2. 答案 C3.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 ∵a >0,b >0,ab =a +b +3≥2ab +3,∴(ab )2-2ab +3≥0, ∴ab ≥3或ab ≤-1(舍去), ∴ab ≥9. 答案 [9,+∞)知识点1 不等式证明 【例1】 求证:4a -3+a ≥7 (其中a >3). 证明4a -3+a =4a -3+(a -3)+3, 由基本不等式,得4a -3+a =4a -3+(a -3)+3 ≥24a -3(a -3)+3=24+3=7. 当且仅当4a -3=a -3,即a =5时取等号. ●反思感悟:在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式.1.若a ,b ∈R +,且a +b =1,求证:⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9.证明 方法一:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab=1+2ab≥1+2⎝ ⎛⎭⎪⎫a +b 22=9.方法二:⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫1+a +b a ⎝⎛⎭⎪⎫1+a +b b=⎝⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥9. 知识点2 最值问题【例2】 设x ,y ∈R +且1x +2y=3,求2x +y 的最小值.解 方法一:2x +y =13·3(2x +y )=13·⎝ ⎛⎭⎪⎫1x +2y (2x +y )=13⎝ ⎛⎭⎪⎫4+y x +4x y ≥83. 当且仅当y x =4x y ,即x =23,y =43时,等号成立, ∴2x +y 的最小值为83.方法二:设1x =3m m +n ,2y =3nm +n则x =13⎝ ⎛⎭⎪⎫1+n m ,y =23⎝ ⎛⎭⎪⎫1+m n2x +y =23⎝ ⎛⎭⎪⎫1+n m +23⎝ ⎛⎭⎪⎫1+m n =43+23⎝ ⎛⎭⎪⎫n m +m n≥83,当且仅当m =n ,即x =23,y =43时,取得最小值83. ●反思感悟:利用基本不等式求最值,关键是对式子恰当的变形,合理构造“和式”与“积式”的互化,必要时可多次应用.注意一定要求出使“=”成立的自变量的值,这也是进一步检验是否存在最值.2.已知x <54,求函数y =4x -2+14x -5的最大值.解 由y =4x -2+14x -5=4x -5+14x -5+3≤-24x -5·14x -5+3=1.当4x -5=14x -5时取等号,∴x =1,∴最大值为1. 知识点3 基本不等式的实际应用【例3】 甲、乙两公司在同一电脑耗材厂以相同价格购进电脑芯片.甲、乙两公司分别购芯片各两次,两次的芯片价格不同,甲公司每次购10 000片芯片,乙公司每次购10 000元芯片.哪家公司平均成本较低?请说明理由.解 设第一次、第二次购电脑芯片的价格为每片a 元和b 元,那么甲公司两次购电脑芯片的平均价格为10 000(a +b )20 000=a +b2(元/片);乙公司两次购电脑芯片的平均价格为20 00010 000a +10 000b =21a +1b(元/片).∵a >0,b >0且a ≠b , ∴a +b2>ab ,1a +1b >21ab=2ab,∴21a +1b<ab ,∴a +b 2>21a +1b, ∴乙公司的平均成本比较低.3.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价40元,两侧砌砖墙,每米造价45元,顶部每平方米造价20元.试问: (1)仓库底面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 解 设铁栅长为x 米,一堵砖墙长为y 米, 则有S =xy ,由题意得: 40x +2×45y +20xy =3 200. (1)由基本不等式,得3 200≥240x ·90y +20xy =120 xy +20xy =120S +20S ,∴S +6S ≤160,即(S +16)(S -10)≤0. ∵S +16>0,∴S -10≤0,从而S ≤100. ∴S 的最大允许值是100 m 2. (2)S 取最大值的条件是40x =90y , 又xy =100,由此解得x =15. ∴正面铁栅的长度应设计为15米.课堂小结1.两个不等式:a 2+b 2≥2ab 与a +b2≥ab 成立的条件是不同的,前者要求a ,b 都是实数,后者要求a ,b 都是正数.如(-3)2+(-2)2≥2×(-3)×(-2)是成立的,而(-3)+(-2)2≥2(-3)×(-2)是不成立的.2.两个不等式:a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式,对于“当且仅当……时,取‘=’号”这句话的含义要有正确的理解. 当a =b 取等号,其含义是a =b ⇒a +b2=ab ;仅当a =b 取等号,其含义是a +b2=ab ⇒a =b .综合上述两条,a =b 是a +b2=ab 的充要条件.3.与基本不等式有关的两个常用不等式: (1)b a +a b≥2 (a 、b 同号); (2)21a +1b≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).随堂演练1.设实数x ,y ,满足x 2+y 2=1,当x +y +c =0时,c 的最大值是( ) A. 2 B.- 2 C.2 2D.-2 2解析 方法一:设x =cos θ,y =sin θ,θ∈[-π,π] 当x +y +c =0时,c =-x -y =-(cos θ+sin θ)=-2sin ⎝⎛⎭⎪⎫θ+π4,当sin ⎝ ⎛⎭⎪⎫θ+π4=-1时,c max = 2. 方法二:c 2=(x +y )2≤2(x 2+y 2)=2 ∵-2≤c ≤2,∴c max = 2. 答案 A2.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A.6+2 3 B.7+2 3 C.6+4 3D.7+4 3解析 先判断a ,b 的符号,再将已知的式子转化为关于a ,b 的方程,最后根据基本不等式求解.由题意得⎩⎨⎧ab >0,ab ≥0,3a +4b >0,所以⎩⎪⎨⎪⎧a >0,b >0.又log 4(3a +4b )=log 2ab , 所以log 4(3a +4b )=log 4ab , 所以3a +4b =ab ,故4a +3b=1.所以a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+3a b +4b a≥7+23a b ·4b a =7+43,当且仅当3a b =4ba时取等号,故选D. 答案 D3.已知x >0,y >0,且1x +9y=1,求x +y 的最小值________.解析 ∵x >0,y >0,1x +9y=1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y =y x+9xy+10≥6+10=16,当且仅当y x =9xy时,上式等号成立. 又1x +9y=1,∴x =4,y =12时,(x +y )min =16.答案 164.x ,y ,z ∈R +,x -2y +3z =0,y 2xz的最小值是________.解析 由x -2y +3z =0,得y =x +3z2,将其代入y 2xz,得x 2+9z 2+6xz 4xz ≥6xz +6xz4xz=3,当且仅当x =3z 时取“=”. 答案 3基础达标1.若a ,b ∈R +,且a +b =1,则a +1+b +1的最大值为( ) A. 3 B. 2 C. 6 D.2 3 答案 C2.若a ,b ∈R +,且a +b ≤2,则1a +1b的最小值为( )A.1B.2C. 2D.4答案 B3.下列命题:①x +1x 最小值是2;②x 2+2x 2+1的最小值是2;③x 2+5x 2+4的最小值是2;④2-3x-4x的最小值是2.其中正确命题的个数是( )A.1B.2C.3D.4解析 ①当x <0时结论不成立;②由x 2+1x 2+1=x 2+1+1x 2+1=x 2+1+1x 2+1≥2,故结论成立;③由x 2+5x 2+4=x 2+4+1x 2+4,由x 2+4≥2,1x 2+4≤12,∴x 2+4≠1x 2+4,故结论不成立;④当x >0时,2-3x -4x=2-⎝ ⎛⎭⎪⎫3x +4x ≤2-212=2-43,当x <0时,2-3x -4x=2-⎝ ⎛⎭⎪⎫3x +4x ≥2+212=2+43,故结论不成立.答案 A4.若不等式x 2+2x +a ≥-y 2-2y 对任意实数x 、y 都成立,则实数a 的取值范围是________. 答案 a ≥25.若a 是1+2b 与1-2b 的等比中项,则2ab |a |+2|b |的最大值为________.解析 由题意得a 2=(1+2b )(1-2b )=1-4b 2. 即a 2+4b 2=1.∵a 2+4b 2≥24a 2b 2,得|ab |≤14且1|ab |≥4,∴2ab |a |+2|b |= 4a 2b2a 2+4|ab |+4b 2= 4a 2b21+4|ab |=41a 2b 2+4|ab |=4⎝ ⎛⎭⎪⎫1|ab |+22-4≤436-4=24. 答案246.已知a ,b ∈(0,+∞),求证:(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4.证明 ∵a >0,b >0,∴a +b ≥2ab >0, 当且仅当a =b 时,取等号.①1a +1b ≥21ab>0,当且仅当1a =1b,即a =b 时取等号.②①×②,得(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥2ab ·21ab=4,当且仅当a =b 时,取等号.综合提高7.函数y =log 2⎝⎛⎭⎪⎫x +1x -1+5 (x >1)的最小值为( ) A.-3 B.3 C.4D.-4解析 x >1,x -1>0,y =log 2⎝ ⎛⎭⎪⎫x +1x -1+5=log 2⎝ ⎛⎭⎪⎫x -1+1x -1+6 ≥log 2(2+6)=log 28=3. 答案 B8.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( ) A.80元 B.120元 C.160元D.240元解析 设底面矩形的一条边长是x m ,总造价是y 元,把y 与x 的函数关系式表示出来,再利用均值(基本)不等式求最小值.由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4xm ,又设总造价是y 元,则y =20×4+10×⎝ ⎛⎭⎪⎫2x +8x ≥80+202x ·8x=160,当且仅当2x =8x,即x =2时取得等号.答案 C9.设a ,b >0,a +b =5,则a +1+b +3的最大值为________.解析 将a +1+b +3进行平方,为使用基本不等式创造条件,从而求得最值. 令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18, 当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. 答案 3 210.对于c >0,当非零实数a ,b 满足4a 2-2ab +b 2-c =0且使|2a +b |最大时,1a +2b +4c的最小值为________.解析 利用均值不等式找到|2a +b |取得最大值时等号成立的条件,从而可以用字母c 表示a ,b ,再求1a +2b +4c的最小值.由题意知,c =4a 2-2ab +b 2=(2a +b )2-6ab , ∴(2a +b )2=c +6ab .若|2a +b |最大,则ab >0. 当a >0,b >0时,(2a +b )2=c +6ab =c +3×2a ·b ≤c +3⎝ ⎛⎭⎪⎫2a +b 22,∴(2a +b )2≤c +34(2a +b )2,∴(2a +b )2≤4c ,|2a +b |≤2c ,当且仅当b =2a ,即⎩⎪⎨⎪⎧a =c 2,b =c时取等号.此时1a +2b +4c=2c+2c +4c>0.当a <0,b <0时,(2a +b )2=c +6ab =c +3(-2a )·(-b )≤c +3⎝ ⎛⎭⎪⎫-2a -b 22, ∴(2a +b )2≤4c ,|2a +b |≤2c ,即-2a -b ≤2c .当且仅当b =2a ,即⎩⎪⎨⎪⎧a =-c 2,b =-c时取等号. 此时1a +2b +4c =-2c -2c +4c =4c -4c =4⎝ ⎛⎭⎪⎫1c -122-1≥-1,当1c =12,即c =4时等号成立.综上可知,当c =4,a =-1,b =-2时,⎝ ⎛⎭⎪⎫1a +2b +4c min=-1.答案 -111.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解 (1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.12.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速率v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时)(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内? 解 (1)依题意,y =9203+⎝ ⎛⎭⎪⎫v +1 600v ≤9203+2 1 600=92083≈11.1(千辆/时)(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25))(v -64)<0,解得25<v <64.答 当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式2:对任意正数错误!未找到引用源。

、错误!未找到引用源。

,有错误!未找到引用源。

,___________________等号成立
基本不等式3:对任意错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

,有错误!未找到引用源。

,____________等号成立
【热身练习】
1、若错误!未找到引用源。

,用“”从小到大依次排列错误!未找到引用源。


错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

:____________
2、能使错误!未找到引用源。

与错误!未找到引用源。

同时成立的充要条件:__________________________
3、命题“若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

”的逆否命题是_________________
4、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

__________错误!未找到引用源。

(选填“”、“”或“=”)
5、下列命题中不正确的一个是()
A、若错误!未找到引用源。

,则错误!未找到引用源。

B、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

C、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

D、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

6、若错误!未找到引用源。

,错误!未找到引用源。

,下列命题中不恒成立的是()
A、错误!未找到引用源。

B、错误!未找到引用源。

C、错误!未找到引用源。

D、错误!未找到引用源。

7、下列命题中,真命题是()
A、若错误!未找到引用源。

,则错误!未找到引用源。

(错误!未找到引用源。


B、若错误!未找到引用源。

,则错误!未找到引用源。

C、若错误!未找到引用源。

,则错误!未找到引用源。

D、若错误!未找到引用源。

且错误!未找到引用源。

,则错误!未找到引用源。

【精解名题】
1、已知错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

且错误!未找到引用源。

.比较错误!未找到引用源。

与错误!未找到引用源。

的大小。

相关文档
最新文档