建筑结构地震力计算
水平地震作用下框架结构的内力计算抗震设计
![水平地震作用下框架结构的内力计算抗震设计](https://img.taocdn.com/s3/m/67fb1ce0bed5b9f3f80f1cc4.png)
2 抗震设计(水平地震作用下框架结构的内力计算)抗震计算单元及动力计算简图取整个衡宇或抗震缝区段(设防震缝时)为计算单元,动力计算简图为串联多自由度体系。
即将各楼层重力荷载代表值集中于每一层楼盖或屋盖标高处。
多自由度体系的抗震计算可采用振型分解反映谱法和底部剪力法。
本工程总高不超过40m,以剪切变形为主,且质量和刚度沿高度散布比较均匀,近似于单质点体系,故采用底部剪力法。
此法是先计算出作用于结构的总水平地震作用,然后将其按必然规律分派给各质点。
计算简图2—1 如下示:图2—1重力荷载代表值按照抗震规范1.0.2 抗震设防烈度为6度及以上地域的建筑,必须进行抗震设计。
按照抗震规范5.1.3 计算地震作用时,建筑的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。
各可变荷载的组合值系数,应按表2—1采用。
组合值系数重力荷载代表值计算:1)屋面及楼面的永久荷载标准值1.屋面(上人)苏J01—2005:a. 10厚防滑地砖铺面,干水泥擦缝,每3—6m留10宽缝m2b. 20厚1:水泥砂浆加建筑胶结合层找平层20×= kN/m2厚C20细石混凝土,内配Φ4@150双向钢筋25×= kN/m2d.隔离层/e. 三粘四油沥青油毡防水层m2f. 冷底子油一道/g. 20厚1:3水泥砂浆找平层20×= kN/m2h.保温层5×= kN/m2厚1:3水泥砂浆找平层20×= kN/m2j.现浇或预制钢筋混凝土屋面25×= kN/m2 合计kN/m2 2.1~4层楼面苏J01—2005a. 15厚1:2白水泥白石子磨光打蜡kN/m2b.耍素水泥浆结合层一道/c. 20厚1:3水泥砂浆找平层20×= kN/m2d.现浇钢筋混凝土楼面25×= kN/m2合计kN/m2 2)屋面及楼面的可变荷载标准值上人屋面均布荷载标准值kN/m2 楼面活荷载标准值kN/m2 屋面雪荷载标准值S k=μr×S o=×= kN/m2式中:μr为屋面积雪散布系数,取μr=3)梁、柱、墙、窗、门重力荷载计算:a.梁、柱可按照截面尺寸、材料容重及粉刷等计算出的单位长度上的重力荷载;对墙、门、窗等可计算出单位面积上的重力荷载,计算结构如表2—2梁、柱重力荷载标准值表b.墙、门、窗重力荷载标准值:外墙体为200mm厚的粘土空心砖,外墙面贴马赛克(kN/m2),内墙面为20mm厚的抹灰,则外墙的单位墙面重力荷载为:+15×+17×= kN/m2内墙为200mm厚的粘土空心砖,双侧均为20mm厚抹灰,则内墙单位面积重力荷载为:15×+17××2= kN/m2电梯井墙为240mm粘土空心砖,双侧均为20mm厚抹灰,则电梯井墙单位面积重力荷载为:15×+17××2= kN/m2木门单位墙面重力荷载为kN/m2,钢铁门单位墙面重力荷载为kN/m2铝合金单位墙面重力荷载为kN/m2门、窗、雨棚重力荷载代表值:一层门窗:×(2××2+××2+××3+××1+××2)+×××13+××1+××2+××2+××3+××2) +×××2)=二~四层门窗:×××2+××3)+×××16+××2+××2+××2+××3+××2)= kN五层门窗:×××2+×+×××3+××2)= kNA轴的雨蓬:25×(2××+×××3+×××2= kN9轴雨蓬:25×××= kN五层雨蓬:25×××3= kN楼梯重力荷载代表值:一层:25××××2+25×××+25××××10+25×××9×2= kN二~四层:25××××2+25×××12+25×××12= kN外墙的重力荷载代表值:一层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××13-××1-××2-××2-××3-××2-××2-2××2-××1-××2-×]=二~四层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××16-××2-××2-××2-××3-××2]= kN五层(包括女儿墙):×[×4+×2) ×+4××+××1-××2-××3-××3]+25×[+59+9+9+--×2)×2+--×2)×5]××+25×[4×4+×4+9×2]××=内墙的重力荷载代表值:一层:×[(4×2+×2)×++×-×++++×-×-×+4×3×-××2]= kN二~四层:×[+++×+4×3×-××3-×+×+×-×]= kN五层:×4×=电梯井墙重力荷载代表值:一层:×[+-×+(4+×]= kN二~四层:×[+-×+(4+×]= kN屋顶装饰架重力荷载代表值:25××5+×2)××= kN总的重力荷载代表值:恒荷载取全数,活荷载取50%(按均布等效荷载计算),则集中于各楼层的标高出的重力荷载代表值为:G i的计算进程:一层:×(59×-×4×2-4×+++++++++×4×59×= kN二~三层:×(59×-4××2-4×+++++++×4×59×= kN四层:×9×4+++++++×(59×-×4×2-9×4)+×4×(9×4+×4×2)+××(59×-×4×2-9×4)= kN五层:××4×2+9×4)+++++++××(9×4+×4×2)= kN 故G1=G2= kNG3= kNG4= kNG5=图2—2如下:G5=3124.87kNG4=18184.16kNG1=17311.22kNG2=17311.22kNG5=18568.35kN图2—2 各质点的重力荷载代表值框架侧移刚度计算梁线刚度:i b=E c I b/l,I b=(中框架梁),I b=(边框架梁)。
水平地震作用计算
![水平地震作用计算](https://img.taocdn.com/s3/m/c67288c1ddccda38376baff6.png)
第四节水平地震作用计算重力荷载代表值计算本设计建筑高度为23.95m,以剪切表形为主,且质量和高度均匀分布,故可采用底部剪力法计算水平地震作用。
首先需要计算重力荷载代表值。
屋面处重力荷载代表值=结构和构件自重标准值楼面处重力荷载代表值=结构和构件自重标准值+0.5楼面活荷载标准值其中结构和构件自重取楼面上、下各半层高度范围内(屋面处取顶层1/2)的结构和构件自重。
计算地震作用时,建筑的重力荷载代表值应取结构和构件自重和各可变荷载组合值之和。
设计时顶层重力荷载代表值包括:屋面恒载,纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。
其他层重力荷载代表值包括:楼面恒载,50%楼面均布活荷载,纵、横梁自重,楼面上、下各半层的柱及纵、横墙体自重。
一、楼层总量取6轴框架左侧3000mm宽度和右侧3000mm宽度的楼层的重量进行近似计算第9标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm线荷载:25×0.3×(0.6-0.12)+0.04×(0.6-0.12)×17=3.93KN/m=3.93×(4+3)=27.51 KNG1⑵截面尺寸:b×h=250mm×500mm线荷载:25×0.25×(0.5-0.12)+0.04×(0.5-0.12)×17=2.63KN/m=2.63×3×4 =31.56 KNG2(3)截面尺寸:b×h=200mm×450mm线荷载:25×0.2 ×(0.45-0.12)+0.04×(0.45-0.12)×17=1.87KN/m =1.87×6 =11.22 KNG3(4)截面尺寸:b×h=300mm×650mm线荷载:25×0.3 ×(0.65-0.12)+0.04×(0.65-0.12)×17=4.34KN/m =4.34×8 =34.72 KNG42.柱重量= (6.01×3)×(1.8/2-0.12)=27.18KNG53.板重量G=5.0×14×3 =210KN64.墙重量=6.3×(2×3+6)+3×2+5.1×1.15/2×8+5.1×0.6×4+5.1×G71.3/2×3=120.95KN5.活载:根据《建筑抗震设计规范》5.1.3要求屋面板的活载组合值系数为0,故:=0G8则第9层楼面的重力荷载代表值为:G=27.51+31.56+11.22+34.72+27.18+210+120.95=508.14 KN 7第8标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm线荷载:25×0.3×(0.6-0.12)+0.04×(0.6-0.12)×17=3.93KN/m=3.93×8=31.44 KNG1⑵截面尺寸:b×h=250mm×500mm线荷载:25×0.25×(0.5-0.12)+0.04×(0.5-0.12)×17=2.63KN/m=2.63×(3×5+6+4)=65.75 KNG2(3)截面尺寸:b×h=200mm×450mm线荷载:25×0.2 ×(0.45-0.12)+0.04×(0.45-0.12)×17=1.87KN/m G=1.87×(3×5) =28.05 KN32.柱重量G= (6.01×3)×(2.0/2+1.8/2-0.12)+6.01×(1-0.12)=69.38KN43.板重量=5.0×3×(6+1.5+14)=322.5KNG54.墙重量G= (3+12)×5.1/2+(3+14)×6.1/2+3×10.5/2+3×1.1/2=107.5KN65. 活载:根据《建筑抗震设计规范》5.1.3要求屋面板的活载组合值系数为0 ,故:= 0G7则第8层楼面的重力荷载代表值为:G=31.44+65.75+28.05+151.2+322.5+107.5 =624.62KN8第7标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mmG=4.2×8=33.6KN1⑵截面尺寸:b×h=250mm×500mmG=2.86×(3×4+6+4)=62.92KN2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×2+6) =24.72KNG32.柱重量G= 6.01×1×4+(8.35×2+13.25×2)×(3.6/2-0.1)=116.64KN43.板重量=3.4×(3×14)+3.6×(3×4)=220KNG54.墙重量=(3+18)×6.1/2+3×3/2+3×10.5/2+3×1.1×0.5+3×G6(4.5+9.7+10.5+10.5+6.1) ×0.5+10×12.2/2+6.5×10.3×0.5+5×12.4×0.5+6×9.7×0.5+2.5×10.4×0.5=315.48KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:G=〔2.0×(3.0×14)+ 2.5×(3×4)〕×0.5=32KN7则第7层楼面的重力荷载代表值为:G=33.6+62.92+24.72+116.64+220+315.48+32=805.36 KN7第6标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mmG=2.86×(3×7+6+4)=88.66KN2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×3) =64.89KNG3(4)截面尺寸:b×h=200mm×300mm=1.21×1 =1.21KNG42.柱重量= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KNG53.板重量G=3.6×(3×14+3×8+0.5×6)+3×(3×4)+3.4×2.5×3.5=314.15KN64.墙重量=3×(10.5+10.5+6.1)+12.2×10+9.7×6+12.4×2.5×2+9.7×3G7×0.5+10.4×2.5×0.5+3×(2+6.3) ×0.5+10.3×6.5×0.5+8.1×1+11.8×6×0.5+3×4.5×0.5+3×8.5×0.5+5.5×6×0.5+10.5×6×0.5+10.8×3×0.5=524.18KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×4+2.5×3.5+3×14)+2.5×(3×11.5+0.5×6)〕×0.5=109.63KN G8则第6层楼面的重力荷载代表值为:G=33.6+88.66+64.89+1.21+151.2+314.15+524.18+109.63=1287.5KN 6第5标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mmG=2.86×(3×7+6+4)=88.66KN2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mmG=1.21×1 =1.21KN42.柱重量G= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KN53.板重量G=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85K64.墙重量G=5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.17×1+12.2×10+11.8×6+9.7×6=544.6KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:G=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KN10则第5层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+151.2+325.85+544.6+101=1305.86KN 5第4标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×7+6+4)=88.66KNG2(3)截面尺寸:b×h=200mm×450mmG=2.06×(3×6+6+2.5×2) =59.74KN3(4)截面尺寸:b×h=200mm×300mm=1.21×1 =1.21KNG42.柱重量= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KNG53.板重量G=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85K64.墙重量=(5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2 G7×10+11.8×6+9.7×6) ×0.5+(5.5×6+10.5×12+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2×4+11.8×6+9.7×6+12.4×6) ×0.5=491.8KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:G=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KN 10则第4层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+151.2+325.85+491.8+101=1253.06KN 4第3标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×6+6+4)=80.08KNG2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mmG=1.21×1 =1.21KN4(5)截面尺寸:b×h=250mm×550mm=3.44×3 =10.32KNG52.柱重量G= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KN63.板重量=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85KNG74.墙重量=(5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2 G8×10+11.8×6+9.7×6) ×0.5+(5.5×6+10.5×12+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2×4+11.8×6+9.7×6+12.4×6) ×0.5=491.8KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KN G9则第1层楼面的重力荷载代表值为:G=33.6+80.08+59.74+1.21+10.32+151.2+325.85+491.8+101=1254.8KN 3第2标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mmG=4.2×8=33.6KN1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×7+6+4)=88.66KNG2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mmG=1.21×1 =1.21KN42.柱重量= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KNG53.板重量G=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85K64.墙重量=5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1G7×1+12.2×10+11.8×6+9.7×6=544.6KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KNG8则第2层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+151.2+325.85+544.6+101=1305.86KN 2第1标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×7+6+4)=88.66KNG2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mm=1.21×1 =1.21KNG42.柱重量G= (8.35×2+13.25×2)×(3.6/2+5.2 -0.1)=298.08KN53.板重量=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85KG64.墙重量=(5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1G7×1+12.2×13+11.8×6+9.7×6)×0.5+(7.9×6+14.5×10+12.9×6+6.8×3+14.7×2.5×2+12.8×2.5+8.6×3+12.1×6+14.1×6+10×1)×0.5=584.95KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KNG8则第1层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+185.76+325.85+584.95+101=1493.09KN 1二、荷载分层总汇顶层重力荷载代表值包括:屋面恒载,纵、横梁自重,半层柱自重,半层墙体自重。
抗震承载力计算
![抗震承载力计算](https://img.taocdn.com/s3/m/53cda3632f3f5727a5e9856a561252d381eb207a.png)
抗震承载力计算
抗震承载力计算是指在地震作用下,建筑物结构所能承受的最大地震力。
这需要考虑建筑物的结构形式、材料、地基条件、地震波特性等因素。
通常,抗震承载力计算包括以下几个步骤:
1. 地震震源参数确定:包括震源距离、震级、震源深度等参数。
2. 地震动输入:根据地震波特性和建筑物的地震反应谱,确定地震动输入。
3. 结构模型建立:建立建筑物的结构模型,包括柱、梁、墙、框架等构件的几何形状、截面、材料等参数。
4. 动力分析:采用动力学方法,对建筑物进行地震反应分析,确定建筑物的地震反应。
5. 抗震鉴定:根据建筑物的地震反应和设计要求,进行抗震鉴定,确定抗震等级和抗震性能目标。
6. 抗震设计:根据抗震等级和抗震性能目标,进行抗震设计,确定结构的截面尺寸、钢筋配筋、基础尺寸等参数。
7. 抗震验算:对抗震设计方案进行验算,满足设计要求后,方案才能通过。
抗震承载力计算对于建筑物的抗震能力至关重要,必须严格按照相关规范和标准进行计算和设计。
同时,建筑物的抗震能力也是保障人民生命财产安全的重要方面。
- 1 -。
地震荷载的计算方法
![地震荷载的计算方法](https://img.taocdn.com/s3/m/82d4ecd19a89680203d8ce2f0066f5335a8167d2.png)
地震荷载的计算方法
地震荷载是指地震对建筑物或其他工程结构产生的作用力。
为了保证工程结构的安全可靠,需要进行地震荷载计算。
下面是地震荷载的计算方法:
首先,需要确定工程所在的地震烈度。
地震烈度是用来反映地震在某一地点产生的破坏程度的指标,通常使用中国地震烈度标准进行评定。
根据地震烈度,可以确定相应的地震参数。
其次,需要确定结构的重要性系数和使用系数。
重要性系数表示工程对人身及社会财产安全的重要程度,使用系数反映结构使用情况及耐久性要求。
然后,需要确定工程结构的基本周期。
基本周期是结构最基本的振动周期,是计算地震荷载的重要参数之一。
接下来,可以采用地震响应谱法计算地震荷载。
地震响应谱法是一种结构动力学分析方法,可以计算出在地震作用下结构的响应加速度谱。
通过将加速度谱与结构的质量和刚度进行卷积,可以计算出结构的地震反应。
最后,需要根据计算结果确定结构的抗震等级。
抗震等级是根据工程结构的抗震性能和使用要求确定的,它反映了结构在地震作用下的抗震能力。
综上所述,地震荷载的计算涉及多个参数和方法,需要根据实际情况和标准进行计算。
在进行地震荷载计算时,需要注意准确性和可靠性,以保证工程结构的安全可靠性。
地震荷载计算
![地震荷载计算](https://img.taocdn.com/s3/m/8b70292c6d175f0e7cd184254b35eefdc9d3156b.png)
地震荷载计算简介地震荷载计算是建筑结构设计中的重要内容之一。
地震荷载能够对建筑结构施加巨大的力量,因此在设计过程中需要进行地震荷载的计算和分析,以确保建筑能够在地震发生时保持稳定和安全。
地震荷载计算的基本原理地震荷载计算可以通过多种方法进行,其中最常用的是静力分析法和动力分析法。
静力分析法基于结构的弹性响应进行计算,适用于地震荷载较小的结构;而动力分析法则考虑了结构的非线性和动力特性,适用于地震荷载较大的结构。
静力分析法的步骤1. 确定设计地震参数:包括地震区划、场地类别、设计地震分组等。
2. 确定结构的地震体系:包括结构的刚度分布和质量分布等。
3. 计算地震设计水平加速度:根据地震参数和结构的反应谱进行计算。
4. 计算结构的静力抗力:根据结构的地震体系和设计地震加速度进行计算。
5. 检查结构的稳定性和安全性:对计算结果进行评估,确保结构在地震作用下的稳定性和安全性。
动力分析法的步骤1. 确定设计地震参数:同静力分析法。
2. 模型建立和参数设定:将结构建模,并根据地震参数进行参数设定。
3. 进行地震模拟:通过数值计算方法模拟地震作用下的结构反应。
4. 分析结构的动力响应:根据地震模拟的结果,计算结构的动力响应。
5. 检查结构的稳定性和安全性:对动力响应进行评估,确保结构在地震作用下的稳定性和安全性。
总结地震荷载计算是建筑结构设计中不可忽视的重要内容,通过静力分析法和动力分析法可以对地震荷载进行有效计算和分析。
在设计过程中,需要合理选择计算方法,并根据结构特点和地震参数进行参数设定。
同时,对计算结果进行评估,确保结构在地震作用下的稳定性和安全性。
地震效应计算公式
![地震效应计算公式](https://img.taocdn.com/s3/m/adf86320b6360b4c2e3f5727a5e9856a5612261c.png)
地震效应计算公式对于低层建筑,可以使用简化的等效静力法计算地震效应。
常用的公式为:F=C_q*W其中F为地震效应(地震力或基底剪力);C_q为荷载系数,由地震参数和建筑结构特性决定;W为建筑物的有效重量。
对于多层建筑,一般采用简化的等效静力法或动力分析法计算地震效应。
其中,动力分析法更加精确,但计算复杂度更高。
简化的等效静力法常用的公式为:F=C_q*W*I其中F为地震效应(地震力或基底剪力);C_q为荷载系数,由地震参数和建筑结构特性决定;W为建筑物的有效重量;I为重要性系数,用于反应建筑物对地震的抗性能,根据建筑的用途和地理位置确定。
框架结构是一种常见的建筑结构形式,地震效应的计算公式需要考虑结构的刚度和地震作用的分布。
常用的公式为:F=C_q*(W+T*Q)其中F为地震效应(地震力或基底剪力);C_q为荷载系数,由地震参数和建筑结构特性决定;W为建筑物的有效重量;T为建筑物的周期;Q为地震作用的分布系数,考虑地震波对不同层的作用。
四、基础动应力计算公式地震对建筑物的基础动应力是非常重要的,可以使用以下公式进行计算:σ=k*M/A其中σ为动应力;k为地震系数,取决于建筑物基础的类型和地质条件;M为地震矩,取决于地震参数和建筑物的质量和刚度;A为建筑物的地基面积。
需要注意的是,以上公式仅为常见的地震效应计算公式,并不是适用于所有情况的通用公式。
在具体工程设计和地震风险评估中,需要根据具体情况选择适合的公式,并结合合理的参数值进行计算。
此外,地震效应计算还需要考虑地震波的频率特性、位移效应、非线性效应等因素,以得到更准确的结果。
新抗震规范——地震作用和结构抗震验算
![新抗震规范——地震作用和结构抗震验算](https://img.taocdn.com/s3/m/6eddf91052d380eb62946dbf.png)
5 地震作用和结构抗震验算5.1 一般规定5.1.1各类建筑结构的地震作用,应符合下列规定:1一般情况下,应至少在建筑结构的两个主轴方向分别计算水平地震作用,各方向的水平地震作用应由该方向抗侧力构件承担。
2有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
3质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其它情况,应允许采用调整地震作用效应的方法计入扭转影响。
48、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用5平面投影尺度很大的空间结构,应视结构形式和支承条件,分别按单点一致、多点、多向或多向多点输入计算地震作用。
注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。
【说明】本次修订,拟明确大跨空间结构地震作用的计算要求。
1、平面投影尺度很大的空间结构指,跨度大于120m、或长度大于300m、或悬臂大于40m的结构。
2、关于结构形式和支承条件(1)周边支承空间结构,如:网架、单、双层网壳、索穹顶、弦支穹顶屋盖和下部圈梁-框架结构,当下部支承结构为一个整体、且与上部空间结构侧向刚度比大于等于2时,应允许采用三向(水平两向加竖向)单点一致输入计算地震作用;当下部支承结构由结构缝分开、且每个独立的支承结构单元与上部空间结构侧向刚度比小于2时,应采用三向多点输入计算地震作用;(2)两线边支承空间结构,如:拱,拱桁架;门式刚架,门式桁架;圆柱面网壳等结构,当支承于独立基础时,应采用三向多点输入计算地震作用。
(3)长悬臂空间结构,应视其支承结构特点,采用多向单点一致输入、或多向多点输入计算地震作用。
3、关于单点一致输入仅对基础底部输入一致的加速度反应谱或加速度时程进行结构计算。
4、关于多向输入沿空间结构基础底部,三向同时输入,其地震动参数(加速度峰值或反应谱峰值)比例取:水平主向:水平次向:竖向= 1.00:0.85:0.65。
整体结构及单构件的竖向地震作用计算
![整体结构及单构件的竖向地震作用计算](https://img.taocdn.com/s3/m/78cabfd6cf2f0066f5335a8102d276a200296087.png)
整体结构及单构件的竖向地震作⽤计算刘孝国中国建筑科学研究院有限公司北京构⼒科技有限公司北京 100013[摘要] 《建筑抗震设计规范》GB50011-2010(2016版)(以下简称“抗规”)及《⾼层建筑混凝⼟结构技术规程》JGJ3-2010(以下简称“⾼规”)等规范对于⾼烈度区的⼤跨度结构、⼤悬臂结构、转换结构及连体结构等,需要进⾏结构竖向地震作⽤分析,两本规范提供了三种计算竖向地震的⽅法,底部轴⼒法简化算法、反应谱分析⽅法及等效静⼒法。
采⽤反应谱法进⾏竖向地震作⽤分析,计算的结构楼层竖向地震作⽤标准值需要满⾜规范的底线值,不满⾜时需要进⾏地震作⽤内⼒调整。
采⽤三种不同的竖向地震分析⽅法,对⽐简单⼤悬臂框架结构整体计算结果及构件内⼒结果,不同计算⽅法有较⼤差异。
使⽤PKPM软件进⾏竖向地震作⽤分析时,可通过对局部⼤悬臂、⼤跨度构件单独定义属性为竖向地震构件,对结构局部构件实现竖向地震的分析及考虑。
[关键词] 竖向地震;底部轴⼒法;反应谱分析;等效静⼒法;局部构件;0引⾔结构设计中会遇到⼀些⾼烈度区的⾼层结构、⼤跨度结构及⼤悬臂结构等,按规范要求,这类结构需要进⾏竖向地震作⽤计算,抗规和⾼规均提出了详细要求。
但在竖向地震作⽤计算时,通常由于两本规范要求不同及不同的竖向地震计算⽅法导致内⼒计算结果差异⼤等原因,存在各种疑难细节问题。
本⽂结合两本规范对竖向地震计算的要求,介绍规范具体细节⽅⾯的差异,结合设计中常⽤的PKPM结构设计软件,阐释软件中如何实现对结构及单构件的竖向地震作⽤的计算,并介绍不同的竖向地震作⽤分析⽅法对结构整体及某些构件内⼒的影响。
1抗规对竖向地震作⽤的要求抗规5.3.1条要求,9度时的⾼层建筑,竖向地震作⽤标准值按图1计算简图,采⽤公式(1)、(2)确定;楼层的竖向地震作⽤效应可按各构件承受的重⼒荷载代表值的⽐例分配,并宜乘以增⼤系数1.5。
图1结构竖向地震作⽤计算简图(1)(2)式中:——结构竖向地震作⽤标准值;——质点i的竖向地震作⽤标准值;——竖向地震影响系数的最⼤值,可取⽔平地震影响系数最⼤值的65%;——结构等效总重⼒荷载,可取其重⼒荷载代表值的75%。
3结构抗震计算
![3结构抗震计算](https://img.taocdn.com/s3/m/4715417c240c844768eaee25.png)
n
xi (t) j j (t) X ji j 1
j 为j振型的振型参与系数:
(4 91)
n
n
X T M I mi X ji X jiGi
j
j
XT M
j
X
i1 n
i1 n
j
mi
X
2 ji
X
2 ji
Gi
i 1
i 1
第i质点t 时刻的水平地震作用Fi(t)=作用在i质点
2、6度时建造于Ⅳ类场地上较高的高层建筑,7 度和7度以上的建筑结构:多遇地震作用下的截面抗 震验算;
3、对于钢筋混凝土框架、框架-抗震墙、框架- 核心筒、抗震墙、筒中筒和多、高层钢结构,除按规 定进行多遇地震作用下的截面抗震验算外,尚应进行 罕遇地震作用下的变形验算;
4、结构在罕遇地震作用下薄弱层的弹塑性变形验算, 符合下列要求:
0 0.1
(Tg T
)0.9 max
[0.20.9 0.02(T 5Tg )]max
T (s)
Tg
5Tg
6.0
计算以下四种情况的地震影响系数α,已知阻尼比为0.05。
设防烈 设计地震 地震类 场地类 自振周
度
分组
别
别
期
α
1 8(0.2g)
一
多遇
I 0.263秒
2 8(0.2g)
二
罕遇
II 1.857秒
3.2 地震作用 3.2.1 单质点弹性体系的地震反应
图4-2 单自由度弹性体系在p(t)下的振动
(1)运动方程的建立
I(t) R(t) S(t) P(t)
mx(t) Cx(t) Kx(t) P(t) (4 5)
地震作用标准值计算
![地震作用标准值计算](https://img.taocdn.com/s3/m/9898f5d29e3143323868930b.png)
地震作用标准值计算(1)各层总重力荷载代表值计算1.屋面层总重力荷载代表值女儿墙重量:(1.95+0.51+0.875)×[(11.4+0.2)×2+(25+0.2)×2-(2.5+0.4×10+0.5×4)]=217.11kN屋面板重量:6.4×(4-0.2-0.15)×(11.4-0.2-0.3-0.2)×2=499.90kN7.7×(6-0.15×2)×(11.4-0.2-0.3-0.2)×2=939.25kN5.9×[(6-0.2-0.15)×(2.5-0.3)×2+(2.5-0.3)×(3.6-0.3)]+6.4×(1.8-0.25)×(2.5-0.3)=211.33kN499.90+939.25+211.33=1650.48kN电梯机房重量:0.91+2.366+1.333+3.465+1.43+3.887+25×0.3×0.3×1.5×2+25×0.2×0.2×(1.8×2+2.5×2)+5.9×1.6×2.3=50.453kN楼梯间重量:(7.275+15.132+3.958)×2+(1.275+1.716+0.449+1.62)+(2.61+5.148+1.346+0.486)=67.38kN4.5×[(2.5-0.4)+(2.5-0.25-0.2)+(5.4-0.3-0.25)+(5.4-0.3-0.2)]=62.55kN3.89+4.031+0.432+0.571=8.924kN25×3×(0.4×0.4×3+0.5×0.5)=54.75kN5.9×(5.4-0.35)×(2.5-0.3)=65.55kN67.38+62.55+8.924+54.75+65.55=259.15kN楼梯板重量:25×(0.3×0.15/2×1.1×9+3×1.1×0.12+0.2×0.3×2.5)+3×1.1×2.3+17×0.02×[1.1×2.3+2.3×(0.2+0.2+0.2)+1.1×3]+2.12=31.38kN8层柱重量:25×1.5×(0.4×0.4×9+0.5×0.5×5)=100.88kN17×0.02×1.5×(0.4×4×9+0.5×4×5-0.2×2×14)=9.59kN100.88+9.59=110.47kN梁重量:4.5×[(11.4+0.2)×7-0.4×12-0.5×8-0.3)]=324.45kN4.5×[(25+0.2)×3-0.4×12-0.5×8]=300.6kN1.5×(2.5-0.3)=3.3kN2.122×2+4.243×2+3.89+4.031+3.89+4.972+1.428×2+2.418×2+0.432+0.714×2+1.18×2+0.571+0.443=42.44kN324.45+300.6+3.3+42.44=670.79kN7层墙、门、窗重量:54.253×2+28.925×2+42.844+41.342+40.291+14.463×2+15.826×2+18.378+11.172×2+8.629+14.463×2+23.598×2+5.573+8.374+8.439×2+15.06×2+10.184+8.706×2+26.611+5.597×2=603.23kN7层柱重量:25×3×(0.4×0.4×12+0.5×0.5×8)=294kN17×0.02×3×(0.4×4+0.7×4+1.7×2+1×2+0.6×3+1.4×2+0.9×2+1)=17.544kN294+17.544=311.544kN因屋面可变载不计入重力荷载代表值,故屋面层的重力荷载代表值为:G=217.11+1650.48+50.453+259.15+31.38+110.47+670.79+603.23/2+311.544/2 7=3447.22kN2-6层重力荷载代表值楼面板重量:3.5×(4-0.35)×(11.4-0.2-2.25-0.2)×2=223.563kN3.0×[(2-0.25)×(2.5-0.3)+(4-0.25)×(2.5-0.3)+(6-0.3)×(2.9-0.25)+(2.5-0.3)×(6-0.55)+(2-0.25)×(4-0.55)]×2+3.0×(3.6-0.3)×(2.5-0.3)=296.325kN4.8×(6-0.3)×(6-0.35)×2=309.168kN3.5×(1.5-0.2)×(6-0.3)×2=51.87kN223.563+296.325+309.168+51.87=880.93kN柱重量:25×3×(0.4×0.4×12+0.5×0.5×8)=294kN17×0.02×3×(0.4×4+0.7×4+1.7×2+1×2+0.6×3+1.4×2+0.9×2+1)=17.544kN294+17.544=311.544kN楼梯板重量:31.38×2=62.76kN梁重量:[1.5×(2.5-0.3)+3×(6-0.3)+1.5×(4-0.35)+3×(6-0.3)+1×(2-0.25)]×2+1×(5-0.6)=93.85kN4.5×1.5×4=27kN0.431×2+2.267×2+0.422+0.305+0.384+2.648×2+0.22×2+0.676×4=14.947kN670.79+93.85+27+14.947=806.59kN墙、门、窗、栏杆重量:603.23+1.06×4+4.239×2=615.948kN楼面可变荷载:2.0×[(25-0.1)×(11.4-0.1)-1.8×2.5]+2.5×6×1.5×2=598.74kN因楼面可变荷载按等效均布荷载计算,要乘以组合值系数0.5,故2-6层的总重力荷载G=880.93+311.544+62.76+806.59+615.948+0.5×598.74=2977.14kN代表值为:621层重力荷载代表值楼面板重量:3.5×(4-0.35)×(11.4-0.2-2.25-0.2)×2=223.563kN3.0×[(2-0.25)×(2.5-0.3)+(4-0.25)×(2.5-0.3)+(6-0.3)×(2.9-0.25)+(2.5-0.3)×(6-0.55)+(2-0.25)×(4-0.55)]×2+3.0×(3.6-0.3)×(2.5-0.3)=296.325kN4.8×(6-0.3)×(6-0.35)×2=309.168kN3.5×(1.5-0.2)×(6-0.3)×2=51.87kN223.563+296.325+309.168+51.87=880.93kN柱重量:25×3.8×(0.4×0.4×12+0.5×0.5×8)=372.4kN372.4+17.544=389.944kN楼梯板重量:31.38×2=62.76kN梁重量:[1.5×(2.5-0.3)+3×(6-0.3)+1.5×(4-0.35)+3×(6-0.3)+1×(2-0.25)]×2+1×(5-0.6)=93.85kN4.5×1.5×4=27kN0.431×2+2.267×2+0.422+0.305+0.384+2.648×2+0.22×2+0.676×4=14.947kN670.79+93.85+27+14.947=806.59kN墙、门、窗、栏杆重量:因1层平面布置与标准层大致相同,此项荷载相差不大,故大小取同标准层此项荷载,为615.948kN楼面可变荷载:2.0×[(25-0.1)×(11.4-0.1)-1.8×2.5]+2.5×6×1.5×2=598.74kN因楼面可变荷载按等效均布荷载计算,要乘以组合值系数0.5,故1层的总重力荷载代表值为:G=880.93+(389.944+311.544)/2+62.76+806.59+615.948+0.5×598.74=3016.34kN 1(2)全楼横向水平地震作用计算 1.结构基本自振周期计算采用顶点位移法计算,此方法计算周期必须先求出结构在重力荷载代表值水平作用于各质点产生的顶点位移,计算过程见表3-2-15。
建筑结构抗震设计:结构自振周期和振型的计算
![建筑结构抗震设计:结构自振周期和振型的计算](https://img.taocdn.com/s3/m/9af0bb5e4b7302768e9951e79b89680203d86b0b.png)
体系的最大位能:
1
多质点体系 Umax 2 F max
xn (t)
1 {X }T [K ]{X }
xi (t)
2
体系的最大动能:
多质点体系
Tmax
1 2
vmax
2
m
1 2{ X }T [M ]{ X }
2
体系按基本频率1作自由振动,相应的基本振型取一 种近似形式,即假设各质点的重力荷载Gi作为水平作用产 生的弹性变形曲线.
四、 结构自振周期和振型的计算
在进行结构的地震作用计算时,必须求出结 构的自振周期和振型,在进行最简单的计算(底 部剪力法)时,也要计算结构的基本周期。
结构自振周期的计算方法有: 1、理论与近似的计算 2、经验公式 3、试验方法等
(一)、理论与近似计算方法
1、近似方法1——能量法(Rayleigh法) 原理:能量守恒 一个无阻尼的弹性体系在自由振动中任何时
弯剪型
T1 1.7 T
顶点位移 单位为米,
可用于计算一般多高层框架结构的基本周期,顶点位移 的计算,按照框架在集中于楼盖的重力荷载作为水平作用产 以弯矩产生的变形为主,如剪力墙结构
剪切型变形:以剪力产生的变形为主,如框架结构
弯剪型变形:弯矩、剪力产生的变形都不能忽略,如
2、折算质量法
原理:在计算多质点体系的基本频率时, 用一个单质点体系代替原体系,使这个单质点 体系的自振周期与原体系的基本频率相等或接 近,这个单质点体系的质量就称为折算质量。 这个单质点体系的约束条件和刚度应与原体系 的完全相同。
折算质量应根据替代原体系的单质点体系振 动时的最大动能等于原体系的最大动能的条件 确定。
刻的总能量(位能与动能之和)不变。
房屋震动强度计算公式
![房屋震动强度计算公式](https://img.taocdn.com/s3/m/638b017fa22d7375a417866fb84ae45c3b35c2a5.png)
房屋震动强度计算公式地震是一种自然灾害,它给人们的生命和财产安全带来了巨大威胁。
在地震发生后,房屋的震动强度成为了人们关注的焦点之一。
因此,了解房屋震动强度的计算公式对于地震防灾工作至关重要。
本文将介绍房屋震动强度的计算公式,并对其进行详细解析。
首先,我们需要了解房屋震动强度的定义。
房屋震动强度是指房屋在地震作用下所受到的震动力的大小。
通常情况下,房屋震动强度的计算公式可以通过以下步骤进行推导:1. 确定地震动力谱。
地震动力谱是描述地震波在时间和频率上的变化规律的曲线。
在地震工程中,通常使用地震动力谱来表示地震作用下的力的大小。
地震动力谱可以通过地震波的记录数据进行分析得到。
2. 计算房屋的动力响应。
房屋在地震作用下会产生动力响应,即房屋结构受到的震动力。
动力响应可以通过房屋结构的振动方程进行计算得到。
3. 确定房屋的震动强度。
房屋的震动强度可以通过动力响应和地震动力谱进行计算得到。
一般情况下,房屋的震动强度可以使用峰值加速度来表示,即房屋在地震作用下受到的最大加速度。
根据以上步骤,房屋震动强度的计算公式可以表示为:\[ I = \frac{A}{g} \]其中,I表示房屋的震动强度,A表示房屋在地震作用下受到的峰值加速度,g 表示重力加速度。
上述公式是房屋震动强度的简化计算公式,它可以用来快速估算房屋在地震作用下的震动强度。
然而,实际工程中,由于地震波的复杂性和房屋结构的多样性,通常需要进行更为复杂的计算和分析。
在工程实践中,人们通常会通过有限元分析等方法来计算房屋在地震作用下的动力响应,进而确定房屋的震动强度。
此外,房屋震动强度的计算还需要考虑到房屋结构的特性、地基条件、地震波的频率特性等因素。
因此,对于不同类型的房屋结构和不同地区的地震作用,需要进行相应的分析和计算,以确定房屋的合理设计参数。
在实际工程中,房屋震动强度的计算是地震工程设计的重要内容之一。
合理的房屋震动强度计算可以为房屋结构的设计提供重要参考,有助于提高房屋的抗震性能,减少地震灾害对人们生命和财产的损失。
第四章地震作用计算
![第四章地震作用计算](https://img.taocdn.com/s3/m/7e496990bceb19e8b8f6bab3.png)
水平地震作用计算
一、产生扭转地震反应的原因 两方面:建筑自身的原因和地震地面运动的原因。 1. 建筑结构的偏心
m
产生偏心的原因:
a. 建筑物的柱体与墙体等抗 侧力构件布置不对称。 b. 建筑物的平面不对称。
jk --- 为 j振型与k振型的耦联系数;
T --- 为 k振型与j振型的自振周期比;
考虑双向水平地震作用下扭转的地震作用效应
2 S EK S x (0.85S y ) 2
S EK S (0.85S x )
2
2
取两者中较大值
S x ( S y ) --- 为仅考虑x(y)向水平地震作用时的地震作用效应。
目前,国外抗震设计规定中要求考虑竖向地震作用的 结构或构件有: 1. 长悬臂结构; 2. 大跨度结构; 3. 高耸结构和较高的高层建筑; 4. 以轴向力为主的结构构件(柱或悬挂结构); 5. 砌体结构; 6. 突出于建筑顶部的小构件。
我国抗震设计规范规定前三类结构要考虑向上或向下 竖向地震作用的不利影响。
§地震作用计算
一、结构抗震计算原则 各类建筑结构的抗震计算应遵循下列原则:
1 、一般情况下,可在建筑结构的两个主轴方向分别考虑水平地震作用 并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担。 2 、有斜交抗侧力构件的结构,当相交角度大于15度时,应分别考虑各 抗侧力构件方向的水平地震作用。 3 、质量和刚度分布明显不对称的结构,应考虑双向水平地震作用下的 扭转影响其他情况宜采用调整地震作用效应的方法考虑扭转影响。 4 、 8度和9度时的大跨度结构、长悬臂结构,9度时的高层建筑,应考虑 竖向地震作用。
结构地震反应分析与抗震计算
![结构地震反应分析与抗震计算](https://img.taocdn.com/s3/m/b773d089ad02de80d5d84017.png)
4.直接动力分析理论---时程分析法 将实际地震加速度时程记录(简称地震记录 earth-
quakerecord)作为动荷载输入,进行结构的地震响应分 析。对结构进行弹塑性计算。
5.非线性静力分析方法(Push Over Analysis) 此外,地震、脉动风荷载等都是随机荷载,当然可以用 随机振动理论来进行地震反应的统计特征分析; 还可以以地震时输入结构的能量进行设计。使结构所吸收 的能量不致造成结构破坏为依据的理论等。 但这些方法还没有列入抗震设计规范,因此未被抗震设计 普遍使用 。
..
.
m x t c x t kx t F t
发现地面运动对质点的影响,相当于在质点上加了一个动荷载
..
其数值大小是 m xg t方向与地面加速度方向相反。
13
运动方程的求解(参见高数和结构力学下册)书.
二、 地震反应谱
单自由度体系在给定的地震作用下某个最大反应与体系 自振周期的关系曲线称为该反应的地震反应谱。
第三章 结构地震反应分析与抗震计算
§3.1 概述
一、几个基本概念:
1、结构地震作用:是指地面震动在结构上产生动 力荷载,俗称为地震荷载,属于间接作用。 2、结构地震反应:由地震引起的结构振动,包括 结构的位移反应、速度反应、加速度反应及内力 和变形 等。 3、结构动力特性: 结构的自振周期、振动频率、 阻尼、振型等。 4、结构的地震反应分析:是结构地震作用的计算 方法,应属于结构动力学的范畴。
G ---重力荷载代表值 ζ:阻尼比
k ---地震系数(反映震级、震中距、地基等的影响)
---动力系数(反映结构的特性,如周期、阻尼等的影响)
k
目前,世界上普遍采用的方法。
5
高层建筑结构设计第四章___水平地震作用计算及位移内力分析
![高层建筑结构设计第四章___水平地震作用计算及位移内力分析](https://img.taocdn.com/s3/m/5cb3d529e97101f69e3143323968011ca200f774.png)
第四章水平地震作用计算及位移内力分析对于高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可以采用底部剪力法的简化方法计算水平地震作用。
底部剪力法适用于本工程。
此法是将结构简化为作用于各楼层位置的多质点葫芦串,结构底部总剪力与地震影响系数及各质点的重力荷载代表值有关。
为计算各质点的重力荷载代表值,先分别计算各楼面层梁板柱的重量,各楼层墙体的重量,然后按以楼层为中心上下各半个楼层的重量集中于该楼层的原则计算各质点的重力荷载代表值。
水平地震作用计算还涉及结构的自振周期,本工程采用假想顶点位移法确定。
水平作用下内力及位移分析均采用D值法计算。
一.重力荷载代表值计算1.各层梁、板、柱自重标准值见下表:梁重力荷载代表值2.墙自重标准值:3.各层(各质点)自重标准值计算一层(墙+梁+板+柱):(1813.69+2160.86)/2+996.01+2350.823+(824.26+829.44)/2 =6160.958 kN二层(墙+梁+板+柱):2160.86+996.01+2350.823+829.44=6337.13kN三层(墙+梁+板+柱):2160.86+996.01+2350.823+829.44=6337.13kN四层(墙+梁+板+柱):2160.86+996.01+2350.823+829.44=6337.13kN五层(墙+梁+板+柱):2160.86/2+258.32+996.01+2434.97+829.44/2=5184.45kN4.重力荷载代表值重力荷载代表值G取结构和构件自重标准值和可变荷载组合值之和,各可变荷载组合值取为①雪荷载:0.5;②屋面活载:0.0;③按等效均布荷载计算的楼面活载:0.5;即,G=恒载+0.5×(楼板面积+楼梯面积)×活载标准值。
一层:G1=6160.958 +0.5×(549.495*2.0+44.4*2.5)=6765.953KN二层:G2=6337.13+0.5×(549.495*2.0+44.4*2.5)=6942.125KN三层:G3=6337.13+0.5×(549.495*2.0+44.4*2.5)=6942.125KN四层:G4=6337.13+0.5×(549.495*2.0+44.4*2.5)=6942.125KN五层:G5=5184.45+0.5×593.895*0.2=5303.229KN=5303.23KN6942.13KN6942.13KN6942.13KN=6765.95KN重力荷载代表值二.侧移刚度的计算地震作用是根据各受力构件的抗侧移刚度来分配的,同时,若用顶点位移法求结构的自振周期时也要用到结构的抗侧刚度,为此先计算各楼层柱的侧移刚度。
竖向地震作用计算
![竖向地震作用计算](https://img.taocdn.com/s3/m/01917e81dd88d0d233d46a8a.png)
楼 层 1 2 3
高 度(m)
4 8 12 16 20
Fvi(KN)
楼 层
6 7 8 9 10
高 度(m)
24 28 32 36 40
Fvi(KN) 3281.88 3828.86 4375.84 4922.82 5056.85
546.98 1093.96 1640.94
4
5
2187.92
2734.9
力最小值的要求,即在进行结构抗震验算时,结构任一楼层的水平地震剪力应满足 下式要求:来自Veki G j
j i
n
Veki 第i层对应于水平地震作用 标准值的楼层剪力;
剪力系数,按照表 3.7取值。
G j j层的重力荷载代表值
3.3 竖向地震作用的计算
《抗震规范》规定,8度、9度时的大跨度结构和长悬臂结构,以及9度时的 高层建筑,应考虑竖向地震作用的影响。竖向地震作用的计算应根据结构的 不同类型选用不同的计算方法:对于高层建筑、烟囱和类似 高耸结构,可采 用反应谱法;对于平板网架、大跨度结构及长悬臂结构,一般采用静力法。 3.3.1 高层建筑和高耸结构的的竖向地震作用计算
1)多遇地震下结构的弹性变形验算
ue e h
2)罕遇地震作用下结构的弹塑性变形验算
up p h
本 章 结 束!
FEvk v maxGeq
Fvi Gi H i
G
j 1
n
FEvk
j
Hj
Geq 0.75 Gi
i 1
v max 0.65max
n
例题:
某钢筋混凝土高层办公楼建筑共10层,每层层高均为4m,总高40m,质 量和侧向刚度沿高度分布比较均匀,属于规则结构。该建筑位于9度设防区, 场地类别为II类,设计地震分组分组为第二组,设计基本地震加速度为0.4g。 已知屋面、楼面永久荷载标准值为1500KN,屋面及各层楼面活荷载标准值为 2450KN,结构基本自振周期为1.0s。试计算该结构的竖向地震作用标准值, 以及每层的竖向地震作用标准值。 解:(1)该建筑位移9度设防区,因此,根据表格3-4得:
建筑结构地震作用计算方法及地震设计参数的选取
![建筑结构地震作用计算方法及地震设计参数的选取](https://img.taocdn.com/s3/m/4b3d2254680203d8cf2f24b2.png)
建筑结构地震作用计算方法及地震设计参数的选取发表时间:2020-05-15T09:44:51.097Z 来源:《基层建设》2020年第3期作者:白德钦[导读] 摘要:建筑结构抗震设计在整个结构设计过程中至关重要、贯穿始终。
北京东方华脉工程设计有限公司北京 100044摘要:建筑结构抗震设计在整个结构设计过程中至关重要、贯穿始终。
本文结合现行规范对设计过程中常用的抗震设计方法(如振型分解反应谱法、时程分析法等)进行分类、总结,并对重要的、易混淆难理解的抗震参数(如偶然偏心、双向地震等)加以区分,方便结构设计时合理的选取。
关键词:地震作用计算;振型分解反应谱法;偶然偏心;双向地震《建筑抗震设计规范GB50011》(以下简称《抗规》)规定:6度时不规则建筑、建造于Ⅳ类场地上较高的高层建筑以及7,8,9度的多层建筑均需进行地震作用计算。
《高层建筑混凝土结构技术规程(JGJ3)》(以下简称《高规》)规定:各抗震设防类别的高层建筑均需进行地震作用计算。
可以说除规则的6度区多层建筑外,均应进行地震作用计算。
由于抗震计算软件基本能完成这部分的计算,但在实际项目中,我们应该弄清楚不同结构对应的抗震计算方法以及相应的计算参数的选取,这样才能正确高效的完成结构抗震设计。
本文结合现行规范对设计过程中常用的抗震设计方法进行分类、总结,并对重要的抗震设计参数加以区分,方便设计时合理应用。
一、地震作用计算方法1、底部剪力法《抗规》《高规》中均已明确:高度不超40m、以及剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法计算地震作用。
底部剪力法为简化的计算方法,它与振型分解反应谱法均属于反应谱法范畴,此方法主要适用于手算或单层厂房等单质点体系的计算,目前多高层结构软件计算均不采用,而使用更为准确的振型分解反应谱法。
2、振型分解反应谱法除了需要时程分析法进行设防地震(中震)、罕遇(大震)计算的建筑结构外,此方法为大部分多高层在多遇地震作用下进行地震作用计算的主流计算方法,是目前结构计算软件普遍采用的方法,主要应用于多遇地震(小震)的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6800 支座刚度计算 支座尺寸(矩形)a(m)长度 1 0.5 2 支座尺寸(圆形)半径 1 2 0.8 墩号 刚度 1 5538.461538 2 5026.54816 墩柱刚度 1 19700 2 9190 K1 K2 63390.05819 173340
16500 b(m)宽度 h橡胶层厚度 剪切模量G(kN/m2) 0.6 0.09 0.065 1200 h(m)高度 h橡胶层厚度 0.8 0.16 0.12 h(m)高度
ቤተ መጻሕፍቲ ባይዱ半径
柔度 支座数 总刚度 0.000180556 3 16615.3846 0.000198944 3 15079.6445 排数 每排根数 总刚度 1 3 59100 1 3 27570 Gtp Gsp g ω *ω 5058 34840 9.81 12.9309451
水平设计加速度计算 Ci(抗震重要性系数,见表3.1.4-2) Cs(场地系数,见表5.2.2) Cd(阻尼系数,见表3.2.2) A(水平向设计基本地震动加速度峰值 Tg 1.50093 0.34 1 1 1.962 0.4 S(T<0.1) S(0.1<T<Tg) S(T>Tg) 总地震水平力 15.09948958 1.50093 0.343602016 0.343602016 1220.295029 Smax
桩号
上部结构产生地震力计算 支座刚度 桩柱刚度 组合刚度 Eihs该墩地震水平推力 1 16615.38462 59100 12969.2167 348.3331352 2 15079.64448 27570 9747.931158 261.8143794
墩身产生地震力计算 桩号 1 2 桩号 1 2 Gp 534 1995 Δ0 2.05E-05 2.72E-05 Gcp 0 0 Δ 1/2 3.49E-05 6.45E-05 Gtp 1.81E+02 5.69E+02 Δ1 5.07E-05 1.09E-04 Xf Xf/2 4.04E-01 6.88E-01 2.50E-01 5.92E-01 Ehp该墩地震水平推力 6.35E+00 1.99E+01
剪切模量G(kN/m2)
ω T 3.595962 1.747289
T 1.747289
η 3.39E-01 2.85E-01