最新七年级数学上册一元一次方程中考真题汇编[解析版]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)
1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:
(1)求=________.
(2)若,则 =________
(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是
________(直接写答案)
【答案】(1)7
(2)7或-3
(3)-1,0,1,2.
【解析】【解答】(1)|5-(-2)|=7,
故答案为:7;
( 2 )|x-2|=5,
x-2=5或x-2=-5,
x=7或-3,
故答案为:7或-3;
( 3 )如图,
当x+1=0时x=-1,
当x-2=0时x=2,
如数轴,通过观察:-1到2之间的数有-1,0,1,2,
都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,
故答案为: -1,0,1,2.
【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.
2.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.
(1)阅读下列材料:
问题:利用一元一次方程将化成分数.
设.
由,可知,
即.(请你体会将方程两边都乘以10起到的作用)
可解得,即.填空:将写成分数形式为________ .
(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程. 【答案】(1)
(2)解:设 =m,方程两边都乘以100,可得100× =100x
由=0.7373…,可知100× =73.7373…=73+0.73
即73+x=100x
可解得x= ,
即 =
【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,
∴x= .
故答案是:;
(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.
3.已知关于的方程的解也是关于的方程的解.(1)求、的值;
(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.
【答案】(1)解:(m−14)=−2,
m−14=−6m=8,
∵关于m的方程的解也是关于x的方程的解.
∴x=8,
将x=8,代入方程得:
解得:n=4,
故m=8,n=4;
(2)解:由(1)知:AB=8, =4,
①当点P在线段AB上时,如图所示:
∵AB=8, =4,
∴AP= ,BP= ,
∵点Q为PB的中点,
∴PQ=BQ= BP= ,
∴AQ=AP+PQ= + = ;
②当点P在线段AB的延长线上时,如图所示:
∵AB=8, =4,
∴PB= ,
∵点Q为PB的中点,
∴PQ=BQ= ,
∴AQ=AB+BQ=8+ =
故AQ= 或 .
【解析】【分析】(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;
4.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.
(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?
(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?
【答案】(1)解:设两厂同时处理每天需xh完成,
根据题意,得(55+45)x=700,解得x=7.
答:甲、乙两厂同时处理每天需7 h.
(2)解:设安排甲厂处理y h,
根据题意,得550y+495× ≤7370,
解得y≥6.
∴y的最小值为6.
答:至少安排甲厂处理6 h.
【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出方程,求出x的值即可;
(2)设甲厂需要y小时,根据该市每天用于处理垃圾的费用=甲厂处理垃圾的费用+乙厂处理垃圾的费用,每厂处理垃圾的费用=每厂每小时处理垃圾的费用×每天处理垃圾的时间,列出不等式,求出y的取值范围,再求其中的最小值即可.
5.对于三个数a,b,c,用 b,表示a,b,c这三个数的平均数,用 b,表示a,b,c这三个数中最小的数,如: 2,, 2, .
(1)若,求x的值;
(2)已知, 0,,是否存在一个x值,使得
0,若存在,请求出x的值;若不存在,请说明理由.
【答案】(1)解:由题意:,
,
解得: .
(2)解:由题意:,
若,则 .
解得 .
此时与条件矛盾;
若,则 .
解得 .
此时与条件矛盾;
不存在.
【解析】【分析】(1)由,结合题意得,解之可得;(2)由,再分和两种情况分别求解可得.
6.试根据图中信息,解答下列问题.
(1)一次性购买6根跳绳需________元,一次性购买12根跳绳需________元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
【答案】(1)150;240
(2)解:设小红购买x跳绳根,那么小明购买(x-2)根跳绳,
25x×0.8=25(x-2)-5,
解得: x=11;
小明购买了:11-2=9根.
答:小红购买11根跳绳.
【解析】【解答】解:(1)一次性购买6根跳绳需25×6=150(元);
一次性购买12根跳绳需25×12×0.8=240(元);
故答案为:150;240.
【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.