(完整版)七年级下册数学三角形全等动点问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学
全等三角形之动点问题专题(B类)
一、考点、热点回顾
动点型问题是近年来中考的一个热点问题。
动态几何问题就是以几何知识和
具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等,对运动变化过程伴随的数量关系和图形的位置关系等进行探究。
动点型问题集几何与代数知识于一体,数形结合,有较强的综合性,题目灵活多变,动中有静,动静结合,能够在运动变化中发展学生空间想象能力,综合分析能力。
《等边三角形中的动点问题》是首先从三角形一边上的单动点运动,引起三角形的边与角的变化,判断三角形的形状变化;其次探讨三角形两边上的双动点运动,引起三角形的角与边的变化,再从在三角边上运动到三角形的边的延长线上运动,由三角形的形状探究到三角形的面积的探究等。
本设计是以等边三角形为主线,点的运动引起边、角的变化,三角形的形状的判断及三角形面积的大小,抓住图形中“变”和“不变”,以“不变的”来解决“变”,以达到“以静制动”,变“动态问题”为“静态问题”来解。
对学生分析问题的能力,对图形的想象能
力,动态思维能力的培养和提高有着积极的促进作用。
本节课的教学设计,注意到了问题的层次性,由浅入深,由简单到复杂,从给定结论到结论开放,以等边三角形为载体,动点在三角形的边、延长线上运动等问题串的形式,层层递进,环环相扣,让不同的学生都有收收获,有所成功,
还体现出了分类讨论、等积变换、三角函数等思想方法。
二、典型例题
1、单动点问题
引例:已知,如图△ABC 是边长3cm 的等边三角形. 动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动. 设点P 的运动时间为(s ),那么t=____时,△PBC 是直角 三角形?
2、双动点问题
引例:已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),那么t 为何值时,△PBQ 是直角三角形?
巩固练习,拓展思维
已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.设运动时间为t (s ),那么 当t 为何值时,△DCQ 是等腰三角形?
B
C
P
A C
Q
B
P
A Q
D
B
C
P
A
A
变式练习:1、已知,如图△ABC 是边长3cm 的等边三角形.动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),连接PC. 请探究:在点P 、Q 的运动过程中△PCD 和△QCD 的面积是否相等?
变式练习:2、已知等边三角形△ABC ,(1)动点P 从点A 出发,沿线段AB 向点B 运动,动点Q 从点B 出发,沿线段BC 向点C 运动,连接CP 、AQ 交于M ,如果动点P 、Q 都以相同的速度同时出发,则∠AMP=___度。
(2)若动点P 、Q 继续运动,分别沿射线AB 、BC 方向运动,.∠AMP=60°的结论还成立吗?
二、实战训练
1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = .
Q
D B
C
P
A
2、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF
(2)试证明△DFE是等腰直角三角形
3、如图,在等边ABC
∆的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问
(1)在爬行过程中,CD和BE始终相等吗?
(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中CQE
∠的大小条件不变,求证:︒
CQE
=
∠60
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE 交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确
4、如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.
(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;
(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.
图1 图2 图3
5、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?
6、(2009年本溪)在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .
(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.
①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由;
②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.
A
B
7、 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE.
(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;
(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;
(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.
A E E
A C C D D
B B 图1 图2 A A 备用图 B
C B C 备用图
8、已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;
(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.
9、 直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且
BEC CFA α∠=∠=∠.
(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:
①如图1,若90,90BCA α∠=∠=,则EF BE AF -(填“>”,“<”或“=”号);
②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;
(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.
10、 如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC . (1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论;
(2)将正方形DEFG 绕点D 按顺时针方向旋转,使E 点落在BC 边上,如图2,连接AE 和GC .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.
A B C E F D
D A B C E
F A D F C E B
图1 图2 图3
附加题之等腰三角形(中考重难点之一) 考点1:等腰三角形性质的应用
1. 如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于
E ,FD 与AC 交于
F .求证:BE AF =,AE CF =.
A
B
C
D
E F
2. 两个全等的含30,60角的三角板ADE 和三角板ABC ,如图所示放置,,,E A C 三点在
一条直线上,连结BD ,取BD 的中点M ,连结,ME MC .试判断EMC ∆的形状,并说
明理由.
M
E
D C
B
A
考点2:等腰直角三角形(45度的联想)
1.如图1,四边形ABCD是正方形,M是AB延长线上一点。
直角三角尺的一条直角边
经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM 的平分线BF相交于点F.
⑴如图14―1,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;
③请证明你的上述两猜想.
⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,
使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明
2. 在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中点,DG⊥AC交AB于点G.
(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FH⊥FC,交直线AB于点H.
①求证:DG=DC
②判断FH与FC的数量关系并加以证明.
(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。
在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变.(本小题直接写出结论,不必证明)
同类变式:
已知:△
ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边
D 图G H F
E D C B A
图
经过点A,且60º角的顶点E在BC上滑动,(点E不与点B、C重合),斜边与∠ACM的平分线CF交于点F
(1)如图(1)当点E在BC边得中点位置时
○1猜想AE与EF满足的数量关系是 .
○2连结点E与AB边得中点N,猜想BE和CF满足的数量关系是.
○3请证明你的上述猜想;
(2)如图(2)当点E在BC边得任意位置时,AE和EF有怎样的数量关系,并说明你的理由?
四、课后反馈教学进度:图(1)
E
图(2)
学生掌握情况:
存在问题及改进措施:。