高考数学难点:解析几何题

合集下载

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。

高考数学解析几何问题

高考数学解析几何问题

高考数学解析几何问题全文共四篇示例,供读者参考第一篇示例:高考数学解析几何是高考数学中的一项难点,涉及到几何图形的性质、几何变换和几何推理等内容。

解析几何题在高考数学试卷中占据着很重要的位置,考查学生对几何知识的掌握和运用能力。

解析几何问题通常具有一定的难度,考生在解题时需要运用各种几何知识和方法,进行推理和证明,从而得出正确的答案。

解析几何问题通常涉及到几何图形的性质和特征。

考察直线、平面、圆等几何图形的性质,要求考生能够准确地描述这些图形的特征和性质,理解它们之间的关系。

在解析几何题中,常常会涉及到线段的长度、角的大小、面积和体积等问题,考生需要运用几何知识和相关定理来进行计算和推导,得出正确的结果。

除了几何图形的性质和特征,解析几何问题还会考察几何变换和几何推理的能力。

几何变换包括平移、旋转、对称等操作,要求考生能够理解这些变换的特点和规律,并运用它们解决问题。

在几何推理方面,考生需要通过逻辑推理和几何知识推导出结论,进行证明和论证,完成解析几何问题的解答。

解析几何问题的解答过程需要考生具备一定的数学思维和推理能力。

在解题时,考生需要仔细分析问题,理清问题的要求和条件,找到解题的关键点和思路。

在推理过程中,要注意逻辑严密,善于利用几何知识和定理,进行有效的推理和证明。

通过不断地练习和思考,提高对解析几何问题的掌握和理解能力,增强解题的思维能力和技巧。

在备战高考数学解析几何考试时,考生可以通过以下几个方面进行提升和准备:第一,系统学习几何知识。

掌握几何图形的性质和特征,熟练运用几何定理和公式,理解几何变换和推理的方法,为解析几何问题打下坚实的基础。

第二,多练习解析几何题。

通过大量的练习,熟悉解析几何问题的题型和解题思路,提高解题的速度和准确率,锻炼数学思维和推理能力。

注重思维训练和综合应用。

在解析几何问题中,要善于思考和推理,灵活运用各种方法和技巧,通过综合应用几何知识解决复杂问题,培养数学思维和解题能力。

高中数学解析几何难点

高中数学解析几何难点

高中数学解析几何难点【实用版】目录1.解析几何的概念和基本知识2.解析几何的难点3.如何应对解析几何的难点4.解析几何的实际应用正文一、解析几何的概念和基本知识解析几何是高中数学中的一个重要部分,主要涉及到直线、圆、椭圆、双曲线等几何图形的性质和应用。

解析几何的基本知识包括几何图形的表示方法、几何量的计算、方程的建立和求解等。

掌握这些基本知识对于解决解析几何问题至关重要。

二、解析几何的难点1.计算复杂度高:解析几何问题中,常常需要进行复杂的计算,例如求解方程组、计算向量等。

这些计算既考验学生的计算能力,也需要学生具备一定的逻辑思维能力。

2.几何概念抽象:解析几何中的一些概念相对抽象,如向量、矩阵等,学生需要通过大量的实例和练习来理解和掌握这些概念。

3.应用场景多样化:解析几何问题涉及的应用场景非常丰富,包括几何图形的性质、几何量的计算、方程的建立和求解等。

学生需要具备较强的实际问题解决能力,才能应对多样化的应用场景。

三、如何应对解析几何的难点1.加强基本功:学生应该加强对解析几何基本知识的学习和练习,提高计算能力和逻辑思维能力。

2.多做练习:通过大量的练习,学生可以加深对解析几何概念的理解,提高解题能力。

同时,遇到不会的问题,要勇于请教老师和同学,及时解决问题。

3.培养解题技巧:学生应该学会总结和归纳解析几何问题的解题技巧和方法,形成自己的解题套路。

4.注重实际应用:学生应该关注解析几何在实际生活中的应用,提高自己解决实际问题的能力。

四、解析几何的实际应用解析几何在实际生活中的应用非常广泛,例如在建筑、机械制造、航空航天等领域。

掌握解析几何知识,可以为学生今后的职业发展奠定良好的基础。

高考解析几何题

高考解析几何题

高考解析几何题高考解析几何题的解题技巧与方法解析几何作为高中数学的重要组成部分,在高考数学试题中占有不可忽视的地位。

它主要研究图形的几何性质与代数表达式之间的联系,通过坐标系将几何问题转化为代数问题进行求解。

本文将从几个方面探讨高考解析几何题的解题技巧与方法,帮助考生在面对这类题目时能够更加得心应手。

一、掌握基本概念和公式解析几何的基本概念包括点、线、面的位置关系,以及圆、椭圆、双曲线、抛物线等圆锥曲线的性质。

熟练掌握这些概念及其相关公式是解题的基础。

例如,直线的方程有一般式、点斜式、两点式等,每种形式都有其适用的场合。

圆的标准方程、椭圆的焦点性质等,都需要考生牢记于心。

二、培养图形的直观感知能力解析几何题目往往需要考生能够在脑海中构建出题目所描述的图形,并能够对图形进行操作和变换。

因此,培养良好的图形直观感知能力对于解题至关重要。

考生可以通过多做练习题、观察生活中的几何图形等方式来提高这方面的能力。

三、运用代数方法解决问题解析几何的特点就是将几何问题转化为代数问题。

因此,考生需要掌握如何通过代数运算来求解几何问题。

例如,通过联立方程组求交点,利用向量方法求解角度和距离,或者运用坐标变换简化问题等。

这些方法都需要考生在解题时灵活运用。

四、注意解题步骤的条理性在高考中,解析几何题目往往步骤较多,需要考生条理清晰地进行解题。

首先,要仔细审题,弄清楚题目的要求和所给条件;其次,要合理规划解题步骤,避免在解题过程中出现混乱;最后,要仔细检查,确保每一步的计算都是正确的。

五、总结常见题型和解题模板高考解析几何题目虽然千变万化,但总有规律可循。

考生可以通过总结历年高考题,找出常见的题型和解题模板。

例如,直线与圆的位置关系、动点轨迹问题、最值问题等,都有其特定的解题思路和方法。

掌握这些模板,可以帮助考生在面对新题目时能够迅速找到解题的切入点。

六、提高解题速度和准确性高考是一场与时间赛跑的考试,提高解题速度和准确性是提高分数的关键。

高考解析几何压轴题精选(含答案)

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。

(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。

(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。

(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。

设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

高中数学解析几何难点

高中数学解析几何难点

解析几何典例讲解直线的倾斜角及斜率【例1】一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为A .53-或35-B .32-或23-C .54-或45-D .43-或34-【答案】D【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2)y k x +=-,即230k x y k ---=,则1d =,|55|k +=43k =-或34-.【例2】过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是A .]60π,(B .]30π,(C .]60[π,D .]30[π,【答案】D【解析】设直线l 的倾斜角为θ,由题意可知min max 0,263ππθθ==⨯=.两条直线的位置关系:【例1】设a R ∈,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的充要条件是(1)2a a +=,解得,1a =或2a =-,所以是充分不必要条件。

【例2】已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是()A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=【答案】D【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y -+=.与直线有关的最值:【例1】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是A.B.C.D.【答案】B【解析】易知直线0x my +=过定点(0,0)A ,直线30mx y m --+=过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB+=∠+∠)4PAB π=∠+∈.故选B .【例2】在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为A .1B .2C .3D .4【答案】C【解析】由题意可得d ===(其中cos ϕ=,sin ϕ=),∵1sin()1θϕ--≤≤,d1=+∴当0m =时,d 取得最大值3,故选C .圆的方程:【例1】以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为A .22++2=0x y x B .22++=0x y x C .22+y =0x x -D .22+2=0x y x -【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为1r =,故所求圆的方程为22(1)1x y -+=,即2220x x y -+=,选D .【例2】若圆心在x 轴上、半径为的圆O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是A .22(5x y +=B .22(5x y ++=C .22(5)5x y -+=D .22(5)5x y ++=【答案】D【解析】设圆心(,0)(0)O a a <,则=,即||5a =,解得5a =-,所以圆O 的方程为22(5)5x y ++=.圆与圆的位置关系:【例1】已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为A .4-B 1C .6-D 【答案】A【解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2-4,故所求值为|PC 1|+|PC 2|-4的最小值.又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444=,故选A .【例2】若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m =A .21B .19C .9D .11-【答案】C【解析】由题意得12(0,0),(3,4)C C ,121,r r ==,1212||15C C r r =+=+=,所以9m =.直线与圆的位置关系:【例1】已知点(,)M a b 在圆221:O x y +=外,则直线1ax by +=与圆O 的位置关系是A .相切B .相交C .相离D .不确定【答案】B【解析】点M(a ,b )在圆221x y +=外,∴221a b +>.圆(0,0)O 到直线1ax by +=距离1d =<=圆的半径,故直线与圆相交.所以选B.【例2】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交于y 轴于M 、N 两点,则MN =A .26B .8C .46D .10【答案】C【解析】设过,,A B C 三点的圆的方程为220x y Dx Ey F ++++=,则3100422007500D E F D E F D E F +++=⎧⎪+++=⎨⎪-++=⎩,解得2,4,20D E F =-==-,所求圆的方程为2224200x y x y +-+-=,令0x =,得24200y y +-=,设1(0,)M y ,2(0,)N y ,则124y y +=-,1220y y ⋅=-,所以12||||M N y y =-=.【例3】若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(33-,33)B .(33-,0) (0,33)C .[3-,3]D .(-∞,3-)(3,+∞)【答案】B【解析】221:(1)1C x y -+=,2C 表示两条直线即x 轴和直线l :(1)y m x =+,显然x 轴与1C 有两个交点,由题意l 与2C 相交,所以1C 的圆心到l的距离1d r ==,解得33(,)33m ∈-,又当0m =时,直线l 与x 轴重合,此时只有两个交点,不符合题意.故选B .与圆有关的最值问题:【例1】已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠= ,则m 的最大值为A .7B .6C .5D .4【答案】B【解析】因为圆C 的圆心为(3,4),半径为1,||5OC =,所以以原点为圆心、以m 为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B .【例2】在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为A .45πB .34πC.(6π-D .54π【答案】A【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y +-=相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线240x y +-=的距离,此时2r =,得r =,圆C 的面积的最小值为245S r ππ==.圆锥曲线的方程:【例1】设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --,将点B 坐标带入椭圆方程得22221()53(13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.【例2】已知双曲线22221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】由126d d +=得双曲线的右焦点到渐近线的距离为3,所以3b =.因为22221(0,0)x y a b a b -=>>的离心率为2,所以2c a =,所以2224a b a +=,所以2294a a +=,解得23a =,所以双曲线的方程为22139x y -=.【例3】已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A.2x y =B.2x y =C .28x y =D .216x y=【答案】D【解析】因为双曲线1C :22221(0,0)x y a b a b -=>>的离心率为2,所以2.c b a=⇒=又渐近线方程为0,bx ay ±=所以双曲线1C0.y ±=而抛物22:2(0)C x py p =>的焦点坐标为(0,),2p||228p p =⇒=.故选D .椭圆、双曲线离心率:【例1】已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .14【答案】D【解析】由题意可得椭圆的焦点在x 轴上,如图所示,设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠ F F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +,即点(2)P c .∵点P 在过点A ,且斜率为36的直线上,∴3326c a =+,解得14c a =.∴14e =,故选D .【例2】设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1|||PF OP =,则C 的离心率为AB .2CD【答案】C【解析】不妨设一条渐近线的方程为b y x a =,则2F 到b y x a =的距离d b ==,在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得22212)cos cos 2a c aPOF POF ac c +-∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C .焦点弦问题:【例1】椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于【答案】13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-.【例2】已知双曲线C :2213-=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若∆OMN 为直角三角形,则||MN =A .32B .3C.D .4【答案】B【解析】因为双曲线2213-=x y 的渐近线方程为33=±y x ,所以60∠= MON .不妨设过点F 的直线与直线33=y x 交于点M ,由∆OMN 为直角三角形,不妨设90∠= OMN ,则60∠= MFO ,又直线MN 过点(2,0)F ,所以直线MN的方程为2)=-y x,由2)33⎧=-⎪⎨=⎪⎩y x y x ,得3232⎧=⎪⎪⎨⎪=⎪⎩x y ,所以33(,)22M,所以||=OM|||3==MN OM .故选B .【例3】已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠= ,则k =______.【答案】2【解析】法一由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为(1)y k x =-(0)k ≠,由2(1)4y k x y x =-⎧⎨=⎩,消去y 得22(1)4k x x -=,即2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y ,则212224k x x k ++=,121x x =.由2(1)4y k x y x =-⎧⎨=⎩,消去x 得214(1)y y k =+,即2440y y k --=,则124y y k+=,124y y =-,由90AMB ∠=,得1122(1,1)(1,1)MA MB x y x y ⋅=+-⋅+- 1212121241()10x x x x y y y y =++++-++=,将212224k x x k++=,121x x =与124y y k +=,124y y =-代入,得2k =.解法二设抛物线的焦点为F ,11(,)A x y ,22(,)B x y ,则21122244y x y x ⎧=⎨=⎩,所以2212124()y y x x -=-,则1212124y y k x x y y -==-+,取AB 的中点00(,)M x y ',分别过点A ,B 做准线1x =-的垂线,垂足分别为A ',B ',又90MB ∠= ,点M 在准线1x =-上,所以111||||(||||)(||||)222MM AB AF BF AA BB '''==+=+.又M '为AB 的中点,所以MM '平行于x 轴,且01y =,所以122y y +=,所以2k =.中点弦问题:【例1】过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于.【答案】22【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得1212121222()()()()0x x x x y y y y a b -+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221(02a b +⨯-=,得222a b =,整理222a c =,所以22e =.【例2】已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB的中点为(12,15)N --,则E 的方程式为A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=【答案】B【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即2222112222221,1x y x y a b a b -=-=,则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B .【例3】设椭圆C:()222210x y a b a b+=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.【解析】(Ⅰ)将(0,4)代入C 的方程得2161b =,∴b =4,又35c e a ==得222925a b a -=即2169125a -=,∴a =5,∴C 的方程为2212516x y +=.(Ⅱ)过点()3,0且斜率为45的直线方程为()435y x =-,设直线与C的交点为11(,)A x y ,22(,)B x y ,将直线方程()435y x =-代入C 的方程,得()22312525x x -+=,即2380x x --=,解得132x =,232x =,∴AB 的中点坐标12322x x x +==,()1212266255y y y x x +==+-=-,即中点为36,25⎛⎫- ⎪⎝⎭.定值、定点问题:【例1】已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(1,)2P =-,4(1,)2P =中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l过定点.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b+>+知,C 不经过点1P ,所以点2P 在C 上.因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(t,).则121k k +=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=,由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-)【例2】已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a .所以椭圆C 的方程为1422=+y x .(Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线P A 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M .直线PB 的方程为1100+-=x x y y .令0=y ,得100--=y xx N .从而12200-+=-=y x x AN N .所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.最值范围问题:【例1】在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离心率为32,直线y x =被椭圆C截得的线段长为5.(I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.【解析】(I)由32a =,可得224ab =.椭圆C 的方程可化简为2224x y a +=.将y x =代入可得5x =±,55=,可得2a =.因此1b =,所以椭圆C 的方程为2214x y +=.(Ⅱ)(ⅰ)设111122(,)(0),(,)A x y x y D x y ≠,则11(,)B x y --,因为直线AB 的斜率11AB y k x =,又AB AD ⊥,所以直线AD 的斜率11x k y =-,设直线AD 的方程为y kx m =+,由题意知0,0k m ≠≠,由2214y kx mx y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x mkx m +++-=.所以122814mk x x k +=-+,因此121222()214m y y k x x m k +=++=+,由题意知,12x x ≠,所以1211121144y y y k x x k x +==-=+,所以直线BD 的方程为1111()4y y y x x x +=+,令0y =,得13x x =,即1(3,0)M x .可得1212y k x =-.所以1212k k =-,即12λ=-.因此存在常数12λ=-使得结论成立.(ⅱ)直线BD 的方程1111()4y y y x x x +=+,令0x =,得134y y =-,即13(0,)4N y -,由(ⅰ)知1(3,0)M x ,可得OMN ∆的面积11111393||||||||248S x y x y =⨯⨯=,因为221111||||14x x y y ≤+=,当且仅当11||2||22x y ==时等号成立,此时S 取得最大值98,所以OMN ∆的面积的最大值为98.【例2】如图,已知抛物线2x y =.点11(,)24A -,39(,24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PA PQ ⋅的最大值.【解析】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-。

高考数学解析几何练习题及答案

高考数学解析几何练习题及答案

高考数学解析几何练习题及答案解析几何是高考数学中的一个重要知识点,对于考生来说具有一定的难度。

为了帮助广大考生更好地复习和应对高考数学解析几何部分,本文提供一些常见的解析几何练习题及其答案。

考生可以借此进行自测和巩固知识点,提升解析几何的解题能力。

题目一:已知三角形ABC的顶点坐标分别为A(-3,1),B(4,2),C(1,-3),求三角形ABC的周长和面积。

解析和求解:首先,我们可以利用两点之间的距离公式计算出三角形ABC的三边长度。

设点A的坐标为(x1,y1),点B的坐标为(x2,y2),则两点之间的距离公式为d = √[(x2-x1)^2 + (y2-y1)^2]。

根据该公式,我们可以计算出:AB的距离:dAB = √[(4-(-3))^2 + (2-1)^2] = √[7^2 + 1^2] = √50BC的距离:dBC = √[(1-4)^2 + (-3-2)^2] = √[(-3)^2 + (-5)^2] = √34AC的距离:dAC = √[(-3-1)^2 + (1-(-3))^2] = √[(-4)^2 + 4^2] = √32所以,三角形ABC的周长等于AB+BC+AC,即周长=√50+√34+√32。

接下来,我们可以利用海伦公式来计算三角形ABC的面积。

海伦公式可以表示为:面积=√[s(s-a)(s-b)(s-c)],其中s为三角形的半周长,即s=(a+b+c)/2。

由此,我们可以计算出半周长s=(√50+√34+√32)/2,将其代入海伦公式,即可得到三角形ABC的面积。

题目二:设直线l1过点A(-1,2)且与直线l2:2x-y-3=0平行,求直线l1的方程。

解析和求解:首先,根据题目提示,直线l1与l2平行,可以推知l1与l2的斜率相同。

斜率可以通过直线的一般方程式y=ax+b中的a来表示。

要求得直线l1的方程,我们需要先求出直线l2的斜率k。

直线l2的一般方程式为2x-y-3=0,将其转换为斜截式方程式y=2x-3,可以看出斜率k=2。

2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

高考解析几何题型归纳总结

高考解析几何题型归纳总结

高考解析几何题型归纳总结随着高考的逼近,几何题成为了考生备考中不可忽视的一部分。

几何题在高考中占据了相当大的比重,解析几何题更是考生普遍认为难度较高的题型之一。

为了帮助考生更好地备考解析几何题,本文将对高考解析几何题型进行归纳总结,从而帮助考生更好地应对高考几何题。

1. 二维几何题目二维几何题目主要涉及平面图形的性质、面积、周长以及平行线、垂直线的性质等。

在解答二维几何题目时,考生应注意以下几个方面:(1) 论证步骤的完整性:解答二维几何题目时,应充分体现论证的完整性,即从已知条件出发,一步一步进行推导,最终得出结论。

(2) 图形的准确画法:在画图时应确保图形的准确性,边长、角度等应与给定条件一致,以避免答案误差。

(3) 重点关注特殊性质:几何题中常涉及到平行线、垂直线以及等边等特殊性质,考生应注意识别和运用这些特殊性质来解答题目。

2. 三角形相关题目三角形相关的题目主要涉及三角形的面积、周长、角度等性质。

在解答三角形题目时,考生应注意以下几个方面:(1) 利用相似三角形性质:在解答三角形的题目时,经常会用到相似三角形的性质。

考生应注意观察题目中是否存在相似三角形,以便能够灵活地运用相似三角形性质来解题。

(2) 角度关系的应用:三角形中的角度关系常常是解题的关键,考生应深入理解角的概念,并能够巧妙利用角度关系解答题目。

(3) 三角形的分类:根据不同的三角形分类,可以利用其特定性质解答题目。

例如,等边三角形具有所有边相等的性质,而等腰三角形具有两边相等的性质。

考生应注意灵活运用不同种类三角形的性质。

3. 圆相关题目圆相关的题目主要涉及圆的性质、弧长、面积等。

在解答圆相关题目时,考生应注意以下几个方面:(1) 圆的性质的应用:圆的性质是解答圆相关题目的基础,考生应深刻理解圆的定义、圆心角、弧长等基本概念,并能够合理运用这些性质。

(2) 弧长和扇形面积的计算:在解答涉及弧长和扇形面积的题目时,考生应熟记相应的计算公式,并注意计算过程中的单位换算。

高考数学解析几何难题精讲

高考数学解析几何难题精讲

高考数学解析几何难题精讲在高考数学中,解析几何一直是让众多考生头疼的难题之一。

它不仅需要我们具备扎实的数学基础知识,还要求我们有较强的逻辑思维能力和运算能力。

今天,咱们就一起来攻克这个难关,把那些让人望而生畏的难题逐个击破。

首先,咱们得明白解析几何到底是研究啥的。

简单来说,解析几何就是用代数的方法来研究几何图形的性质。

它把几何图形中的点、线、面等元素与代数中的方程、函数等联系起来,通过计算和推理来解决问题。

那么,高考中常见的解析几何难题都有哪些类型呢?一类是求曲线的方程。

这就要求我们熟练掌握各种曲线的定义和标准方程,比如椭圆、双曲线、抛物线。

有时候题目不会直接告诉我们曲线的类型,而是给一些条件让我们去判断和推导。

这时候就需要我们细心分析条件,找到关键的等量关系,然后设出合适的方程,再通过代数运算求解。

比如说,给了一个动点到两个定点的距离之和为定值,那我们就要想到这可能是个椭圆,然后根据椭圆的定义和性质来设方程求解。

再一类难题是有关直线与曲线的位置关系。

这可是个重点中的重点!经常会让我们判断直线与曲线有没有交点,有几个交点,或者求交点的坐标等等。

解决这类问题,通常要把直线方程和曲线方程联立起来,得到一个方程组,然后通过判别式来判断。

如果判别式大于零,就有两个交点;等于零,有一个交点;小于零,没有交点。

但要注意,有时候联立方程组后的运算会比较复杂,这就考验我们的运算能力和耐心啦。

还有一类难题是求最值和范围问题。

比如说求某个线段的长度的最值,或者某个角的取值范围。

这时候往往需要我们结合图形的性质,运用函数的思想来解决。

比如,把要求的量表示成某个变量的函数,然后通过求函数的最值或者值域来得到答案。

但这过程中可能会涉及到一些不等式的运用,比如均值不等式、柯西不等式等等。

下面咱们通过几个具体的例子来看看怎么解题。

例1:已知椭圆\(C:\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\))的离心率为\(\frac{\sqrt{3}}{2}\),短轴长为 2。

高考解析几何典型大题专项训练(解答题、难)

高考解析几何典型大题专项训练(解答题、难)

解析几何解析几何型解答题,着重考查直线与圆锥曲线的位置关系,求解时除了运用设而不求,整体思维外,还要用到平面几何的基本知识和向量的基本方法,解题过程始终围绕如何简化运算展开;有些问题用常规方法解答,运算往往比较复杂,此时若能以形助数,运用平面几何以及向量的方法,则会大大简化解题过程. 函数与方程思想,在解析几何中也常用到.一、求标准方程、求值典例1:已知椭圆)0(1:2222>>=+b a by a x C 的两个焦点与短轴的一个端点的连线构成等边三角形,直线0122=-++y x 与以椭圆C 的右焦点为圆心,椭圆的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)设点D C B ,,是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线OC OB CB CD ,,,的斜率分别为4321,,,k k k k ,且4321k k k k =.①求21k k 的值; ②求22OC OB +的值.典例2:已知抛物线)0(2:2>=p px y E 上一点)4,(0x M 到焦点F 的距离045x MF =. (1) 求E 的方程;(2) 过F 的直线l 与E 相交于B A ,两点,AB 的垂直平分线l '与E 相交于D C ,两点,若0=⋅AD AC ,求直线l 的方程.变式练习1: 已知椭圆)0(1:2222>>=+b a by a x G 的两个焦点分别为21,F F ,其离心率为23,椭圆G 上一点M 满足021=⋅MF MF ,且21F MF∆的面积为1. (1)求椭圆G 的方程;(2)过椭圆G 长轴上的点)0,(t P 的直线l 与圆1:22=+y x O 相切于点Q (P 与Q 不重合),交椭圆G 于B A ,两点,若BP AQ =,求实数t 的值.二、定点、定值问题典例1:已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,),0,0(),,0(),0,(O b B a A OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:BM AN ⋅为定值.典例2:已知抛物线)0(2:2>=p px y E 的焦点为F ,过F 且垂直于x 轴的直线与抛物线E 交于T S ,两点,以)0,3(P 为圆心的圆过点T S ,,且 90=∠SPT .(1)求抛物线E 和圆P 的方程;(2)设M 是圆P 上一点,过点M 且垂直于FM 的直线l 交E 于B A ,两点,证明:FB FA ⊥.典例3:已知抛物线)0(2:2>=p px y C 过点)2,(m M ,其焦点为2,=MF F .(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆1)1(:22=+-y x F 相切,切点分别为B A ,,求证:直线AB 过定点.变式练习1: 已知焦距为32的椭圆)0(1:2222>>=+b a by a x C 的左焦点为1F 、上顶点为D ,直线1DF 与椭圆C 的另一个交点为H ,且H F DF 117=.(1)求椭圆的方程;(2)点A 是椭圆C 的右顶点,过点)0,1(B 且斜率为)0(≠k k 的直线l 与椭圆C 相交于F E ,两点,直线AF AE ,分别交直线3=x 于N M ,两点,线段MN 的中点为P .记直线PB 的斜率为k ',求证:k k '⋅为定值.变式练习2: 已知椭圆)0(1:22221>>=+b a by a x C 的离心率为23,)1,2(-P 是1C 上一点. (1)求椭圆1C 的方程;(2)设Q B A ,,是P 分别关于两坐标轴及原点的对称点,平行于AB 的直线l 交1C 于异于Q P ,的两点D C ,.点C 关于原点的对称点为E .证明:直线PE PD ,与y 轴围成的三角形是等腰三角形.三、最值问题典例1:平面直角坐标系xOy 中,椭圆()012222>>=+b a by a x C :的离心率是23,抛物线y x E 2:2=的焦点F 是C 的一个顶点。

高考解析几何压轴题型归类总结

高考解析几何压轴题型归类总结

高考解析几何压轴题型归类总结解析几何是高中数学的重要内容之一,也是高考数学中的重要考点之一。

在高考数学中,解析几何通常会以压轴题的形式出现,难度较大,对学生的解题能力和思维能力要求较高。

因此,对于即将参加高考的学生来说,对解析几何压轴题型的归类总结是非常必要的。

根据历年高考数学试卷中的解析几何压轴题,可以将其分为以下几个类型:1. 直线与曲线的综合问题直线与曲线的综合问题是解析几何中的常见题型,通常会涉及直线与曲线的位置关系、交点、最值等问题。

这类问题需要学生掌握直线和曲线的方程,能够利用方程组求出交点坐标,再结合图形和已知条件进行求解。

2. 圆锥曲线的综合问题圆锥曲线是解析几何中的重要内容之一,包括椭圆、双曲线和抛物线等。

圆锥曲线的综合问题通常会涉及圆锥曲线的性质、标准方程、几何意义等,同时还会考查直线与圆锥曲线的位置关系、最值等问题。

这类问题需要学生熟练掌握圆锥曲线的性质和方程,能够利用方程组求出交点坐标和直线与圆锥曲线的位置关系,再结合图形和已知条件进行求解。

3. 轨迹问题轨迹问题是解析几何中的经典题型之一,通常会涉及动点的轨迹方程、轨迹形状等问题。

这类问题需要学生掌握轨迹的概念和方程的求法,能够根据已知条件和动点的特征写出轨迹方程,再结合图形和方程进行求解。

4. 最值问题最值问题是解析几何中的常见问题之一,通常会涉及某一点到某一直线或曲线的距离、某一条直线的斜率等问题。

这类问题需要学生结合图形和已知条件进行求解,有时还需要利用函数的思想进行求解。

以上是高考数学中解析几何压轴题的主要类型,每种类型都有其特定的解题方法和技巧。

因此,学生在备考时应该加强对这些类型题的练习和总结,提高自己的解题能力和思维能力。

同时,还应该注重对基础知识的学习和掌握,加强对数学语言的理解和运用能力。

专题09 解析几何专题(数学文化)(原卷版)2023年新高考数学创新题型微专题

专题09 解析几何专题(数学文化)(原卷版)2023年新高考数学创新题型微专题

A.
1 59
B.
1 2
C. 29 56
D.
1 57
7.(2022 秋·福建·高二校联考期中)几何学史上有一个著名的米勒问题:“设点 M , N 是锐角 AQB 的一边 QA
上的两点,试在 QB 边上找一点 P ,使得 MPN 最大.”如图,其结论是:点 P 为过 M , N 两点且和射线 QB
相切的圆与射线 QB 的切点.根据以上结论解决以下问题:在平面直角坐标系 xOy 中,给定两点
我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率 与椭圆的长半轴长与短半轴长的乘
积,已知椭圆 C :
x2 a2
y2 b2
1(a
b
0)
的面积为 6
2 ,两个焦点分别为 F1, F2 ,点 P 为椭圆 C 的上顶点.直
线 y kx 与椭圆 C 交于 A,B 两点,若 PA, PB 的斜率之积为 8 ,则椭圆 C 的长轴长为( ) 9
R 的纵坐标为( )
A. 3
B.2
C. 2 3
D.4
6.(2022 秋·新疆乌鲁木齐·高二乌市八中校考期中)德国天文学家开普勒发现天体运行轨道是椭圆,已知地
球运行的轨道是一个椭圆,太阳在它的一个焦点上,若轨道近日点到太阳中心的距离和远日点到太阳中心
的距离之比为 28 : 29 ,那么地球运行轨道所在椭圆的离心率是( )
A.3
B.6
C. 2 2
D. 4 2
12.(2022 秋·北京·高二北京工业大学附属中学校考期中)著名数学家华罗庚曾说过:“数无形时少直觉,形
少数时难入微.”事实上,有很多代数问题可以转化为几何问题加以解决,如: x a2 y b2 可以转化为

高考解析几何压轴题型归类总结

高考解析几何压轴题型归类总结

几何题是高考数学中的重要题型,占比较大且常常作为压轴题出现。

解析几何是几何题中的一大重点,需要掌握的知识点较多且难度较高。

下面对高考解析几何常见的压轴题型进行归类总结。

1. 平面几何1.1 直线方程直线方程的求解是解析几何中的基础内容,常常作为考查点。

包括一般式、斜截式、点斜式等形式的直线方程。

总结如下:1.直线一般式方程:Ax + By + C = 0;2.直线斜截式方程:y = kx + b;3.直线点斜式方程:y - y₁ = k(x - x₁)。

1.2 平面方程平面方程是通过点法式方程和一般式方程进行求解。

常见的平面方程有以下几种:1.点法式方程:A(x - x₀) + B(y - y₀) + C(z - z₀) = 0;2.一般式方程:Ax + By + Cz + D = 0。

1.3 直线与直线的位置关系直线与直线的位置关系主要有平行、垂直以及相交三种情况。

常见的题型包括:1.求直线的交点;2.判断两直线是否平行/垂直;3.确定两直线的夹角。

1.4 直线与平面的位置关系直线与平面的位置关系常常涉及到直线在平面上的投影、直线与平面的交点等问题。

常见的题型如下:1.直线在平面上的投影;2.直线与平面的交点;3.判断直线与平面的位置关系。

1.5 圆的方程圆的方程是解析几何中的重要内容。

常见的圆的方程有以下几种形式:1.圆心半径式方程:(x−a)2+(y−b)2=r2;2.一般式方程:x2+y2+Dx+Ey+F=0。

1.6 圆与直线的位置关系圆与直线的位置关系涉及到切线的斜率、交点的确定等问题。

常见的题型包括:1.确定直线与圆的位置关系(相离、相切、相交);2.求直线与圆的交点;3.求直线在圆上的切点。

2. 空间几何2.1 直线与直线的位置关系直线与直线的位置关系同平面几何中的情况类似,常见的题型包括:1.直线是否平行/垂直;2.直线的交点;3.两直线的夹角。

2.2 空间曲线空间曲线主要涉及到直线、平面和曲线的方程及其位置关系。

高考数学复习重难点04 解析几何

高考数学复习重难点04  解析几何

重难点04解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.【考查题型】选择,填空,解答题【限时检测】(建议用时:35分钟)一、单选题一、单选题1.(2020·全国高三专题练习(理))直线分别与轴,轴交于两20x y ++=x y ,A B 点,点在圆上,则面积的取值范围是( )P 22(2)2x y -+=ABP △A .B .[2,6][4,8]C .D .【答案】A【分析】圆心到直线的距离,(2,0)d所以点P 到直线的距离.1d ∈根据直线的方程可知两点的坐标分别为,,A B (2,0),(0,2)A B --所以AB =所以的面积,ABP △1112S AB d ==所以,[2,6]S ∈故选:A.2.(2020·河北邯郸市·高三期末)设分别是双曲线的左、12,F F 2222:1(0,0)x y C a b a b -=>>右焦点,过点的直线交双曲线的右支于两点,若,且2F ,A B 223AF BF =,则双曲线的离心率为( )124cos 5F AF ∠=A B C D【分析】设,则,2BF m=211||3,||23,|2AF m AF a m BF a m ==+=+∣由余弦定理得,2228(2)(4)(23)4(23)5a m m a m m a m +=++-⨯+解得,11,5,||4,3m a AF m AB m BF m=∴===为直角三角形,1ABF A 122,,c c F F c m e a =====故选:B.3.(2020·天津河北区·高三期末)已知双曲线C :(,)的一条22221x y a b -=0a >0b >渐近线过点,且双曲线的一个焦点与抛物线的焦点重合,则双曲线的方程()3,4220y x =为()A .B .C .D .221916x y -=221169x y -=22143x y -=22134x y -=【答案】B【分析】因为双曲线C 的渐近线过点,by xa =±()3,4所以双曲线C 的渐近线为,设双曲线的方程为,34y x=±221169x y t t -=又因为双曲线的一个焦点与抛物线的焦点重合,220y x =()5,0所以,解得,所以双曲线的方程为.5c ==1t =221169x y -=4.(2020·四川凉山彝族自治州·高三一模(理))抛物线:在点处的切线C 2y ax =()1,a 方程为,则的焦点坐标为()210x y --=C A .B .C .D .10,2⎛⎫ ⎪⎝⎭10,4⎛⎫ ⎪⎝⎭1,02⎛⎫ ⎪⎝⎭1,04⎛⎫ ⎪⎝⎭【答案】B【分析】:,所以在点处的切线斜率为,2y ax '=2y ax =()1,a 2a 切线的斜率为,所以,抛物线方程为,210x y --=222,1a a ==2y x =的焦点坐标为,C 10,4⎛⎫⎪⎝⎭故选:B5.(2020·全国高三专题练习(理))若a ,b ,c 是三个内角的对边,且ABC A ,则直线l : 被圆O :所截得sin 3sin 3sin c C a A b B =+0ax by c -+=2212x y +=的弦长为( )A .4B .C .6D .5【答案】C【分析】由已知,sin 3sin 3sin c C a A b B =+利用正弦定理得:()2223c a b =+圆O :的圆心为,半径为,2212x y +=(0,0)O r =圆心O 到直线l 的距离d ==所以直线l 被圆O 所截得的弦长为,6===故选:C.6.(2021·天津滨海新区·高三月考)已知抛物线的焦点为F ,准线()21:20C y px p =>与x 轴的交点为E ,线段被双曲线顶点三等分,且两曲线EF 22222:1(0,0)-=>>x y C a b a b ,的交点连线过曲线的焦点F ,则双曲线的离心率为( )1C 2C 1C 2C ABCD【答案】D【分析】抛物线的焦点为,准线方程为,,22y px =(,0)2pF 2p x =-(,0)2p E -,||EF p =因为线段被双曲线顶点三等分,所以,即EF 22222:1(0,0)-=>>x y C a b a b 23p a =6p a =,因为两曲线,的交点连线过曲线的焦点F ,所以两个交点为、,1C 2C 1C (,)2pp (,)2p p -将代入双曲线得,(,)2pp 22221x y a b -=222214p p a b -=所以,所以,所以,2222363614a a a b -=223691a b -=2292b a =所以双曲线的离心率2C c e a ======故选:D7.(2020·四川凉山彝族自治州·高三一模(理))设椭圆:()的左、右C 22214x y a +=2a >焦点分别为,,直线:交椭圆于点,,若的周长的最大值1F 2F l y x t =+C A B 1F AB A 为12,则的离心率为( )C A B CD .59【答案】B【分析】的周长等于1F AB A 112222AB AF BF AB a AF a BF ++=+-+-,()224a AB AF BF =+-+因为当且仅当三点共线时等号成立,22AF BFAB +≥2,,A B F 所以,()22444a AB AF BF a AB AB a+-+≤+-=即的周长的最大为,所以,解得:,1F AB A 4a 412a =3a =由椭圆的方程可得:,所以,24b =c ===所以的离心率为,C c e a ==故选:B8.(2020·全国高三专题练习(理))设抛物线()的焦点为,准线为,22y px =0p >F l 过焦点的直线分别交抛物线于两点,分别过作的垂线,垂足为.若,A B ,A B l ,C D,且三角形,则的值为( )3AF BF=CDF p A BCD【答案】C【分析】过点B 作交直线AC 于点M ,交轴于点N ,BM l ∥x 设点,()()1122,,A x y B x y 、由得,3AF BF=12322p p x x ⎛⎫+=+ ⎪⎝⎭即……①,123x x p -=又因为,NF AM ∥所以,14NF BF AM AB ==所以,()1214NF x x =-所以……②,()212142pOF ON NF x x x =+=+-=由①②可解得,123,26p px x ==在中,,Rt ABM ∆1283AB x x p p =++=,124=3AM x x p -=所以,BM p==所以,12CDF S P P ∆==A 解得或(舍去),p=p =故选:C二、填空题9.(2021·江苏泰州市·高三期末)在平面直角坐标系中,已知双曲线xOy 22:17y x Γ-=的两个焦点分别为,,以为圆心,长为半径的圆与双曲线的一条渐近线交1F 2F 2F 12F F Γ于M ,N 两点,若,则的值为________.OM ON≥OMON【答案】32【分析】求出双曲线的两个焦点坐标和渐近线方程,再求圆的方程与渐近线方程联立可得M ,N 两点的横坐标,由即为横坐标的绝对值的比可得答案.OM ON【详解】由已知得,,,2221,7,8a b c ===2c =12(F F -取双曲线的一条渐近线,所以圆的方程为,y =(2232x y+=-由整理得,解得,(2232y x y ⎧=⎪⎨-+=⎪⎩2260x -=N M x x ==.32MNM O x x O N===取双曲线的另一条渐近线,整理得与y =(2232y x y ⎧=⎪⎨-+=⎪⎩2260x --=上同,综上.32OMON=故答案为:.3210.(2020·河南高三其他模拟(理))已知F 是椭圆C :()的左焦x 2a 2+y 2b 2=1a >b >0点,是椭圆C 过F 的弦,的垂直平分线交x 轴于点P .若,且P 为的中AB ABAF =2FB OF 点,则椭圆C 的离心率为______.【答案】53【解析】【分析】如图,设椭圆的右焦点为,连接,过点作交于,则点为中点. G AG,BG O OD//PH,AB D H DF 设.|BF|=2m,∴|AF|=4m,|AH|=3m,|AD|=2m,|DH|=|HF |=m 所以点是中点,D AF 因为,|OF|=|OG|所以AG//OD,∴∠BAG =π2.由椭圆的定义得|AG|=2a−4m,|BG|=2a−2m.在直角中,,△AFG (4m)2+(2a−4m)2=4c 2所以 (1)2m 2−am =c 24−a 24在直角中,△ABG (6m)2+(2a−6m)2=(2a−2m)2所以.m =16a 把代入(1)得m =16a 5a 2=9c 2,∴e 2=59,∴e =53.故答案为:.5311.(2020·浙江高三期中)若椭圆与双曲线22221(0)x y a b a b +=>>有相同的焦点,点是两条曲线的一个交点,()11221110,0a b a b -=>>12,F F P ,椭圆的离心率为,双曲线的离心率为,,则122F PF π∠=1e 2e 122e e =2212e e +=__________.【答案】8【分析】不妨设P 在第一象限,再设PF 1=s ,PF 2=t ,由椭圆的定义可得s +t =2a ,由双曲线的定义可得s ﹣t =2a 1,解得s =a +a 1,t =a ﹣a 1,由∠F 1PF 2,2π=在三角形F 1PF 2中,利用勾股定理可得.22222221114()()22c s t a a a a a a =+=++-=+∴,2212224e e =+化简,又由e 1e 2=2,221222221212121=e e e e e e ++=所以.22221212=28e e e e +=故答案为:8.12.(2020·北京海淀区·人大附中高三期中)椭圆:的左、右焦C 22221(0)x y a b a b +=>>点分别为,,点在椭圆上且同时满足:1F 2F P ①是等腰三角形;12F F P A②是钝角三角形;12③线段为的腰;12F F 12F F P A ④椭圆上恰好有4个不同的点.C P 则椭圆的离心率的取值范围是______.C【答案】113⎛⎫ ⎪⎝⎭【分析】如图,根据椭圆的对称性知,点及关于x 轴,y 轴,原点对称的其它3点,即P 为椭圆满足条件的4个不同的点.C 根据题意可知是以,为两腰的等腰三角形,故,即点12F F P A 12F F 1F P 1122F F F P c ==P在以为圆心,为半径的圆上,1F 12F F 由题知以为圆心,2c 为半径的圆与椭圆有两个交点,即可存在两个满足条件的等腰1F ,12F F P A 此时必有,即,即,所以离心率;11F P AF >2c a c >-3a c <13e >又为钝角,则,利用余弦定理知,即12PF F ∠12os 0c PF F <∠2221122||||||F P F F F P <+,222(2)(2)(22)c c a c <+-整理得,两边同除以得,,解得:2220c ac a+-<2a 2210e e +-<01e <<综上,可知椭圆的离心率的取值范围是C 113e <<故答案为:113⎛⎫- ⎪⎝⎭三、解答题13.(2020·四川成都市·高三一模(理))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C (2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且点在以为直径的圆上.记,OM C P O AB AOM A 的面积分别为,,求的取值范围.BOP △1S 2S 12S S 【答案】(1);(2).22163x y +=【分析】:(1,∴为半焦距).c a=c ∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)∵为线段的中点,∴.M AB 12AOM BOP OMS S S S OP==△△(ⅰ)当直线的斜率不存在时,l 由及椭圆的对称性,不妨设所在直线的方程为,得.OA OB ⊥OA y x =22A x =则,,∴22M x =26P x =12OM S S OP ==(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m ++-=+∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∵点在以为直径的圆上,∴,即.O AB 0OA OB ⋅=12120x x y y +=∴.()()221212121210x x y y k x x km x x m +=++++=∴.()22222264102121m km k km m k k -⎛⎫++-+= ⎪++⎝⎭化简,得.经检验满足成立.2222m k =+0∆>∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,.此时.0k =22m=12S S 当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321P y k =+∴M P OM y OP y ==∴,∴.12S S ==12S S ∈综上,的取值范围为.12S S 14.(2020·上海浦东新区·高三一模)已知椭圆,、为的左、右1:C 2214x y +=1F 2F 1C 焦点.(1)求椭圆的焦距;1C (2)点为椭圆一点,与平行的直线与椭圆交于两点A 、B ,若,Q 1C OQ l 1C 面积为,求直线的方程;QAB A 1l(3)已知椭圆与双曲线在第一象限的交点为,椭圆 和1C 2221:C x y -=(,)M M M x y 1C 双曲线上满足的所有点组成曲线.若点是曲线上一动点,求2C ||||M x x ≥(,)x y C N C 的取值范围.12NF NF ⋅ 【答案】(1);(2);(3)112y x =±45,⎡⎫-+∞⎪⎢⎣⎭【分析】(1)由椭圆的方程知:,即焦距为1C 3c ==2c =(2)设,代入得,1:2l y x m =+2244x y +=222220x mx m ++-=由得,,()222481840m m m ∆=--=->||m <212122,22+=-=-xx m x x m所以,12||AB x x=-==所以Q 到直线的距离,由,得l d =1||||12QAB S d AB m =⋅==A 1m =±所以1:12l y x =±(3)由解得,设是曲线上一点,又2222441x y x y ⎧+=⎨-=⎩M Mx y ⎧=⎪⎪⎨⎪=⎪⎩(),N x yC ,,,,1(,0)F 2,0)F ()1,NF x y =--)2,NF x y=- ∴,22123,(||NF NF x y x ⋅=+-≥当在曲线上时,,N 2244(||||)M x y x x +=≥21213NF NF y ⋅=- 当时,,当时,,y =()12min45NF NF ⋅=- 0y =()12max1NF NF ⋅= 所以; 124,15NF NF ⎡⎤⋅∈-⎢⎥⎣⎦ 当在曲线上时,;N 221(||||)M x y x x -=≥21222NF NF y ⋅=- 当时,,;y =()12min45NF NF ⋅=- 124,5NF NF ⎡⎫⋅∈-+∞⎪⎢⎣⎭ 综上,.124,5NF NF ⎡⎫⋅∈-+∞⎪⎢⎣⎭ 15.(2021·湖南株洲市·高三一模)在平面直角坐标系中,己知圆心为点Q 的动圆恒过点,且与直线相切,设动圆的圆心Q 的轨迹为曲线.(1,0)F 1x =-Γ(Ⅰ)求曲线的方程;Γ(Ⅱ)过点F 的两条直线、与曲线相交于A 、B 、C 、D 四点,且M 、N 分别为、1l 2lΓAB CD 的中点.设与的斜率依次为、,若,求证:直线MN 恒过定点.1l 2l1k 2k 121k k +=-【答案】(Ⅰ);(Ⅱ)证明见解析.24y x =【分析】(Ⅰ)由题意,设,(,)Q x y 因为圆心为点Q 的动圆恒过点,且与直线相切,(1,0)F 1x =-可得.|1|x +=24y x =(Ⅱ)设,的方程分别为,,1l 2l1(1)y k x =-2(1)y k x =-联立方程组,整理得,12(1)4y k x y x =-⎧⎨=⎩()2222111240k x k x k -++=所以,则,同理21122124k x x k ++=2121122,k M k k ⎛⎫+ ⎪⎝⎭2222222,k N k k ⎛⎫+ ⎪⎝⎭所以,121222121222122222MNk k k k k k k k k k k -==+++-由,可得,121k k +=-()111MN k k k =+所以直线的方程为MN ()2111211221k y k k x k k ⎛⎫+-=+- ⎪⎝⎭整理得,所以直线恒过定点.()1121(1)y k k x +=+-MN (1,2)-16.(2020·浙江台州市·台州一中高三期中)如图,已知点在抛物线(4,4)P 上,过点作三条直线,与抛物线分别交于点2:2(0)M y px p =>P ,,PA PB PC M ,与轴分别交于点,且.,,A B C x ,,D E G ||||DE EG =(Ⅰ)(i)求抛物线的方程;M (ii) 设直线斜率分别为,若,求直线的方程;,PA PC 12,k k 12111k k +=PB (Ⅱ)设,四边形面积分别为,在(Ⅰ)的条件下,求的取值范PBC A PABC 12,S S 12S S 围.【答案】(Ⅰ)(i) ;(ii) ;(Ⅱ).24y x =240x y --=1(,1)2【分析】(Ⅰ)(i)由题知,抛物线上有一点,2:2(0)M y px p =>(4,4)P ,即抛物线的方程为;2p ∴=M 24y x =(ii)设其中,则,(,0),(,0),(,0),E m D m t G m t -+0t >1244,44k k m t m t ==-+--∴由题意,,即,,1211412mk k -+==2m =(2,0)E 直线方程为;PB ∴240x y --=(Ⅱ)由(Ⅰ)知,,(2,0)E (2,0),(2,0),0D t G t t -+>则方程为,即,PA 44(4)2y x t -=-+4(2)480x t y t -++-=由,得,24(2)4804x t y t y x -++-=⎧⎨=⎩2(2)480y t y t -++-=,即,2(2)2,4A A t y t x -∴=-=2(2)(,2)4t A t --而方程为,即,同理可得PC 44(4)2y x t -=--4(2)480x t y t ----=,2(2)(,2)4t C t +--点到直线的距离为,点到直线的距离为, ∴APB 1d =CPB 2d =记,221212121||621|6|6||()2PBC PABC PB d S d t S d d t t P d S S B d +====+-+++V 设过点的抛物线的切线为,P M l 4(4)y k x -=-由,得,由,得,24(4)4y k x y x -=-⎧⎨=⎩2416160ky y k -+-==0∆12k =所以切线方程为,令,得,24=0x y -+0y =4x =-∴要使过P 点的直线与抛物线有两个交点,则有,06t <<.1261=(,1)122S S t +∴∈。

(解析几何压轴题)(30题)2021高考数学考点必杀500题(新高考) (解析版)

(解析几何压轴题)(30题)2021高考数学考点必杀500题(新高考) (解析版)

解析几何压轴题 (30题)(新高考)1.(2020·江苏苏州市·吴江中学高三其他模拟)(本题满分14分)已知椭圆2221+=+x y mm m 的右焦点为F ,右准线为l ,且直线y x =与l 相交于A 点.(Ⅰ)若⊙C 经过O 、F 、A 三点,求⊙C 的方程;(Ⅱ)当m 变化时, 求证:⊙C 经过除原点O 外的另一个定点B ; (Ⅲ)若5⋅<AF AB 时,求椭圆离心率e 的范围. 【答案】(Ⅰ)22(2)0x y mx m y +--+=;(Ⅱ)证明见解析;(Ⅲ)0e <<. 【详解】(Ⅰ)22222,,a m m b m c m =+=∴=,即c m =,(,0)F m ∴,准线1x m =+,(1,1)A m m ∴++ ……………………………(2分)设⊙C 的方程为220x y Dx Ey F ++++=,将O 、F 、A 三点坐标代入得:200220F m Dm m D E =⎧⎪+=⎨⎪+++=⎩,解得02F D m E m=⎧⎪=-⎨⎪=--⎩ ……………………(4分) ∴⊙C 的方程为22(2)0xy mx m y +--+= ……………………………(5分)(Ⅱ)设点B 坐标为(,)p q ,则22(2)0p q mp m q +--+=,整理得:222()0p q q m p q +--+=对任意实数m 都成立 ……………………(7分)∴22020p q p q q +=⎧⎨+-=⎩,解得00p q =⎧⎨=⎩或11p q =-⎧⎨=⎩, 故当m 变化时,⊙C 经过除原点O 外的另外一个定点B (1,1)-……………(9分) (Ⅲ)由B (1,1)-、(,0)F m 、(1,1)A m m ++得(1,1)AFm =---,(2,)AB m m =---∴2225AF AB m m ⋅=++<,解得31m -<< ………………………(10分)又200m m m ⎧+>⎨>⎩,∴01m <<又椭圆的离心率e ===(01m <<)…………(12分) ∴椭圆的离心率的范围是02e <<………………………………(14分)2.(2017·四川成都市·成都七中高三一模(文))如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记GFD 的面积为1S ,OED (O 为原点)的面积为2S ,求12S S 的取值范围. 【答案】(Ⅰ)12e =;(Ⅱ)(9,)+∞. 【解析】(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒1分 则tan 603bc︒== 2分 将3b c =代入222a b c =+, 解得2a c =. 3分 所以椭圆的离心率为12c e a ==. 4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. 5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=得222222(43)84120k x ck x k c c +++-=. 7分则2122843ck x x k -+=+,121226(2)43ck y y k x x c k +=++=+, 22243(,)4343ck ckG k k -++. 8分 因为GD AB ⊥,所以2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. 9分因为 △GFD ∽△OED ,所以2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+11分 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. 13分所以12S S 的取值范围是(9,)+∞. 14分 3.(2021·江西上饶市·高三三模(理))已知椭圆22221(0)x y a b a b +=>>的两个顶点在直线12x y +=上,直线l 经过椭圆的右焦点F ,与椭圆交于A 、B两点,点P ⎛ ⎝⎭(P 不在直线l 上) (1)求椭圆的标准方程;(2)直线l 与2x =交于点M ,设PA ,PB ,PM 的斜率分别为123,,k k k .试问:是否存在常数λ使得123k k k λ+=?若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在,2λ=.【详解】(1)直线12x y +=与坐标轴的交点为,1a b ∴==故椭圆的标准方程为2212x y +=(2)设()()1122,,,A x y B x y ,直线:(1)AB y k x =-,则(2,)M k .由22222(1)2(1)2012y k x x k x x y =-⎧⎪⇒+--=⎨+=⎪⎩,即()222124220k k x k +-+-=, 22121222422,1212k k x x x x k k -∴+==++,()()12121212121122221111y y k x k x k k x x x x --∴+=+=+----()22122212121222422111222222421121211212k x x k k k k k k x x x x x x k k-⎫+-+=-+=-=-⎪----++⎝⎭-+++22221k k -=-⨯=-又32122k kk -==--123222k k k k ⎛⎫∴+=-= ⎪ ⎪⎝⎭故存在常数2λ=使得1232k k k +=4.(2021·湖南高三三模)已知椭圆221169x y +=,A 是椭圆的右顶点,B 是椭圆的上顶点,直线():0l y kx b k =+>与椭圆交于M 、N 两点,且M 点位于第一象限.(1)若0b =,证明:直线AM 和AN 的斜率之积为定值;(2)若34k =,求四边形AMBN 的面积的最大值.【答案】(1)证明见解析;(2) 【详解】(1)证明:设11(,)M x y ,则11(,)N x y --, ∵(4,0)A ,(0,3)B ,∴114AM y k x =-+,114AN y k x =+,∵11(,)M x y 在椭圆上,∴22119(16)16y x =- ∴22112211169916161616AM ANy x k k x x -⋅==⋅=---为定值. (2)设3:4l y x b =+,依题意:0k >,M 点在第一象限,∴33b -<<. 联立:22341169y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩得:229128720x bx b ++-=, ∴1243bx x +=-,212889x x b ⋅=-,设A 到l 的距离为1d ,B 到l 的距离为2d ,∴1|124|44|3|(3)555b d b b +==⋅+=+,2|124|44|3|(3)555b d b b -+==⋅-=-, ∴12245d d +=.又∵2212121295516||1||()4325216449MN x x x x x x b =+⋅-=+-=-+≤ (当0b =时取等号), ∴121124||()52122225AMBN S MN d d =⋅+≤⋅⋅=. ∴四边形AMBN 的面积的最大值为1225.(2021·全国高三专题练习(理))如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.【答案】(1)2A B y y ⋅=-;(2)存在,2λ=.【详解】(1)设直线AB 的方程为1x my =+,代入22y x =得2220y my --=,则2A B y y ⋅=-.(2)由(1)同理得2M N y y ⋅=-设直线AN 的方程为2x ny =+,代入22y x =得2240y ny --=,则4A N y y ⋅=-又122222N A N A N A N A N A y y y y k y y x x y y --===-+-,同理22M B k y y =+则212222A NA N A NB M A Ny y y y y y k k y y y y λ++=====--+-+ ∴存在实数2λ=,使得212k k =成立.6.(2021·云南高三其他模拟(文))已知焦点为F 的抛物线()2:20C y px p =>经过圆()()()222:440D x y r r -+-=>的圆心,点E 是抛物线C 与圆D 在第一象限的一个公共点,且2EF =.(1)分别求p 与r 的值;(2)点M 与点E 关于原点O 对称,点A ,B 是异于点O 的抛物线C 上的两点,且M ,A ,B 三点共线,直线EA ,EB 分别与x 轴交于点P ,Q ,问:PF QF ⋅是否为定值?若为定值,求出该定值;若不为定值,试说明理由.【答案】(1)2p =,r =;(2)为定值,2. 【详解】(1)由已知得抛物线C 过点()44D ,, 所以1624p =⨯,所以2p =. 即抛物线C 的方程为24y x =.设点()()000,0E x y y >,则012EF x =+=, 所以01x =,于是得02y ==,即()1,2E ,将点E 的坐标代入圆D 的方程,得()()222142413r =-+-=,所以r =.(2)设点()11,A x y ,()22,B x y ,由已知得()1,2M --, 由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,由()24,12,y x y k x ⎧=⎪⎨=+-⎪⎩得24480ky y k -+-=, 由0∆>,得2210k k --<,即11k << 因为A ,B 异于原点O , 所以2k ≠,则124y y k+=,1284y y k =-.因为点A ,B 在抛物线C 上,所以2114y x =,2224y x =,则1111212241214EA y y k x y y --===-+-,2222412EBy k x y -==-+. 因为EF x ⊥轴,所以 ||||4||||||||||EA EB EA EB EF EF PF QF k k k k ⋅=⋅=⋅ ()()()121212|22||24|44y y y y y y +++++==88|44|24k k -++==, 所以||||PF QF ⋅的值为定值2.7.(2021·天津高三一模)已知椭圆()2222:10x y C a b a b +=>>的短半轴长为1,离心率为2. (1)求C 的方程;(2)设C 的上、下顶点分别为B 、D ,动点P (横坐标不为0)在直线2y =上,直线PB 交C 于点M ,记直线DM ,DP 的斜率分别为1k ,2k ,求12k k ⋅的值. 【答案】(1)2214x y +=(2)34-【详解】(1)依题意可知1b =,c a =2212a a ⎛⎫+= ⎪ ⎪⎝⎭,解得24a =, 所以椭圆C 的方程为2214x y +=.(2)依题意可知(0,1)B ,(0,1)D -, 设00(,)M x y ,则001DB y k x -=,直线BD :0011y y x x -=+,令2y =,得001x x y =-,即00(,2)1x P y -, 0101DMy k k x +==,020003(1)2101DP y k k x x y -+===--,所以00120013(1)y y k k x x +-⋅=⋅2203(1)y x -=20203()344x x ⨯-==-. 8.(2021·全国高三专题练习(文))已知抛物线1C 的顶点为坐标原点O ,焦点为圆222:4C x y +=与圆()223:31C x y +-=的公共点.(1)求1C 的方程; (2)直线1:34l y x =+与1C 交于A ,B 两点,点P 在1C 上,且P 在AOB 这一段曲线上运动(P 异于端点A 与B ),求PAB △面积的取值范围. 【答案】(1)28x y =;(2)1250,8⎛⎤⎥⎝⎦. 【详解】(1)联立()22224,31,x y x y ⎧+=⎪⎨+-=⎪⎩得0,2.x y =⎧⎨=⎩因此1C 的焦点为()0,2,设抛物线()21:20C x py p =>,则22p=, 则4p =,故1C 的方程为28x y =.(2)联立28,13,4x y y x ⎧=⎪⎨=+⎪⎩得6,92x y =⎧⎪⎨=⎪⎩或4,2,x y =-⎧⎨=⎩ 不妨假设96,2A ⎛⎫ ⎪⎝⎭,()4,2B -,则()64AB =--=.设()00,P x y ,则046x -<<,P 到直线l的距离d ===因为当46x -<<时,函数()2125y x =--的值域为[)25,0-,所以0<≤111250228PABS d AB <=⨯⨯≤=△, 故PAB △面积的取值范围是1250,8⎛⎤⎥⎝⎦. 9.(2021·全国高三专题练习(文))已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别是1F ,2F ,上、下顶点分别是1B ,2B ,离心率12e =,短轴长为23. (1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 交于不同的两点M ,N ,若12MN B F ⊥,试求1F MN △内切圆的面积.【答案】(1)22143x y +=;(2)36169π. 【详解】(1)由题意得12223c a b ⎧=⎪⎨⎪=⎩,又222a b c =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)由()10,3B ,()21,0F ,知12B F 的斜率为3-,因12MN B F ⊥,故MN 的斜率为33, 则直线l 的方程为()313y x =-,即31x y =+, 联立221,4331,x y x y ⎧+=⎪⎨⎪=+⎩可得:2136390y y +-=,设()11,M x y ,()22,N x y ,则126313y y +=-,12913y y =-,则1F MN △的面积()212121224413S c y y y y y y =⋅-=+-=, 由1F MN △的周长48L a ==,及12S LR =,得内切圆2613S R L ==, 所以1F MN △的内切圆面积为236ππ169R =. 10.(2021·黑龙江大庆市·高三一模(理))已知焦点在x 轴上的椭圆C :222210)x ya b a b+=>>(,短轴长为23,椭圆左顶点到左焦点的距离为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点 ,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.【答案】(1)22143x y +=;(2)证明见解析,(6,0).【详解】(1)由22221b a c a c b ⎧=⎪-=⎨⎪-=⎩得21b a c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=.(2)当直线l 斜率不存在时,直线l 与椭圆C 交于不同的两点分布在x 轴两侧,不合题意. 所以直线l 斜率存在,设直线l 的方程为y kx m =+. 设11(,)E x y 、22(,)F x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=, 所以122834km x x k -+=+,212241234m x x k-=+. 因为APE OPF ∠=∠, 所以0PE PF k k +=,即121202233y y x x +=--,整理得1212242()()033m kx x m k x x +-+-= 化简得6m k =-,所以直线l 的方程为6(6)y kx k k x =-=-, 所以直线l 过定点(6,0).11.(2021·辽宁高三其他模拟(理))已知圆()22:11F x y -+=,动点()(),0M x y x ≥,线段FM 与圆F 交于点I ,MH y ⊥轴,垂足为H ,||||MI MH =,设动点M 形成的轨迹为曲线C . (Ⅰ)求曲线C 的轨迹方程,并证明斜率为2-的一组平行直线与曲线C 相交形成的弦的中点在一条直线上; (Ⅱ)曲线C 上存在关于直线:230l x y --=对称的相异两点A 和B ,求线段AB 的中点D 的坐标.【答案】(Ⅰ)24y x =,证明见解析; (Ⅱ)()1,1-.【详解】(Ⅰ)||1||||1MI MF MH +==+,∴点M 的轨迹C 为以F 为焦点,1x =-为准线的抛物线,曲线C 的方程为24y x =,设点()()111222,,,A x y A x y 为其中任意一条斜率为2-的直线与曲线C 的两个交点,设线段12 A A 的中点为(),E x y ,则21122244y x y x ⎧=⎨=⎩,则()()()1212124y y y y x x -+=-,121242A A k y y ∴==-+,1222y y y ∴+=-=, 1y,所以这组斜率为2-的平行直线与曲线C 相交形成的弦的中点在直线1y =-上;(Ⅱ)设点()()3344,,,A x y B x y ,则23324444y x y x ⎧=⎨=⎩,则()()()3434344y y y y x x -+=-,344AB k y y ∴=+,又,A B 关于直线l 对称,2AB k ∴=-,即34 2y y +=-,3412y y +∴=-, 又,A B 的中点一定在直线l 上,343423122x x y y ++∴=⨯+=, ∴线段AB 的中点D 坐标为()1,1-.12.(2021·湖南长沙市·长沙一中高三一模)已知抛物线()2:20C y px p =>的准线为l ,过抛物线上一点B 向x轴作垂线,垂足恰好为抛物线C 的焦点F ,且4BF =. (Ⅰ)求抛物线C 的方程;(Ⅱ)设l 与x 轴的交点为A ,过x 轴上的一个定点()1,0的直线m 与抛物线C 交于,D E 两点.记直线,AD AE 的斜率分别为12,k k ,若1213k k +=,求直线m 的方程. 【答案】(Ⅰ)28y x =;(Ⅱ)4340x y --=. 【详解】(Ⅰ)由题意,42p B ⎛⎫ ⎪⎝⎭, 代入22y px =, 得216p =,4p =,∴抛物线C 的方程为28y x =.(Ⅱ)当直线m 的斜率不存在时,120k k +=与题意不符,所以直线的斜率一定存在,设直线m 的方程为()1y k x =-代入到28y x =中,()2222280k x k x k -++=,设()11,D x y ,()22,E x y ,则21222122281k x x k k x x k ⎧++=⎪⎪⎨⎪==⎪⎩, 12121222y yk k x x +=+++ ()()12121122k x k x x x --=+++()()()1212122422k x x x x x x ++-⎡⎤⎣⎦=++ 2819163k k ==+43k ∴=,所以直线m 的方程为4340x y --=. 13.(2021·全国高三专题练习(文))已知椭圆C :22221(0)x y a b a b +=>>左、右焦点分别为1F 、2F .设P 是椭圆C 上一点,满足2PF ⊥x 轴,212PF =. (1)求椭圆C 的标准方程;(2)过1F 且倾斜角为45°的直线l 与椭圆C 相交于A ,B 两点,求AOB 的面积.【答案】(1)2214x y +=;(2【详解】(1)由条件可知222212c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得:2a =,1b =,c =所以椭圆C 的标准方程是2214x y +=;(2)设直线:l x y =-()11,A x y ,()22,B x y ,直线l 与椭圆方程联立2214x y x y ⎧=-⎪⎨+=⎪⎩,得2510y --=,12y y +=1215y y -=,11212AOBSOF y y =⨯⨯-==14.(2021·全国高三专题练习)已知椭圆Γ:()22211y x a a+=>与抛物线C :()220x py p =>有相同的焦点F ,抛物线C 的准线交椭圆于A ,B 两点,且1AB =. (1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,过焦点F 的直线l 交椭圆Γ于M ,N 两点,求OMN 面积的最大值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C 的方程为:2x =;(2)最大值为1.【详解】(1)因为1AB =,所以不妨设A 的坐标为1(,)22p --,B 的坐标为1(,)22p -, 所以有:2222114414p a p a ⎧+=⎪⎪⎨⎪-=⎪⎩,∴24a=,p = ∴椭圆Γ的方程为:2214y x +=,抛物线C 的方程为:2x =;(2)由(1)可知:F 的坐标为:,设直线l的方程为:y kx =+O 到MN 的距离为d,则d ==,联立2214y kx y x ⎧=⎪⎨+=⎪⎩可得:()22410k x ++-=,则()22414k k MN +==+,1OMNS==≤=,当且仅当22k =时取等号,故OMN 面积的最大值为1.15.(2021·广东佛山市·高三一模)已知椭圆C :22221(0)x y a b a b+=>>右焦点为()1,0F ,且过点()2,0A -.(1)求C 的方程;(2)点P 、Q 分别在C 和直线4x =上,//OQ AP ,M 为AP 的中点,求证:直线OM 与直线QF 的交点在某定曲线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)依题意知()2,0A -为椭圆C 的左顶点,故2a =, 又()1,0F 为C 的右焦点,所以221a b -=.于是23b =,b =所以C 的方程为22143x y +=.(2)设00()2),(P x y x ≠±,则002,22x y M -⎛⎫⎪⎝⎭, 直线AP 的斜率002y k x =+, 又//OQ AP ,所以直线OQ 的方程为002y y x x =+, 令4x =得0044,2y Q x ⎛⎫⎪+⎝⎭, 002,22x y OM -⎛⎫= ⎪⎝⎭,0043,2y FQ x ⎛⎫= ⎪+⎝⎭,2220000003(2)23(4)4(*)222(2)x y x y OM FQ x x --+⋅=+=++,又P 在C 上,所以2200143x y +=,即22003412x y +=,代入(*)得0OM FQ ⋅=,所以OM QF ⊥.故直线OM 与QF 的交点在以OF 为直径的圆上,且该圆方程为221124x y ⎛⎫-+= ⎪⎝⎭.即直线OM 与直线QF 的交点在某定曲线221124x y ⎛⎫-+= ⎪⎝⎭上.16.(2020·福建宁德市·高三其他模拟)已知椭圆E :22221(0)x y a b a b+=>>的右焦点是(1,0)F ,点P 是椭圆E上一点,且||PF 的最大值为2b . (1)求椭圆方程;(2)过椭圆右顶点A 的直线l 与椭圆交于B ,与y 轴交于C .设FAB 和FAC 的面积分别为1S 和2S ,求12S S ⋅的取值范围.【答案】(1)22143x y +=;(2)2130,2S S ⎛⎫⋅∈ ⎪⎝⎭.【详解】(1)因为椭圆2222:1(0)x y E a b a b+=>>的焦点为(1,0)F ,所以1c =,又2a c b +=,222a b c =+,所以24a =,23b =,即椭圆方程为22143x y +=.(2)由题可知直线l 的斜率存在且不为0,设直线l 的解析式为2x my =+, 则C 点为2(0,)m-, 由221432x y x my ⎧+=⎪⎨⎪=+⎩,可得:22(34)120m y my ++=, 解得:21243B my m=-+, 故11||||2B S FA y =,21||||2C S FA y =, 由此可得:212216||||434B C S S FA y y m ⋅=⋅⋅⋅=+,所以2130,2S S ⎛⎫⋅∈ ⎪⎝⎭.17.(2021·四川高三三模(理))已知椭圆C :22221x y a b+=()0a b >>的两个焦点与短轴的两个顶点围成一个正方形,且()2,1P 在椭圆上. (1)求椭圆的方程;(2)A ,B 是椭圆上异于P 的两点,设直线PA ,PB 斜率分别为1k ,2k ,点()8,3Q 到直线AB 的距离为d ,若121k k +=,求以d 的最大值为直径的圆的面积.【答案】(1)22163x y +=;(2)25π. 【详解】(1)由题意知b c =,a =∴设椭圆的方程为222212x y b b+=()0b >∵点()2,1P 在椭圆上, ∴224112b b+=,23b =, ∴椭圆方程为22163x y +=(2)当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,()12,A x y ,()22,B x y由22163y kx mx y =+⎧⎪⎨+=⎪⎩,得()222214260k x kmx m +++-=,()22863k m ∆=-+122421km x x k +=-+,21222621m x x k -⋅=+ ∵直线PA 、PB 的斜率分别为1k ,2k ,且121k k += ∴121211122y y x x --+=--,即()()121212121220y x x y x x y y x x +++-+-= ∴()()()1212211240k x x m k x x m -++-+-=∴()()2222642112402121m kmk m k m k k --⋅-+-⋅-=++ ∴()()3210m k m ++-=, ∴3m =-或12m k =-当12m k =-时,直线AB 的方程为()21y k x =-+恒过()2,1P ,不合题意 当3m =-时,由()28660k ∆=->,得1k >或1k <-当直线AB 的斜率不存在,直线AB 过()0,3C-时,不妨设(0,A,(B121k k +=+= ∴当直线AB 恒过定点过()0,3C -,则()8,3Q 到直线AB 的距离为10d QC ≤=,当AB CD ⊥时等号成立,此时,1413CD k k =-=-<- ∴以d 的最大值为直径的圆的面积210π25π2S ⎛⎫== ⎪⎝⎭.18.(2021·四川高三三模(文))已知O 为坐标原点,,A B 分别为椭圆()2222:10x y C a b a b+=>>的右顶点和上顶点,AOB 的面积为1,椭圆C的离心率为2. (1)求,a b 的值;(2)若与AB 垂直的直线交椭圆C 于,M N 两点,且OM ON ⊥,求AMN 的面积. 【答案】(1)2a =,1b =;(2或17. 【详解】(1)由椭圆方程知:(),0A a ,()0,B b ,112AOBSab ∴==,由222112ab c e a a b c ⎧=⎪⎪⎪==⎨⎪=+⎪⎪⎩得:2a =,1b =.(2)由(1)知:椭圆C 的方程为2214x y +=,()2,0A ,()0,1B ;101022AB k -==--,2MN k ∴=,可设直线MN 方程为2y x m =+, 由22214y x m x y =+⎧⎪⎨+=⎪⎩得:221716440x mx m ++-=, 则()2225668440m m ∆=-->,解得:m <<设()11,M x y ,()22,N x y ,121617m x x ∴+=-,2124417m x x -=,()()()221212121216224217m y y x m x m x x m x x m -∴=++=+++=, OM ON ⊥,12120OM ON x x y y ∴⋅=+=,即22441601717m m --+=,解得:2m =±,此时17MN ==; 当2m =时,直线MN :22y x =+,即220x y -+=,则点A 到直线MN 的距离5d ==,1122AMNSMN d ∴=⋅==; 当2m =-时,直线MN :22y x =-,即220x y --=,则点A 到直线MN 的距离5d ==,1122AMNSMN d ∴=⋅==综上所述:AMN . 19.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(理))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,过点2F 的直线l 交椭圆C 于,P Q 两点.(1)若1F PQ 的周长为8,12F PF △C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,直线PA ,QB 的斜率分别为1221,,k k k k λ=,若()3,4λ∈,求椭圆C 的离心率的取值范围.【答案】(1)答案见解析;(2)13,25⎛⎫⎪⎝⎭. 【详解】(1)由椭圆定义得:11||48PF QF PQ a ++==,所以2a =, 又当点P 位于短轴端点时,12F PF △的面积最大,此时12122F PF S b c ∆=⨯⨯=bc =又222a b c =+,解得①1b c ==时,椭圆的标准方程为22143x y +=,②1,b c ==2214x y +=.(2)设(,0)A a -,(,0)b a ,()11,P x y ,()22,Q x y 由题意知直线斜率不为0,且过(,0)c ,设:l x my c =+,联立22221x my c x y a b =+⎧⎪⎨+=⎪⎩,整理得()22222222220b m a y mcb y b c b a +++-=,所以()212222222122222mcb y y b m a b c a y y b m a ⎧-+=⎪+⎪⎨-⎪=⎪+⎩(*),且121212,y y k k x a x a ==+-, 由题知21k k λ=,则有()()()()2121212211212121()()y x a y my c a k my y c a y k y x a y my c a my y c a y λ+++++====-+-+-, 将(*)代入整理得:21212221212()()mcb my y c a y b m a my y c a y λ⎛⎫-++- ⎪+⎝⎭==+-()()()222212222221222()2()()mb c a c a mcb c a y b m a mb c a c a y b m a -++--++-+-+()()()2222212222221222()2()()mb c a c a mc c a c a y b m a mb c a c a y b m a⎡⎤-++-⎣⎦-++==-+-+()()222122222212222()()()ca mb mc c a c a y b m amb c a c a y b m a ⎡⎤-++⎣⎦-++-+-+()()()222122222221222()()()ca m a c c a yb m am a c c a c a y b m a-+-++==--+-+()()221221()11()m a c c a y a c a c ea c a c em a c c a y +--+++==---+--所以12111e λλλ-==-++,(3,4)λ∈ 所以13,25e ⎛⎫∈⎪⎝⎭20.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(文))定义:由椭圆的两个焦点和短轴的一个端点组成的三角形称为该椭圆的“特征三角形”.若两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将“特征三角形”的相似比称为椭圆的相似比.已知椭圆221:142x y C +=,椭圆2C 与1C 是“相似椭圆”,已知椭圆2C 的短半轴长为b .(1)写出椭圆2C 的方程(用b 表示);(2)若椭圆2C 的焦点在x 轴上,且2C 上存在两点M ,N 关于直线21y x =+对称,求实数b 的取值范围.【答案】(1)222212x y b b +=或222212y x b b +=;(2))+∞.【详解】(1)由椭圆2C 与1C 是相似椭圆,得224221a b ==,∴椭圆2C 的方程为222212x y b b +=或222212y x b b +=.(2)由题设知:椭圆2C 为222212x y b b+=,设()11,M x y ,()22,N x y ,M ,N 的中点为E ,1:2MN l y x m =-+. ∴联立MN l 与椭圆2C 的方程,整理得()2223440x mx m b-+-=,∴0∆>,即2223b m >且12423E mx x x +==, 23E m x ∴=,1223E E my x m =-+=,由22,33m m E ⎛⎫⎪⎝⎭在直线21y x =+,得32m =-,于是222332b m >=,∴b 的取值范围为)+∞. 21.(2021·四川德阳市·高三三模(文))已知平面上的动点(),E x y 及两定点()2,0A -,()2,0B ,直线EA 、EB 的斜率分别为1k 、2k ,且1234k k =-,设动点E 的轨迹为曲线R . (1)求曲线R 的方程;(2)过点()1,0P -的直线l 与曲线R 交于C 、D 两点.记ABD △与ABC 的面积分别为1S 和2S ,求12S S -的最大值.【答案】(1)()221043x y y +=≠;(2【详解】(1)由题意知2x ≠±,且12yk x =+,22y k x =-则3224y y x x ⋅=-+- 整理得,曲线R 的方程为()221043x y y +=≠.(2)当直线l 的斜率不存在时,直线方程为1x =- 此时ABD △与ABC 面积相等,120S S -=当直线l 的斜率存在时,设直线方程为()()10y k x k =+≠()11,C x y 、()22,D x y 联立方程,得()221431x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得:()22223484120kxk x k +++-=0∆>,且2122834k x x k +=-+,212241234k x x k-=+ 此时()()1221212122211S S y y y y k x k x -=-=+=+++()212122234kk x x k k =++=+因为0k ≠,上式234k k=≤+==当且仅当k =) 所以12S S -22.(2021·天津高三其他模拟)已知椭圆()2222:10y x C a b a b +=>>的离心率为e =其左右顶点分别为,A B ,下焦点为F,若ABFS.(1)求椭圆C 的方程;(2)若点P 为椭圆C 上的动点,且在第一象限运动,直线AP 的斜率为k ,且与y 轴交于点M ,过点M 与AP 垂直的直线交x 轴于点N ,若直线PN 的斜率为25k -,求k 值.【详解】(1)由题可知:122ABFSbc =⋅=2bc e ==,22221bc a cb ac a b c⎧=⎧⎪=⎪⎪∴=⇒=⎨⎨⎪⎪=⎩=+⎪⎩, ∴椭圆方程为2214y x +=; (2)()1,0,AP A k k -=,设直线():(1),0,AP l y k x M k =+∴,联立方程()222222(1)424014y k x k x k x k y x =+⎧⎪⇒+++-=⎨+=⎪⎩, 222224,44A P A P k k x x x x k k --∴+=⋅=++, ()22248,144p p p k kx y k x k k -∴=∴=+=++,22248,44k k P k k ⎛⎫-∴ ⎪++⎝⎭,MN AP ⊥,设直线1:,MN l y x k k=-+令0y =,解得2N x k =,()2,0N k ∴, 2222824454PNk k k k k k k +==---+,即425240k k +-=,解得23k =或28k =-(舍), P 在第一象限,k ∴=23.(2021·全国高三其他模拟)已知双曲线C :()22221,0x y a b a b-=>>的一条渐近线与直线0l :0x -=垂直,且双曲线C 的右焦点F 到直线0l 的距离为1. (1)求双曲线C 的标准方程;(2)记C 的左、右顶点分别为1A ,2A ,过点F 的直线l 与双曲线C 的右支交于M ,N 点,且直线1A M 与直线2A N交于点Q ,求证:1AQ QF =.【详解】(1)由题知双曲线C 的渐近线方程为by x a =±, ∵双曲线的一条渐近线与直线0l:0x -=垂直,∴ba=b =.设(),0F c ,12c==,∴2c =. ∵222c a b =+,∴22244a b a =+=, ∴21a =,23b =,故双曲线C 的标准方程为2213y x -=.(2)由(1)可得()2,0F ,()11,0A -,()21,0A . ①当直线l 的斜率不存在时,直线l 的方程为2x =,结合双曲线C 的方程可得3=±y , 若()2,3M ,()2,3N -,则直线1A M 的方程为1y x =+,直线2A N 的方程为33y x =-+, 由直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫⎪⎝⎭,∴点Q 在直线12x =上,又1A F 的垂直平分线为直线12x =,∴1AQ QF =. 若()2,3M -,()2,3N ,则直线1A M 的方程为1y x =--,直线2A N 的方程为33y x =-, 由直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫- ⎪⎝⎭,∴点Q 在直线12x =上,又1A F 的垂直平分线为直线12x =,∴1AQ QF =. ②当直线l 的斜率存在时,设直线l 的方程为()2y k x =-,()11,M x y ,()22,N x y , 由题可知0k ≠,联立,得()22213y k x y x =-⎧⎪⎨-=⎪⎩,消去y 可得()222234430k x k x k -+--=,由直线l 与双曲线C 有两个交点,得23k ≠,212243k x x k +=-,2122433k x x k +=-.∵直线1A M 的方程为()1111y y x x =++,直线2A N 的方程为()2211yy x x =--,∵()()21121111y x x x y x ++=--,两边同时平方得()()2222122121111y x x x y x ++⎛⎫= ⎪-⎝⎭-, 又221113y x -=,222213y x -=,∴()()()()()()222221212222121231111311x x y x y x x x -++=---()()()()21121111x x x x ++=--()()1212121211x x x x x x x x +++=-++22222222434133434133k k k k k kk k +++--=+-+-- 22222243434343k k k k k k +++-=+-+- 9=,∴2191x x +⎛⎫= ⎪-⎝⎭,解得12x =或2x =. 由题易知()()211101y x y x +<-,当2x =时,101x x +>-,矛盾,舍去,故12Q x =,即点Q 在直线12x =上, 又1A F 的垂直平分线为直线12x =,∴1AQ QF =. 24.(2021·河南郑州市·高三三模(文))椭圆()222210,0x y a b a b +=>>经过点()0,1.若斜率为k的直线l 与椭圆交于不同的两点E 、G . (1)求椭圆的标准方程;(2)设()2,0P -,直线PE 与椭圆的另一点交点为M ,直线PG 与椭圆的另一个交点为N .若M 、N 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .【答案】(1)2213x y +=;(2)1k =.【详解】(1)因为椭圆()222210,0x y a b a b +=>>经过点()0,1,所以b =1,222213b e a =-= ,即2213b a =,解得a所以椭圆的方程是2213x y +=.(2)设()()11223344,,,,(,),(,)E x y G x y M x y N x y ,则221133x y +=,①222233x y +=,② 又()2,0P -,所以设1112PE y k k x ==+,直线PE 的方程为()12y k x =+, 由()122213y k x x y ⎧=+⎪⎨+=⎪⎩消去y 可得()222211113121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,所以13171247x x x --=+,13147y y x =+,即1111712(,)4747x y M x x --++,同理可得2222712(,)4747x y N x x --++,又因为71,44Q ⎛⎫-⎪⎝⎭,由Q 、M 、N 三点共线, 可得121212124747712712471144777444y y x x x x x x --++=----++++,化简得12121y y x x -=-,即1k =. 25.(2021·浙江高三二模)如图,A 点在y 轴正半轴上,抛物线2y x =上有三个不同的点B ,C ,D ,使得四边形ABCD 是菱形,C 点在第四象限.(1)若B 点与坐标原点重合,求菱形ABCD 的面积; (2)求OA 的最小值.【答案】(1)63(51)25++【详解】(1)设点A (0,2a ),因四边形ABCD 是菱形且B 点与坐标原点,则CD ⊥x 轴且|CD |=2a , 由抛物线对称性知C (a 2,-a ),D (a 2,a ),由|AB |=|BC |得2222()a a a =+3a =所以菱形ABCD 的边|AB |=3h =a 2=3,其面积为||333S AB h =⋅==(2)设点B (s 2,s ),D (t 2,t ),则线段BD 中点坐标为22(,)22s t s t++,而线段AC 与BD 有相同中点,点A 在y 轴上,则点2222(,)C s t s t +-+,22(0,)A s t s t ++,因AC ⊥BD ,即0AC BD ⋅=,222222(,2),(,)AC s t s t s t BD t s t s =+---+=--,222222()()(2)()0s t t s s t s t t s +-+---+-=,而t ≠s ,则22222()()s t s t s t s t +++=++令222s t m +=,则221m s t m +=-,而222()2()s t s t +<+,m>0,有12m + 322222||11m m m OA s t s t m m m +=+++=+=--,令32(),(12)1m mf m m m +=>+-,22342222222(31)(1)2()41(25)(25)()(1)(1)m m m m m m m m m f m m m +--+-----+'==-- ()025f m m '=⇒=+1225,()0m f m '+<<+<,25,()0m f m '>+>,所以()f m 在(12,25)++上单调递减,在(25,)++∞上单调递增,25m =+时,()f m 取最小值2(35)25(51)25(51)25(25)512(51)f +++++++===++. 26.(2021·四川广元市·高三三模(理))已知抛物线22(0)y px p =>的焦点为F .(1)若点(),1C p 3(2)点(),1C p ,若线段CF 的中垂线交抛物线于A ,B 两点,求三角形ABF 面积的最小值. 【答案】(1)2y =;(2)4. 【详解】(1)抛物线的准线方程是2p x =-,焦点坐标为,02p F ⎛⎫ ⎪⎝⎭,2p p ∴+=0p >,p ∴=∴抛物线的方程为2y =(2)由题意知线段CF 的中点坐标为31,42p M ⎛⎫⎪⎝⎭,1022CF k p p p -==-, 2AB pk ∴=-∴直线AB 的方程为13224p p y x ⎛⎫-=- ⎪⎝⎭设()11,A x y ,()22,B x y由2213224y pxp p y x ⎧=⎪⎨⎛⎫-=-- ⎪⎪⎝⎭⎩,得2234202p y y +--= 124y y ∴+=-,212322y y p =--)2124||p AB y p+∴=-==又||CF ==2411||||228ABFp SAB CF p+∴=⨯⨯==令2(0)t p t =>,则3(4)()t f t t +=,222(4)(2)()t t f t t+-'= ∴当02t <<时,()0f t '<,()f t 递减,当2t >时,()0f t '>,()f t 递增, ∴当2t =即p =ABFS △取得最小值,最小值为84=.27.(2021·河南郑州市·高三三模(理))已知抛物线2:4C x y =和圆()22:11E x y ++=,过抛物线上一点()00,P x y ,作圆E 的两条切线,分别与x 轴交于A 、B 两点.(1)若切线PB 与抛物线C 也相切,求直线PB 的斜率; (2)若02y ≥,求△PAB 面积的最小值. 【答案】(1)3±;(2)最小值为2.【详解】(1)由题意,可设切线PB 的方程为y kx m =+,代入抛物线的方程得2440x kx m --=, 由相切的条件得:216160k m ∆=+=,即20k m +=,由直线与圆相切可得圆心到直线距离1d ==,即222k m m =+,∴230m m +=,可得3m =-或0m =,∵当0m =时,有PB 的方程为0y =,此时(0,0)P 与圆E 的有且仅有一条切线, ∴3m =-,舍去0m =,故23k =,即3k =±.(2)设切线方程为00()y y k x x -=-,即000kx y y kx -+-=,圆心到直线距离1d ==,整理得222000000(1)(22)20k x x y x k y y --+++=,而220004(2)0x y y ∆=++>(02y ≥),设P A ,PB 斜率分别为12,k k ,则20000012122200222+,,11x y x y y k k k k x x ++=⋅=-- 令y =0,得000012,A B y yx x x x k k =-=-,0000120000121212000|||()()|||||y y y y k k AB x x y y k k k k k k -=---=-=⋅==00011||22PABSAB y y =⋅== 令222(6)(),2(2)y y y f y y y +=≥+,2232(4+18()0(2)y y y f y y +'=>+),则()f y 在[2,)+∞上单调递增,即min ()(2) 4.f y f ==∴PABS的最小值为2.28.(2021·浙江高三三模)如图,已知抛物线C :214y x =,点()()000,1A x y y ≥为抛物线上一点,过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线,8OM NO =,过点N 的直线l 交抛物线于点E ,F ,直线AE ,AF 的斜率分别为1k ,2k ,满足120k k +=.(1)求抛物线C 的焦点坐标和准线方程; (2)求点A 到直线l 的距离的最小值.【答案】(1)焦点坐标()0,1,准线方程1y =-;(2)232416. 【详解】(1)抛物线的标准方程为24x y =,所以其焦点坐标()0,1,准线方程1y =-;(2)已知204x y =,则点A 处的切线方程:20024x x y x =-,因为过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线所以()202222004124x t x t x x x t t t ⎧-⎪⋅=-⎪⎪-⎨⎪⎛⎫⎪-+-= ⎪⎪⎝⎭⎩,化简得:224200030216x t t x x +--=.由0t >得:)242000200042202x x x t y y y t -+==-++> 设()11,E x y ,()22,F x y ,则由120k k +=得:1020044x x x x +++=,即0122x x x -=+, 所以021212EF x y y k x x -==--,由8OM NO =得0,8t N ⎛⎫- ⎪⎝⎭, 所以,直线l :028x ty x =--,则023y d +==23=[)01,y ∈+∞上单调递增所以,当01y =时,min 416d =, 此时,直线l 与抛物线相交.29.(2021·宁夏银川市·银川一中高三三模(理))已知椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率e =,椭圆上的点到焦点的最短距离为1. 直线l 与y 轴交于点()0,P m ,与椭圆C 交于相异两点A 、B ,且3AP PB =.(1)求椭圆C 的方程; (2)求m 的取值范围.【答案】(1)22112x y +=; (2)11(1,)(,1)22--. 【详解】(1)设椭圆的方程为2222:1(0)C bb x a a y +>>=,因为椭圆C 的离心率e =,椭圆上的点到焦点的最短距离为1-, 可得2c e a ==且12a c -=-,解得1,2a c ==, 则22212b ac =-=,所以椭圆的方程为22112x y +=. (2)由题意,直线l 的斜率显然存在,设:l y kx m =+,与椭圆C 交点为1122(,),(,)A x y B x y ,联立方程组2221y kx m x y =+⎧⎨+=⎩,整理得222(2)2(1)0k x kmx m +++-=, 所以22222(2)4(2)(1)4(22)0km k m k m ∆=-+-=-+>,且212122221,22km m x x x x k k --+==++, 因为3AP PB =,所以123x x -=,可得122212223x x x x x x +=-⎧⎨=-⎩, 消去2x 得212123()40x x x x ++=,即2222213()4022km m k k --⨯+⨯=++, 整理得22224220k m m k +--=,即222(41)22m k m -=-, 当214m =时上式不成立, 当214m ≠时,可得2222241m k m -=-, 由3AP PB =,可得0k ≠,所以22222041m k m -=>-,解得112m -<<-或112m <<, 经验证此时2222k m >-成立,即0∆>成立,所以实数m 的取值范围为11(1,)(,1)22--. 30.(2021·山东济宁市·高三二模)己知抛物线()2:20C x py p =>,过点()0,T p 作两条互相垂直的直线1l 和2l ,1l 交抛物线C 于A ,B 两点,2l 交抛物线C 于E 、F 两点,当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12. (1)求抛物线C 的标准方程;(2)已知O 为坐标原点,线段AB 的中点为M ,线段EF 的中点为N ,求OMN 面积的最小值.【答案】(1)2=4x y ;(2)8.【详解】(1)因为()220x py p =>可化为22x y p =,所以x y p '=. 因为当A 点的横坐标为1时,抛物线C 在A 点处的切线斜率为12, 所以112p =,所以2p =, 所以,抛物线C 的标准方程为2=4x y .(2)由(1)知点T 坐标为()0,2,由题意可知,直线1l 和2l 斜率都存在且均不为0,设直线1l 方程为2y kx =+,由224y kx x y=+⎧⎨=⎩联立消去y 并整理得,2480x kx --=, ()2243216320k k ∆=-+=+>, 设()11,A x y ,()22,B x y ,则124x x k +-,128x x ⋅=-, 所以,()21212444y y k x x k +=++=+, 因为M 为AB 中点,所以()22,22M k k +, 因为12l l ⊥,N 为EF 中点,所以222,2N k k ⎛⎫-+ ⎪⎝⎭, 所以,直线MN 的方程为()()()22222221222222k k y k x k k x k k k k⎛⎫+-+ ⎪⎛⎫⎝⎭-+=⋅-=-⋅- ⎪⎝⎭+ 整理得14y k x k ⎛⎫=-+ ⎪⎝⎭, 所以,直线MN 恒过定点()0,4. 所以OMN面积1211424=4()482S k k k k k k ⎛⎫=⨯⨯--=++≥⋅= ⎪⎝⎭, 当且仅当1kk即1k =±时,OMN 面积取得最小值为8.。

高考数学难点:解析几何题

高考数学难点:解析几何题

高考数学难点:解析几何题⑤探求曲线方程中几何量及参数间的数量特征;(3)能力立意,渗透数学思想:如2019年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。

一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。

(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。

加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。

加大探索性题型的分量。

在近年高考中,对直线与圆内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;②对称问题(包括关于点对称,关于直线对称)要熟记解法;③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.以及其他“标准件”类型的基础题。

(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。

预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。

相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:(1)考查圆锥曲线的概念与性质;(2)求曲线方程和求轨迹;(3)关于直线与圆及圆锥曲线的位置关系的问题.选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学难点:解析几何题每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,解析几何又是难中之难。

其实不然,解析几何题目自有路径可循,方法可依。

只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。

我们先来分析一下解析几何高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。

(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。

近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
①求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:如2019年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。

一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。

(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。

加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。

加大探索性题型的分量。

在近年高考中,对直线与圆内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.
以及其他“标准件”类型的基础题。

(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。

预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。

相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

(3)关于直线与圆及圆锥曲线的位置关系的问题.
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学
正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题
趋向要引起我们的重视.
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。

相关文档
最新文档