锐角三角函数的经典测试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数的经典测试题含答案
一、选择题
1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )
A .asinα+asinβ
B .acosα+acosβ
C .atanα+atanβ
D .tan tan a a αβ
+ 【答案】C
【解析】
【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.
【详解】
在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=
BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,
∴CD =BC+BD =atanα+atanβ,
故选C .
【点睛】
本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.
2.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)
A .78.6米
B .78.7米
C .78.8米
D .78.9米
【答案】C
【分析】
如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度
【详解】
如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G
∵BC 的坡度为1:0.75
∴设CF 为xm ,则BF 为0.75xm
∵BC=140m
∴在Rt △BCF 中,()2
220.75140x x +=,解得:x=112
∴CF=112m ,BF=84m
∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形
∵DE=55m ,CE=FG=36m
∴DG=167m ,BG=120m
设AB=ym
∵∠DAB=40° ∴tan40°=1670.84120
DG AG y ==+ 解得:y=78.8 故选:C
【点睛】
本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.
3.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )
A 5
B .35
C .22
D .23
【解析】
【分析】
先根据翻折变换的性质得到DEF AEF ∆≅∆,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.
【详解】
解:∵△DEF 是△AEF 翻折而成,
∴△DEF ≌△AEF ,∠A =∠EDF ,
∵△ABC 是等腰直角三角形,
∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,
∴∠BED =∠CDF ,
设CD =1,CF =x ,则CA =CB =2,
∴DF =FA =2﹣x ,
∴在Rt △CDF 中,由勾股定理得,
CF 2+CD 2=DF 2,
即x 2+1=(2﹣x )2, 解得:34x =, 3sin sin 5CF BED CDF DF ∴∠=∠=
=. 故选:B .
【点睛】 本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
4.直角三角形纸片的两直角边长分别为6,8,现将ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( )
A .247
B 7
C .724
D .13
【答案】C
【解析】
试题分析:根据题意,BE=AE .设BE=x ,则CE=8-x .
在Rt △BCE 中,x 2=(8-x )2+62,
解得x=254,故CE=8-254=74
,
∴tan ∠CBE=724CE CB =. 故选C. 考点:锐角三角函数.
5.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45︒,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60︒和30,则该电线杆PQ 的高度( )
A .623+
B .63+
C .103-
D .83+
【答案】A
【解析】
【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.
【详解】
解:延长PQ 交直线AB 于点E ,设PE=x .
在直角△APE 中,∠A=45°,
AE=PE=x ;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE 中,BE=
33PE=33x , ∵AB=AE-BE=6米,
则3, 解得:3