制动控制线路故障维修

合集下载

长安福特新蒙迪欧防抱死制动系统故障检修

长安福特新蒙迪欧防抱死制动系统故障检修

作者简介:邱建明,本刊签约作者,现任某品牌4S店技术总监。

在汽车维修行业从业30余年,其中从事技术管理工作20余年。

自2003年起在广汽本田4S店从事技术总监工作,参加广汽本田各车型技术培训,并考取DT诊断技师资格证书及汽车维修工程师资格认证,此后又涉足不同品牌的技术管理,并潜心钻研各品牌汽车维修技术,常年在国内著名汽车维修期刊上发表文章及维修心得。

图1 仪表板的故障指示图2 系统自检结果
图3 IDS无法与ABS控制单元建立网络通信
086
2016.06
图4 防抱死制动系统(ABS)电路图
图5 接地点G102的位置
含义为“与ABS控制单元的通讯漏失”,也就是说这几个控制单元同时与ABS控制单元失去网络通信。

在进行第二步网络测试(图4)。

根据电路图,对ABS控制单元
插接器C135上的1号、30号和35号端子
所对应的蓄电池熔丝盒(BJB)上的熔丝
线路接触不良(虚电),测量结果3个供电
端子供电可靠。

难道问题还是出在14号搭
铁端子吗?于是断开C135插接器,同样用
大功率灯泡测试灯对14号搭铁端子进行重
点测量,通过电路图及维修手册,找到了
搭铁点G102的位置(图5)。

当笔者在大功率灯泡测试时,请助手
晃动G102搭铁点线束,灯泡突然出现突亮
突灭现象,这一现象表明,G102存在接触
不良现象,该故障的根源终于找到!原来
是ABS控制单元搭铁不良,造成ABS控制C135插接器1号、30号、
35号3个供电端子
C135插接器14号端子。

制动系统典型故障诊断与维修

制动系统典型故障诊断与维修

(3)检查各机械连接部位有无脱开。若有,则应修复。 (4)检查主缸活塞、皮碗和复位弹簧是否完好,如图所示。调整主缸推 杆的自由行程。
(5)检查制动间隙是否过大,必要时拆检制动器。检查制动蹄片磨损情 况,摩擦片是否沾有油污或铆钉外露,制动轮缸是否磨损严重、皮碗踏翻,制 动蹄与支撑销是否严重锈蚀、卡滞等。
距离内快速制动。
1.故障现象
制动失效是指汽车制动 功能丧失,分为完全失效和 部分失效。完全失效是没有 一点制动作用,部分失效是 丧失部分的制动作用,仍保 留部分制动性能,不能在短 距离内快速制动。
2.故障原因分析
制动液严重不足。 制动管路堵塞或漏油。 制动主缸皮碗或制动轮缸皮碗损坏,或紧急制动时将制动皮碗踏翻。 主缸活塞与缸壁或轮缸活塞与缸壁磨损过量,松旷漏油,活塞复位弹簧过软或折断。 车轮制动器磨损严重,制动间隙过大或摩擦片有油污,铆钉外露。 制动踏板自由行程过大。
4.注意事项
•工作前准备是否到位 (工具是否准备齐全、 安全防护措施和防火 措施是否完善等)。
•更换制动油管后,注 意对制动系统进行排 气处理,并按规定添 注刹车油。
• 严格拆装程 序并注意操 作安全。
5.案例描述 有一辆丰田卡罗拉轿车在行驶途中突然不能制动,制动时必须连续踩踏板 十多次,才能停车。停车后排除油路中的空气才能恢复制动,当行驶一段路程 后,又不是能制动了。 请同学们根据该车故障现象和本节所讲内容,对该车制动失效故障进行诊 断。并填写诊断记录表。
7.基本检查
检查相关零部件外观、安装和线路连接等是否正常,并 记录。
8.部件测试 9.电路测量 10. 确认故障部位
对怀疑的部件进行测试,并记录测试结果。 对怀疑的电路进行测量,并记录测试结果。 根据上述的检测结果,确认故障内容并期准备 2.安全检查

浅析南京地铁一号线南延线列车制动系统常见故障及处理

浅析南京地铁一号线南延线列车制动系统常见故障及处理

浅析南京地铁一号线南延线列车制动系统常见故障及处理制动系统的控制EP2002 将制动控制和带气动阀的制动管理电子装置结合在了一起,安装于每个转向架上的单个机电一体化包中(EP2002 阀门)。

这些气动阀用于常用制动(SB)、紧急制动(EB)和车轮滑动保护(WSP)。

气动供应可以是从一个中心点到每个EP2002 阀,也可以是到本车每个阀。

一个EP2002阀就相当于一般空气制动系统中的微机控制单元(BCE)加上制动控制单元BCU的组合,此外,它还具有网络通信功能。

根据架空的需要,装备了EP2002制动控制系统的列车,每节车上均装有两个EP2002阀,并且分别安装在其控制的转向架附近的车体底架上。

所有EP2002阀上都带有多个压力测试口,可以方便的测量储风缸压力、制动风缸压力、车辆载荷压力以及停放制动缸压力等图一在图一所示的EP2002系统边界内,所有的EP2002系统都是采用将3个核心产品安排到所需的网络配置中而构成的。

这3个核心产品是EP2002 Gateway 阀、EP2002 Smart阀和EP2002 RIO阀EP2002阀的工作原理EP2002 Gateway阀、Smart阀和RIO阀的气动部分完全相同,称为气动阀单元(PVU)。

其功能区域可分组如下。

每个区域均在下图内部气路示意图上标明注意:如果没有紧急冲动限制特征,则在磁铁阀的位置安装一个通风口板EP2002 阀门内部气路示意图1.一次调节:有一个继电器阀负责将气动阀单元供应的压力调低到一个与加载紧急制动压力相对应的水平上。

它还负责在电子称重系统失灵时提供一个机械的紧急空车压力2.二次调节:二次调节器位于一次调节器的上部,负责将供应至制动缸的最大压力限制在一个与满载荷车辆紧急制动压力相对应的水平上3.称重:负责提供一个紧急加载控制压力给一次调节继电器阀。

此控制压力始终处于激活状态,且与空气悬挂系统压力成比例4.BCP调节:负责从一次调节器提取输出压力,并将它进一步调节至踏面制动所需的BCP水平。

地铁列车制动故障影响因素及处理控制策略分析

地铁列车制动故障影响因素及处理控制策略分析

地铁列车制动故障影响因素及处理控制策略分析摘要:制动系统是地铁列车的关键核心子系统之一,其可靠性和稳定性直接关系到列车行车安全,任何制动系统的故障或质量问题都可能造成重大安全事故。

因此车辆制动系统表现出的任何非正常问题均应该引起高度重视和充分关注,对发生故障的原因进行深入分析,根据故障原因采取相应整改措施和有效方案,以确保列车运行的绝对安全。

关键词:地铁列车;制动故障;控制策略引言自从1969年1月北京第一条地铁线路建成通车以来,目前全国有近30个城市和地区都在进行轨道交通的建设、规划,涉及的线路项目达110多条,地铁建设进入一个大跨越时期。

作为地铁列车运行的“大脑”——ATP(列车自动防护)系统,对列车的安全运行起着决定性的作用,在出现不安全因素的情况下通过列车实施紧急制动的方式来保证列车安全稳定的运行;但如果列车频繁出现紧急制动的情况,可能引起大面积晚点,必将给地铁运营效率带来严重的影响。

地铁受建设条件、投资规模和城市规划等多方面因素的限制,其车站基本上没有配线,没办法组织列车越行或迂回运行。

因此,作为地铁运输载体的地铁列车,一旦由于列车自身的故障在正线需要救援时,一处故障将影响到全线列车受阻;同时由于换乘站的换乘客流不能疏运,还将会影响到邻线的换乘列车正常运行,影响之大倍受关注。

因此,介绍了列车制动系统防滑控制原理,分析了故障产生的现象和原因,提出了相应的改进方案和预防措施。

1 、地铁列车制动故障种类及其原因分析通过车载监控系统记录的制动系统故障相关数据,结合故障发生时的车辆运行状态,可以分析车辆运行过程中发生故障的原因。

(1)制动控制单元中的随机存储器RAM异常。

车辆在运行过程中储存制动信息的RAM发生异常,不能进行制动控制。

故障原因分析:制动电子控制单元(BECU)故障。

(2)拖车空气制动减算指令异常。

车辆在运行过程中拖车减算指令信号发生异常,拖车只能进行空气制动。

故障原因分析:①相关线路存在问题,参照制动系统原理图及车辆内部接线线号对照表,对相关线路进行校线,检查线路是否存在断线、错接、虚接;②动车BECU内部输出回路故障;③拖车 BECU内部输入回路故障。

地铁列车制动系统故障原因分析及改进

地铁列车制动系统故障原因分析及改进

地铁列车制动系统故障原因分析及改进摘要:制动系统软件是地铁列车的主要关键子系统之一。

其安全性和可靠性直接影响到列车的安全驾驶运行。

制动系统软件的所有故障或产品质量问题或统软件故障都可能导致重大事故。

因此,应关注和充分关注所有以车辆制动系统软件为主要表现的异常问题,详细分析导致故障的因素,并根据故障原因采取有效的改进措施和合理的计划,确保旅客列车的安全。

关键词:地铁列车;制动系统;故障原因;改进措施1列车制动系统防滑控制原理气制动防滑系统软件空气制动系统防滑控制主要由速度传感器、防滑控制板和防滑排气电动空气阀组成。

当速度非常低时,速度传感器仍能准确测试速度。

防滑排气电动空气阀用于在发生制动滑移滑行时对滑行轴的制动缸进行阶段排风释放单轴的气体制动,降低制动夹钳压力,防止车轮抱死,以消除制动滑移滑行。

空气制动系统防滑检测有两种常用判定依据:气制动防滑作业选用两种滑行检测方法来判断是否存在滑行情况:(1)速度差判据:当某一轴速度低于参考速度(基准速度)达到速度差滑行判据的数值时,判定该轴处于滑行状态当轴速度小于参考速度(标准速度)时,判断滑动标准值;(2)减速率判据:当某一轴速度的减速度达到减速度滑行判据的数值时,判定该轴处于滑行状态轴减速达到滑动判据值时。

当出现上述任何一种情况时,将判断车轴发生制动滑移滑行。

防滑自控系统首先切断根据防滑排气电动空气阀断开无线中继阀至车轴制动缸的通道供风,进行制动缸压力试验(工作压力不膨胀)。

如果滑动较大或试压后滑动继续扩大,防滑阀还可以阶段性排出制动缸的部分工作压力气体压缩空气,以减小轴上的制动力,降低轴上的滑动水平,使轴修复恢复至粘着状态。

当粘着修复恢复后再进行制动和充气时,防滑自控系统将首先选择链路充气方式。

一方面,它可以限制粘着修复过程中重新制动的垂直冲击率,同时可以降低粘着修复过程中重新滑动的概率。

所有车轴上的空气制动制动力不得连续降低5S。

在此期间之后,制动将自动完全恢复。

探讨地铁车辆紧急制动响应故障原因分析及改进措施

探讨地铁车辆紧急制动响应故障原因分析及改进措施

探讨地铁车辆紧急制动响应故障原因分析及改进措施摘要:轨道交通出行是一种方便快捷且环保的出行方式,随着我国对环境保护事业的重视,越来越多的人都选择轨道交通出行替代私家车出行。

并且随着更多的人选择了轨道交通出行这一出行模式,我国轨道交通运营技术也得到了不断地完善,轨道交通运营也变得更加自动化。

在此基础上,轨道交通线路覆盖范围不断增加,越来越多的城市修建轨道交通为人们提供便利。

尽管轨道交通出行安全指数很高,但是因为轨道交通运行速度很快,所以需要轨道交通有敏感和完善的紧急制动设备来防止某些紧急事故的发生。

关键词:地铁车辆;紧急制动;响应故障一、紧急制动回路运行的基本原理城市轨道交通列车的电气设备故障主要有:牵引带制动故障、辅助系统软件故障、列车广播系统故障;中央空调系统故障等,其中牵引力刹车是影响列车运行安全与品质的重要因素,也是城市公交运营保障工作的重点和难点。

轨道交通紧急制动分为电制动与空气制动两种,电制动简单地说就是把车辆动能转换成电能,然后把电能转换成热能等其他形式的能量释放出来,从而实现制动。

空气制动是为了让风缸内的压力把对应闸门顶在轮对上而达到制动目的。

两种制动均可能无法充分实现制动目的,所以联合使用两种制动方式是当今轨道交通车辆普遍采用的制动方式。

机车紧急刹车回路由一条控制线路和一条命令线路组成。

控制线路依据串连机车内部的机器和通讯系统中危害行车安全的反馈信息(例如:行车维护、主气压监测、驾驶员控制器等)对应急刹车接触进行操纵;指令控制线路将应急刹车触头与刹车阀门串联,并依据其触头向刹车线路板发送指令,以实现对车辆的紧急刹车。

应急制动器回路的概念大致可分成两种:①确保刹车缓和,是指按接触器并联的形式,以火车的行驶为方向,从而增加应急刹车减轻的可能性;②提高保障制动器的可靠性,也就是采用多个触头串接的方法提高了应急制动器的发生几率,确保行车的安全性。

采用连接触头的方法可以减小操作时的电流,并联连接可以减小制动器油路的工作基准电压。

城轨车辆制动系统故障分析与处理.

城轨车辆制动系统故障分析与处理.

城轨车辆制动系统故障分析与处理二级院校动力工程学院班级学生姓名指导老师完成日期摘要随着我国经济的高速发展,越来越多的城市建设和开通了地铁,祖国的城轨交通事业正在蓬勃发展。

我国近年来大力发展支持发展城市轨道交通事业,截止2011年8月,全国已建成城市轨道交通线路1568km,已建成线路50条,运营车站总数995←,我国轨道交通线网总体供给能力处于高幅增长阶段,网线供给呈现快速增加趋势。

截止2011年8月,全国共有30个城市轨道交通近期建设规划获批。

其中,20个城市在规划期内调整、扩大了建设规模。

“十二五”期间,我国各城市地铁、轻轨建设里程将达到2600km,建设投资规划将达12700亿元。

预计到20202年底,国内将有40个城市建设轨道交通,总里程约7000km。

但随着7.23事故,上海地铁追随,人们也更加关注城轨车辆的安全问题,而地铁的安全更多的是依靠车辆的制动系统。

人为施加于运动物体使其减速(防止其加速)或停止运动,或施加于静止物体保持其静止状态,这种作用称之为制动作用。

实现制动作用的力称为制动力。

解除制动作用的过程称为缓解。

应此制动系统在地铁车辆有着举足轻重的作用。

近年来,地铁车辆的快速发展,运行速度也由最初的60km/h逐渐提高到80 km/h甚至更高。

车辆在高速运行中必须依赖制动系统调节列车运行速度和及时准确地在预定地在预定地点停车,保证列车安全正点地运行。

试想一下,在你有急事的时候,坐地铁到站了,却因为没有准确的停在预定的停车点,直接开往下一站了,你是怎样的心情?在你坐的地铁时,制动系统出现故障,刹车不灵了,那面对的直接是生命危险。

关键词:城轨车辆制动系统故障分析解决措施目录1.制动系统的概述 (3)1.1制动的基本概念 (3)1.2列车制动系统 (3)1.3城轨车辆制动模式 (3)1.4 制动方式 (4)2.城市轨道交通车辆制动系统 (4)2.1制动系统的组成 (5)3.城轨车辆的供风系统 (6)3.1 空气压缩机 (6)3.2 空气干燥器 (9)4.基础制动装置 (12)4.1闸瓦制动装置 (12)4.2盘制动装置 (15)5.KBGM模拟式电气指令制动系统 (15)5.1 供气单元 (15)5.2制动控制单元 (17)6.制动装置故障分析与处理 (22)6.1闸瓦的故障分析与处理 (22)6.2紧急制动故障分析与处理 (23)总结 (25)致谢 (26)1.制动系统的概述1.1制动的基本概念制动是指人为施加的外力,使运动的物体减速或阻止其加速,以及保持静止的物体静止不变的作用。

电力机车制动机常见故障现象及处理

电力机车制动机常见故障现象及处理

电力机车制动机常见故障现象及处理目录第1章绪论 (1)第2章 SS4G电力机车制动机概述 (2)2.1 SS4G制动机主要组成部件 (2)2.2 SS4G电力机车制动机工作原理 (5)2.3 SS4G电力机车制动机性能 (6)2.4 SS4G电力机车制动机的特点 (7)第3章 SS4G电力机车常见故障分类 (8)3.1控制电路故障 (8)3.2阀类部件故障 (8)3.3管路及链接部位故障 (8)3.4操作不当造成的故障 (9)第4章 SS4G电力机车制动机常见故障现象及处理 (10)4.1故障现象一原因、判断及处理方法 (10)4.2故障现象二原因、判断及处理方法 (11)4.3故障现象三原因、判断及处理方法 (12)4.4 故障现象四原因、判断及处理方法 (13)4.5故障现象五原因、判断及处理方法 (13)4.6故障现象六原因、判断及处理方法 (14)4.7故障现象七原因、判断及处理方法 (14)4.8故障现象八原因、判断及处理方法 (15)4.9故障现象九原因、判断及处理方法 (16)4.10故障现象十原因、判断及处理方法 (16)4.11故障现象十一原因、判断及处理方法 (17)4.12故障现象十二原因、判断及处理方法 (18)4.13故障现象十三原因、判断及处理方法 (18)4.14故障现象十四原因、判断及处理方法 (19)第5章结束语 (20)参考文献.......................... 错误!未定义书签。

摘要无论是客运或者货运机车,制动机都是其必不可少的装置,制动系统性能良好的制动机对铁路运输有着保证行车安全、充分发挥牵引力,增大列车牵引重量,提高列车运行速度、提高列车的区间通过能力等促进作用。

SS型电力机车装备的制动机为DK-1型制动机,虽然SS4G型电力机车的制动机经过长时间的检验,但是其在工作过程中依旧有不可避免的故障发生,所以笔者此次的毕业设计就是希望能够在日常运行过程中,碰见制动机发生故障时,能够及时处理,这样才能保证列车的正常运行,避免造成不必要的事故发生。

q5l制动伺服系统功能受限原因

q5l制动伺服系统功能受限原因

Q5L制动伺服系统功能受限的原因可能有以下几种:
1. 电子控制单元的故障:电子控制单元不能正常工作,可能导致制动系统不能正常工作,从而影响制动伺服系统的功能。

2. 传感器故障:传感器的功能是收集汽车的状态信息,并将其传输到控制单元。

如果传感器出现故障,例如刹车压力传感器、轮速传感器等,无法正常工作,可能会造成制动系统的故障,进而影响制动伺服系统的功能。

3. 执行器故障:执行器负责执行电子控制单元的指令。

如果制动电机、继动阀等执行器出现故障,将无法正常产生制动液压,影响制动。

4. 蓄能器故障:蓄能器用于储存制动力,可以在短时间内提供稳定的制动力。

如果蓄能器出现故障,可能会影响制动的提供速度。

5. 控制系统线路故障:控制线路的故障可能导致信号传输中断,影响控制系统的正常工作,进而影响制动伺服系统的功能。

当上述任何一个部件出现故障时,都可能导致制动伺服系统功能受限。

此外,如果驾驶员的操作不规范或路面条件不良,也可能导致制动伺服系统功能受限。

例如,驾驶员没有及时踩踏板或踩踏板行程不足,可能导致制动力不足或制动力分配不均;路面湿滑、坑洼等不良路面条件也可能影响制动力和制动的稳定性。

总的来说,Q5L制动伺服系统功能受限可能是由于电子控制单元、传感器、执行器、蓄能器、控制系统线路等部件的故障导致的。

驾驶员应及时检查并维修故障部件,以确保车辆的安全性。

同时,驾驶员也应规范操作,以避免因操作不当导致的系统故障。

地铁制动系统介绍与故障处理方法分析

地铁制动系统介绍与故障处理方法分析

地铁制动系统介绍与故障处理方法分析摘要:地铁制动系统的功能是通过车载的列车自动控制装置和地面上的集中控制中心之间的信息传递和处理,使列车停车、启动、减速、制动和停止等。

地铁制动系统是整个地铁系统中重要的组成部分,是保证列车安全运行的重要设备,也是保证乘客安全出行的重要设备。

所以,必须保证地铁制动系统运行的可靠性和安全性。

在地铁列车运行中,如果不能及时有效地进行停车、启动、减速和制动等,会对列车的运行造成极大的安全隐患,严重时会对乘客造成人身伤害,甚至导致交通事故发生。

因此,必须采用先进可靠的制动系统来保证地铁安全可靠地运行。

本文结合实际情况就地铁制动系统进行了介绍,并对地铁制动系统常见故障处理方法进行了分析。

关键词:地铁制动;系统介绍;故障处理方法随着我国城市化进程的不断加快,地铁作为一种快速、便捷、环保的城市公共交通工具,得到了广泛的应用。

在我国的地铁系统中,制动系统是一个重要组成部分。

地铁制动系统主要包括:列车自动控制装置、车站集中控制装置(CTC)、列车区间停车位置指示装置(LKJ)和列车紧急制动装置(ESD)四部分。

其中,列车自动控制装置是地铁列车运行过程中重要的设备之一,通过车载的列车自动控制装置能够有效地对列车进行停车、启动、减速和制动等。

车站集中控制装置通过车载的车站集中控制装置能够实现对列车进行监控、检测和故障报警等功能,以便及时发现并处理地铁运行过程中存在的问题。

地铁区间停车位置指示装置主要是用来指示列车在区间停车位置,从而引导司机迅速找到合适的停车位置。

当司机根据其显示的停车位置和车辆信号操作时,可以准确地将车辆停到正确的位置,从而有效避免了由于制动不当而造成的列车超速事故发生。

当地铁列车处于紧急制动状态时,地铁制动系统可以及时有效地将车辆制动,避免了因制动不当而造成的严重后果。

1地铁制动系统基本组成以某城市的地铁为例,其制动系统非常复杂,包括基础制动系统、供风系统和制动控制系统等多个方面的设备,并且不同设备的型号也是多种多样的。

地铁车辆制动系统常见故障处理与分析

地铁车辆制动系统常见故障处理与分析
!1.'0&%'I:;D8F;9G8-B =;@/8?/@/9G>F9:;6;9=>H;:/,@;?=8./-7DGD9;6/D8- /6<>=98-97A8=8-9;;F>=9:;D8F;9G>FA=?8- =8/@ 9=8-D/9><;=89/>-D&I:/D8=9/,@;/-9=>BA,;D9:;FA-,9/>- 8-B ,>6<>D/9/>- >F9:;?=8./-7DGD9;6>FA=?8- =8/@9=8-D/9H;:/,@;DF>,AD/-7 >- DA668=/X/-79:;,>66>- F8/@A=;D8-B ;6;=7;-,G9=;896;-9D>F9:;8/=?=8./-7DGD9;6>F68/-@/-;H;:/,@;D8-B ,>-BA,9D8- /-2
(&( 防范措施 在确定制动阀故障后更换制动阀"多次进行制动施加 缓解试验车辆故障消除"检测制动和网络数据无异常% 为 防止该类故障再次发生造成车辆运营事件"对所有车辆进 行了制动施加缓解试验并查看数据"确定其他制动阀无监 测数据异常情况"在日常检修中定期查看制动系统制动缸 压力数据"发现传感器数据异常立即更换进行防范% 总结 对于现在城市轨道交通运营"车辆制动系统早已不仅 仅是车辆运营安全的重要影响因素"随着地铁车辆硬件及 软件的不断优化以及安全系数的不断提升"制动性能也成 为列车牵引及车辆运行速度等性能的重要限制因素#_$ % 城市人口的不断扩充&轨道交通线网的不断延伸以及车辆 运用年限增加"轨道交通车辆制动系统的故障率也在逐渐 升高% 目前国内地铁多采用克诺尔公司的制动控制系统" 存在零部件集成度高且技术封锁等特点% 本文通过分析 车辆制动系统的功能及构成"总结了正线车辆空气制动系 统常见的故障与应急处理措施"并通过对典型故障案例深 入分析"为解决地铁车辆空气制动系统常见故障提供应急 解决参考与检修防范思路%

直流电动机起动、制动控制线路课程思政教学设计

直流电动机起动、制动控制线路课程思政教学设计

直流电动机起动、制动控制线路课程思政教学设计摘要:一、直流电动机起动、制动控制线路概述1.直流电动机起动、制动控制线路的基本原理2.直流电动机起动、制动控制线路的基本组成部分二、直流电动机起动控制线路设计与应用1.直接起动控制线路2.降压起动控制线路3.星角起动控制线路三、直流电动机制动控制线路设计与应用1.再生制动控制线路2.能耗制动控制线路3.反接制动控制线路四、起动、制动控制线路故障诊断与排除1.起动故障诊断与排除2.制动故障诊断与排除五、课程思政教学设计实践与反思1.教学目标设定2.教学内容安排3.教学方法选择4.教学效果评估与反思正文:一、直流电动机起动、制动控制线路概述直流电动机起动、制动控制线路是电气工程领域中重要的组成部分,其基本原理是根据电动机的特性,通过合理的电路设计实现电动机的正常起动、制动及运行控制。

直流电动机起动、制动控制线路的基本组成部分包括控制器、开关设备、保护装置等。

二、直流电动机起动控制线路设计与应用1.直接起动控制线路:直接起动控制线路是最简单的直流电动机起动方式,只需将电源直接连接到电动机即可。

但这种方式存在启动电流大、易损坏电动机等缺点,适用于小功率电动机。

2.降压起动控制线路:降压起动控制线路通过降低电源电压实现电动机的起动,具有启动电流小、电动机不易损坏等优点。

适用于中大功率电动机。

3.星角起动控制线路:星角起动控制线路通过改变电动机的接线方式实现起动,具有启动电流小、电动机性能稳定等优点。

适用于大功率电动机。

三、直流电动机制动控制线路设计与应用1.再生制动控制线路:再生制动控制线路通过将电动机的制动能量回馈到电源,实现制动控制。

具有制动效果好、能量利用率高等优点。

2.能耗制动控制线路:能耗制动控制线路通过将电动机的制动能量消耗在电阻上,实现制动控制。

具有制动稳定性好、设备简单等优点。

3.反接制动控制线路:反接制动控制线路通过改变电动机的供电方向实现制动控制,具有制动效果明显、制动稳定性好等优点。

地铁列车紧急制动故障的原因分析及整改建议

地铁列车紧急制动故障的原因分析及整改建议

图1 网络触发紧急制动的逻辑图发现超声波检测技术在带涂层特种设备检测中应用具有可行性,为避免打磨涂层,实际检测中,可提升6dB 当作涂层衰减补偿,用以规避设备壁厚变薄、材料耗损等问题。

参考文献:[1]陈昌华,陈新华,周通,汤志贵,施虹屹,闵明.超声波检测的人工反射体仿真分析[J].物理测试,2020,38(06):15-19.[2]GB/T 38898-2020, 无损检测 涂层结合强度超声检测方法[S].[3]朱学元.超声波检测在机械制造业中的应用[J].内燃机与配件,2020(15):208-209.[4]高翔,彭俊,李冬华,胡才望.超厚壁无缝钢管纵向缺陷超声波检测探讨[J].钢管,2021,50(06):76-79.[5]田勐,王丽萍,张勇,程志义,李凯,王卓,石永佳.轨道车辆车体用碳纤维复合材料超声波检测试验研究[J].铁道车辆,2021,59(06):90-96.为硬线触发紧急制动的逻辑图,其触发的条件共计5种,满足任一种即可触发紧急制动。

2.3 紧急制动回路电路原理如图3所示,正常情况下电流流向如绿色箭头路径所示,若回路中任一个器件失效时,均会导致电流无法传输至“紧急制动接触器”(即相应触点无法闭合),此时,会导致“紧急制动列车线”线路无电流通过。

当“紧急制动列车线”线路失电时,列车将触发紧急制动,如图4,若“=22-K126”接触器(西门子3RT1017型)故障不工作时(红色箭头路径及标注),紧急制动回路中该接触器的“1-2触点”、“3-4触点”、“6-5触点”将无法闭合,使得整条“紧急制动列车线”线路失电,触发列车紧急制动。

综上所述,=22-K126接触器故障时,可导致相应触点无法吸合,从而触发紧急制动,因此,从电路原理分析,=22-K126接触器故障可导致紧急制动施加,与列车紧急制动的控制逻辑相符。

2.4 故障调查2.4.1 列车数据分析查看列车故障履历记录,发现故障时间报出故障信息为“DCU硬线紧急制动反馈有效”和“列车电气安全环路断开”,与HMI屏显示的信息相吻合。

地铁车辆制动系统常见故障处理与分析

地铁车辆制动系统常见故障处理与分析

地铁车辆制动系统常见故障处理与分析摘要:对于目前的城市轨道交通运营而言,车辆制动系统长期以来不仅是影响车辆运营安全的重要因素。

随着地铁车辆软硬件的不断优化和安全系数的不断提高,制动性能也成为列车牵引和车辆运行速度的重要限制因素。

随着城市人口的不断扩大、轨道交通网络的不断延伸和车辆使用寿命的增加,轨道交通车辆制动系统的故障率也在逐渐增加。

关键词:地铁车辆;制动系统;故障处理;措施1制动系统功能及构成城市轨道交通地铁车辆制动系统一般采用架控式,在ATO、ATP和司机控制器的控制下,对列车的单相或相态制动和缓解做出响应,并以列车为单元,采用硬线和网络冗余来管理制动力。

主要有紧急制动、常用制动、快速制动、驻车制动等制动方式,其中:常用制动主要用于控制或调整列车运行过程中的车速,包括进站过程。

常用制动优先采用电阻制动,制动力不足时用空气补充制动力;紧急制动是指车辆快速停车时施加的制动,在正常行驶过程中不会施加。

由于紧急制动采用“失电制动、通电缓解”的设计原则,考虑到停电、断弓、断钩等紧急和意外情况,仅采用空气制动;快速制动主要由司机控制器触发,使列车尽快停车,所需的制动力控制方式与常用制动相同;停车制动器主要用于车库,以防止车辆在长期停车时滑动。

它由驾驶员控制台上的按钮控制。

驻车制动器在弹簧力的作用下接合,释放由压缩空气释放。

空气制动作为车辆制动系统的重要组成部分,其性能直接影响到车辆正线的运行。

空气制动系统主要由供气设备(空气压缩机组、空气干燥器和气缸)、制动控制部分(EP2002阀)和执行部分(闸瓦制动装置)组成。

作为车辆制动控制的核心部件,制动控制单元EP2002阀安装在其控制的转向架附近,集成了各种压力传感器、气动阀组件和制动控制管理电子设备,用于控制相应转向架的车轮防滑保护、紧急制动、常用制动等功能。

2地铁车辆制动系统故障处理措施2.1故障预测技术车载PHM单元主要针对存在早期征兆的故障进行预警,将预警结果发送至地面平台进行进一步分析,在车载PHM单元运算能力范围内实现在线故障预测功能,复杂预警模型放置地面PHM系统实现其功能,故障预测的结果与车辆日常检修维护周期相结合,逐步实现定期修到状态修的过渡。

单向启动反接制动控制线路

单向启动反接制动控制线路
启动电路的工作原理
当按下启动按钮时,接触器线圈得电,主触点闭合,电机开始运转。
反接制动电路设计
1 2
反接制动电路的作用
在电机停止时,通过改变电源相序实现制动。
反接制动电路的组成
包括电源、主开关、接触器、反接制动继电器等。
3
反接制动电路的工作原理
当按下停止按钮时,接触器线圈失电,主触点断 开,同时反接制动继电器得电,电机电源相序改 变,产生制动效果。
案例三:电动车控制系统
案例描述
在电动车和混合动力汽车中,单向启动反接制动控制线路用于驱动电机、回收能 量以及实现车辆的启动、加速、减速和制动等功能。
技术细节
通过控制线路的切换和调整,实现车辆在不同工况下的稳定运行和能量回收,同 时利用反接制动原理,在车辆减速时进行能量回收或制动,提高能源利用效率和 减少排放。
技术细节
通过控制线路的切换,实现电机的正 转和反转,同时利用反接制动原理, 在电机停止时进行快速制动,确保稳 定运行。
案例二:工业自动化设备控制
案例描述
在工业自动化设备中,如包装机、印刷机等,单向启动反接 制动控制线路用于精确控制设备的运动轨迹和速度,确保生 产过程的稳定性和效率。
技术细节
通过调整控制线路的参数,实现设备的快速启动、精确停止 和无级调速,同时利用反接制动原理,在设备停止时进行快 速制动,减少误差和提高生产效率。
通过与传统的电机控制线路进行比较,分析单向启动反接制动控制线路的优缺点。
探讨单向启动反接制动控制线路在实际应用中的问题和解决方案,为相关领域的工 程技术人员提供参考和借鉴。
单向启动反接制动控
02
制线路的基本原理
工作原理
启动过程
当按下启动按钮时,接触器线圈得电,主触点闭合,电动机启动运行。

电气基本控制线路安装与维修模块一课题六

电气基本控制线路安装与维修模块一课题六
电磁铁
TJ 2-
配用电磁铁型号 制动轮直径 设计序号 交流制动器
任务1 电磁抱闸制动器制动控制线路的安装与检修
衔铁
铁心
线圈
弹簧
闸轮 杠杆 闸瓦 轴
结构
符号 电磁抱闸制动器
任务1 电磁抱闸制动器制动控制线路的安装与检修
制动电磁铁由铁心、衔铁和线圈三部分组成。闸 瓦制动器包括闸轮、闸瓦、杠杆和弹簧等部分。
KT瞬时闭合常开触 头的作用是:当KT出现 线圈断线或机械卡住等 故障时,按下SB2后能 使电动机制动后脱离直 流电源。
任务1 电磁抱闸制动器制动控制线路的安装与检修
2. 有变压器单相桥式整流单向启动能耗制动自动控制线路
有变压器单相桥式整流单向启动能耗制动自动控制电路图
任务1 电磁抱闸制动器制动控制线路的安装与检修
静触头
结构
继电器转子
常开触头 常闭触头 符号
JY1型速度继电器的结构和工作原理
任务1 电磁抱闸制动器制动控制线路的安装与检修
三、单向启动反接制动控制线路工作原理
反接制动适用于10kW以 下小容量电动机的制动,并且 对4.5kW以上的电动机进行反 接制动时,需在定子绕组回路 中串入限流电阻R,以限制反 接制动电流。
线路故障的现象、原因及检查方法
故障现象 电动机堵转
原因分析
检查方法
可能原因: 如图虚线框中,电磁抱闸制
动器的线圈损坏或线圈连接线路 断路,造成抱闸装置在通电的情 况下没有放开。
断开电源,拆下电 动机的连接线;用电阻 法或校验灯法检查故障 点
任模务块1 一电磁三抱相闸电制动动机器基制本动控控制制线线路路的的安安装装与与检检修修
二、电磁抱闸制动器制动控制线路

铁路货车制动系统故障诊断及处理

铁路货车制动系统故障诊断及处理

铁路货车制动系统故障诊断及处理1. 引言1.1 背景介绍铁路货车是运输货物的重要工具之一,具有承载能力大、运输距离远、运输效率高等优点,因此在世界各地都得到了广泛应用。

而铁路货车的制动系统则是保障其安全运行的关键部分,它能够有效减速和停车,确保货物在运输过程中不会出现意外。

由于铁路货车制动系统本身复杂,且运行环境恶劣,故障时有发生。

这些故障可能来自于制动系统本身的设计问题,也可能是由于长时间运行导致的磨损和老化所致。

对铁路货车的制动系统进行定期检查和维护非常重要。

要想有效地诊断和处理铁路货车制动系统的故障,需要深入了解其工作原理和常见故障类型。

只有这样,才能及时发现并解决问题,确保货车的安全运行。

预防措施也是至关重要的,只有做好预防工作,才能最大程度地减少故障发生的可能性。

本文将对铁路货车制动系统的故障诊断及处理进行详细介绍,希望能为相关从业人员提供帮助,确保铁路货车的安全运行。

2. 正文2.1 铁路货车制动系统概述铁路货车制动系统是铁路运输中至关重要的组成部分,它能够有效地控制货车的速度,确保列车在行驶过程中的安全性和稳定性。

制动系统通常由制动器、制动管路、制动控制器等组成,通过气压传动实现对货车的制动操作。

在铁路货车制动系统中,制动器是最关键的部件之一。

制动器通常有机械制动器和气动制动器两种类型,其中气动制动器常用于大型货车,能够提供更强大的制动力。

制动管路则负责传递压力信号,将司机对制动器的控制指令传达到实际的制动器上。

制动控制器则起到控制和监控制动系统工作状态的作用。

铁路货车制动系统常见的故障包括制动器失灵、制动管路漏气、制动控制器故障等。

这些故障可能导致货车无法准确制动,对列车的安全性和稳定性构成威胁。

及时进行故障诊断并采取正确的处理方法至关重要。

故障诊断方法包括通过检查制动器工作状态、检查气路压力、查看制动控制器报警信息等。

而故障处理方法则根据具体故障情况采取相应措施,例如更换故障部件、修复漏气管路等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】并励直流电动机的正反转起动和反接制动控制线路
2、串励直流电动机的反接制动
串励电动机的反接制动状态的获得,在位能负载时,可 用转速反向的方法,也可用电枢直接反接的方法。转速反 接制动法就是强迫电动机的转速反向,使电动机的转速n 的方向与电磁转矩T的方向相反;电枢直接反接制动进行 制动,就是将电枢绕组反接,并串入较大的电阻来实现反 接制动。
【降压启动方法】: 降低电枢电压,电枢回路串电阻
【实例分析】 电路分析 串励直流电动机的起动控制线路
电路分析
并励直流电动机的起动控制线路
串励直流电动机的起动控制线路
图7-1 串励电动机起动控制线路
并励直流电动机的起动控制线路
图7-2 并励电动机起动控制线路
制动控制线路
直流电动机有两种运行状态:
1、电动运行状态
2、制动运行状态
直流电动机的的制动方法:
1、机械制动;【常见方法】:电磁抱闸制动
2、电气制动,【常见方法】:能耗制动、反接制动、
发电反馈制动
实际电路分析
1、能耗制动控制线路 2、反接制动控制线路
电路分 析
电路分 析
能耗制动控制线路
【能耗制动原理分析】: 电路图
能耗制动可分为: 他励能耗制动:
CZ18
CZ0
正反向直接启动控制线路
改变直流电动机的转向有两种方法:
电枢反接法 即保持励磁磁场方向不变而改变电枢电流方向;
实例分析—“并励直流电动机的正反控制电路”
励磁绕组反接法
电路分析
即保持电枢电流方向不变而改变励磁绕组电流的方向。
机的正反向控制线路
并励直流电动机的正反转起动和反接制动控制线路
项目3
直流电动机控制线路故障维修
模块1:双向直接启动控制线路故 障维修
情景设计:
1号锚地4号船上的32吨浮 式起重机旋转机构电气控制出
现故障,申请维修
本模块主要知识内容
直流接触器 正反向直接启动控制线路 调速控制线路 双向直接启动控制线路维修
直流接触器
电磁系统的铁心通直流电,没有涡流损失和磁滞损失, 铁心不发热也无振动; 铁心用整块软钢或工程纯铁制成; 铁心无短路环; 线圈绕制成长而薄的圆筒形,匝数比交流接触器多,与铁 心直接接触,易于散热; 灭弧装置一般采用磁吹灭弧与窄缝灭弧相结合的灭弧法。
是只断开电枢电源,励磁绕组仍接在电源上。
自励能耗制动:
电路图 是在断开电枢电源的同时,也断开励磁绕组的电 源,并把电枢、励磁绕组和外加制动电阻三者构 成一个闭合回路,将机械动能变为热能消耗在电 枢和制动电阻上。
他励能耗制动
图7-9 并励直流电动机他励能耗制动控制线路
自励能耗制动
反接制动控制线路
1、反接制动控制线路并励直流电动机的反接制动
通常是将正在电动运行的电动机电枢绕组反接。
【注意事项】:一点是电枢绕组反接时,一定要与电枢串联外加电 阻,防止因电枢电流过大而对电动机不利; 另一点是,当转速接近零时,应准确可靠地使电枢迅 速脱离电源,以防止电动机反转。直流电动机的反接 制动原理同反转基本相同,所不同的是,反接制动过 程至转速为零时结束。
图7-4 并励电动机的正反向控制线路
调速控制线路
项目3
直流电动机控制线路故障维修
模块2:降压、制动控制线路故障维修
情景设计
在3号码头的2号船 上的32吨浮式起重机主 钩电气控制在下放时不 能正常工作,申请维修
本模块主要知识内容
降压启动控制线路
IN
制动控制线路
降压制动控制线路故障维修
降压启动控制线路
相关文档
最新文档