数学二次根式复习
八年级数学实数之二次根式知识点总结
一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。
数学八年级下《二次根式》复习课件
2
先平方,后开方
想一想:
2.从取值范围来看 2 a≥0 a
a
2
≥0 时, 当a ____
a
2
a
2
a取任何实数
例1、x 取何值时,下列各式在实数范围内 有意义?
x1 1 ; x2
解:(1)由
x 1 0
x 2 0,
得x≥-1且x≠2.
∴当x≥-1且x≠2时,式子 意义.
2 3 11 (2)
解:原式
2
11 2 3 .
2
2
11 12 1.
11 2 3 11 2 3
2
小结一下
求二次根式的值:
先根据题意,列出二次根式, 然后归结为求代数式的值的问题。
?
练习:
1.计算: 1 3 2 (1) 9 45 3 2 ;
1 3
知识巩固
最简二次根式
①被开方数的因数是整数,因式是整式。 ②被开方数中不含能开得尽方的因数或因式。 ③分母中不含有二次根式。
30
2.5x
50
2 x( x y ) 2
x2 y2
首页
上页
下页
知识巩固
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式 ①化成最简二次根式后
1 -2 3 (2)( ) - 2 2 - 3 2 8
0
计算:
20 15 2011 (3) 3( 3 ) (1) 5
(4)
( 2 3)(2 2 1)
二次根式的化简求值
先化简,再求值。
(1)2(a 3 )(a 3 ) a(a 6) 6 其中:a 2 1
2025年沪科版八年级下册数学期末大单元复习第16章 二次根式
小亮
(2)仿照上面正确所以 ,所以
,当时,原式 .
15.(13分)【发现问题】在数学活动课上,李老师给出如下一列式子:; ; ; ;….爱思考的小辉同学发现,任意一个奇数,都可以写成两个相邻整数的平方差.
【提出问题】小辉同学根据上述式子的规律,结合本学期学习的二次根式,提出这样一个问题:若与 是两个相邻的整数,其中,则 .
期末大单元复习
第16章 二次根式
大单元串联
“题串考点”是将本章重要考点全部融入题中,高效复习本章内容.
要点知识(1)当时有意义.(2)最简二次根式满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.化成最简二次根式以后,如果被开方数相同,这样的二次根式叫做同类二次根式,合并同类二次根式与合并同类项类似.
1.[2024·安庆期末] 下列是最简二次根式的是( )
B
A. B. C. D.
2.下列各式计算正确的是( )
D
A. B. C. D.
3.[2023·蚌埠月考] 估计 的值应在( )
B
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
4.[2024·淮南期末] 已知是正整数,是整数,则 的最小值是( )
三、解答题(共45分)
12.(8分)[2024·蚌埠月考] 计算:
(1) ;
解:原式 .
(2) .
解:原式 .
13.(12分)[2023·滁州月考] 已知, ,求下列各式的值:
(1) ;
解:原式 .
(2) .
解:原式 .
14.(12分)先化简,再求值: ,其中 .如图是小亮和小芳的解答过程.
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
二次根式知识点
二次根式知识点二次根式在数学中是一个十分重要的概念,涉及到数学中的代数、方程、函数等多个知识领域。
本文将介绍二次根式的定义、性质、运算法则以及实际问题中的应用,并且通过实例帮助读者更好地理解和应用二次根式。
一、二次根式的定义在数学中,二次根式是指形如$\\sqrt{a}$的表达式,其中a是一个实数且$a\\geq0$。
该表达式表示的是一个非负实数,使得它的平方等于a,即$(\\sqrt{a})^2 = a$。
二、二次根式的性质1.二次根式的值一定是非负实数,即$\\sqrt{a} \\geq 0$。
2.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} \\cdot \\sqrt{b} =\\sqrt{ab}$。
3.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} + \\sqrt{b}$不一定等于$\\sqrt{a+b}$。
三、二次根式的运算法则1.加减法:二次根式只有在被加减数相同时才能相加或相减,即$\\sqrt{a} \\pm \\sqrt{a} = 2\\sqrt{a}$。
2.乘法:二次根式的乘法可按照分配律进行展开,即$(\\sqrt{a} \\pm\\sqrt{b})(\\sqrt{a} \\pm \\sqrt{b}) = a + 2\\sqrt{ab} + b$。
3.除法:二次根式的除法需要进行有理化处理,即将分母中的二次根式消去。
四、二次根式的应用二次根式常常在实际问题中得到应用,比如在几何中计算斜边长、梯形面积等问题中经常会出现。
下面通过一个实际问题来展示二次根式的应用:例题:一个正方形的对角线长为$\\sqrt{2}$米,求正方形的边长。
解答:设正方形的边长为x米,则根据勾股定理可得:x2+x2=2。
化简得到2x2=2,解方程得x=1。
因此,正方形的边长为1米。
结语通过本文的介绍,相信读者对二次根式有了更深入的了解。
二次根式作为数学中的一个基础知识点,在代数、几何、概率等各个领域都有着重要的应用价值。
初中数学 中考复习二次根式专题练习(含答案)
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义
第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。
二次根式-中考数学一轮复习考点专题复习大全(全国通用)
考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。
当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。
6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。
【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。
八年级数学二次根式知识点
八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。
本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。
1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。
例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。
2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。
即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。
(2)二次根式的值域为非负实数。
即,对于任意非负实数a,有$\sqrt{a}≥0$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。
(3)二次根式可以转化为分数形式。
即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。
3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。
(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。
(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。
初中数学知识归纳二次根式的化简及运算
初中数学知识归纳二次根式的化简及运算初中数学知识归纳:二次根式的化简及运算二次根式是初中数学中一个重要的概念,它在解方程、图形的性质等各个方面都有广泛的应用。
本文将对二次根式的化简和运算进行归纳总结,并提供相应的例题和解答,以帮助读者更好地理解和掌握这一知识点。
一、二次根式的化简1. 特殊二次根式的化简对于平方数a,可将其开平方后得到一个整数,即√(a^2) = a。
例如,√(4^2) = 4,√(9^2) = 9。
这类二次根式已经是化简到最简形式。
2. 拆分因式法的应用对于二次根式中的非完全平方数,可以利用拆分因式的方法进行化简。
例如,√3 = √(1 × 3) = √1 × √3 = √3。
再例如,√15 = √(3×5) = √3 ×√5 = √15。
3. 有理化分母有时候我们需要将二次根式的分母有理化,即将根号去掉。
例如,对于分母为√2的分式,可以用有理数2来乘以分式的分子和分母,即(3√2)/(√2) = (3√2 × 2)/(√2 × 2) = (6√2)/2 = 3√2。
二、二次根式的运算1. 加减运算当二次根式的根号内部相同,只是前面的系数不同,可以进行加减运算。
例如,√2 + 2√2 = 3√2,3√5 - 2√5 = √5。
2. 乘法运算二次根式的乘法运算遵循乘法分配律。
例如,(√3 + √2) × (√3 - √2) = (√3)^2 - (√2)^2 = 3 - 2 = 1。
3. 除法运算二次根式的除法运算可以进行有理化分母的处理,将分母有理化之后再进行运算。
例如,(4√3)/(2√2) = (4√3 × 2)/(2√2 × 2) = (8√3)/4 = 2√3。
三、例题与解答1. 化简以下的二次根式:√(12) + 5√(27) - √(48)解:√(12) = √(4 × 3) = √4 × √3 = 2√35√(27) = 5√(9 × 3) = 5√9 × √3 = 15√3√(48) = √(16 × 3) = √16 × √3 = 4√3将这些结果代入原式,得到:2√3 + 15√3 - 4√3 = 13√32. 计算以下的二次根式:(√6 + √2) × (√6 - √2)解:根据乘法公式,展开后得到:(√6 + √2) × (√6 - √2) = (√6)^2 - (√2)^2 = 6 - 2 = 43. 计算以下的二次根式:(3√5 - √3)/(2√5)解:利用有理化分母的方法,得到:(3√5 - √3)/(2√5) = (3√5 - √3) × (2√5)/(2√5 × 2) = (6√25 - 2√15)/(4√10) = (6 × 5 - 2√15)/(4√10) = (30 -2√15)/(4√10) = (15 - √15)/(2√10)通过以上的例题与解答,我们可以加深对二次根式化简和运算的理解。
中考数学专题特训第六讲:二次根式(含详细参考答案)
中考数学专题复习第六讲:二次根式【基础知识回顾】 一、二次根式式子a ( )叫做二次根式【赵老师提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】二、二次根式的性质:①(a )2= (a ≥0)= (a ≥0 ,b ≥0)(a ≥0, b ≥0)【赵老师提醒:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小】 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算【赵老师提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 】 【重点考点例析】考点一:二次根式有意义的条件(a ≥o )(a <o )例1 (2012•潍坊)如果代数式43x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≥3思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练1.(2012•德阳)使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12 C .x≥0且x≠12D .一切实数 1.C1.解:由题意得:2x-1≠0,x≥0, 解得:x≥0,且x≠12, 故选:C .考点二:二次根式的性质例2 (2012•张家界)实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b . 故选C .点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练为 . 1.-b2.解:∵由数轴可知:b <0<a ,|b|>|a|,=|a+b|+a =-a-b+a =-b ,故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3. 点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键. 对应训练4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0,(1)1)4x x x +=本题考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .804.D分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可.=80, 故选D .点评:本题考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算,本题主要考查学生的思维能力和应变能力,题目比较好,是一道具有代表性的题目.【聚焦山东中考】1.(2012•泰安)下列运算正确的是( )A 5=-B .21()164--=C .x 6÷x 3=x 2 D .(x 3)2=x 5 1.B .2.(2012•临沂)计算:= . 2.03.7【备考真题过关】一、选择题A .x >0B .x≥-2C .x≥2D .x≤2 1.DA B .5 C .2 D .22.AA .3BC .D .3.C .A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 4.A即5<m <6, 故选A .5.(2012•南充)下列计算正确的是( )A .x 3+x 3=x 6B .m 2•m 3=m 6C .3=D = 5.D6.(2012•黔东南州)下列等式一定成立的是( )A .945-=B .5315⨯=C .93=±D .2(9)9--=6.B7.(2012•广西)使式子有意义的x 的取值范围是( )A . x ≥﹣1B . ﹣1≤x ≤2C . x ≤2D .﹣1<x <2 考点: 二次根式有意义的条件。
中考数学一轮教材梳理复习课件:第4课二次根式
首页
下一页
最简二次根式3】(2019·河池)下列式子中,为最简二次根式的 是( B )
1 A. 2
B. 2
C. 4
D. 12
首页
下一页
10.(2020·上海)下列二次根式中,与 3 是同类二 次根式的是( C )
A. 6
B. 9
C. 12
D. 18
首页
下一页
首页
下一页
5.(2020·济宁)下列各式是最简二次根式 的是( A )
A. 13
B. 12
C. a3
D.
5 3
首页
下一页
5.二次根式的性质与运算
(1)双重非负性: a ≥0 且 a≥0;
(2)( a )2=a(a≥0), a2 =|a| (a 取全体实数);
(3) ab = a · b (a≥0,b≥0);
(4)
a b
=
a b
(a≥0,b>0).
首页
下一页
6. (1)计算:
52 =___5___;( 5 )2=___5___;
(-5)2 =__5____.
(2)计算:
1 2
×
8 =___2____.
(3)计算: 63 ÷ 7 =____3____.
首页
下一页
考点精炼
二次根式有意义的条件(7 年 6 考)
【例 1】(2020·武汉)式子 x-2 在实数范围内有
意义,则 x 的取值范围是( D )
A.x≥0
B.x≤2
C.x≥-2
D.x≥2
首页
下一页
7.(2020·常德)若代数式
2 在实数范围内有 2x-6
意义,则 x 的取值范围是___x_>_3___.
中考数学总复习 第05讲 二次根式及其运算课件(考点精
考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
中考数学专题复习题:二次根式的乘除法
中考数学专题复习题:二次根式的乘除法一、单项选择题(共6小题)1.下列各式①√8;②√0.3;③√12;④√3;⑤√a2+1;其中一定是最简二次根式的有()A.4 个B.3 个C.2个D.1个2.已知x是整数,√3⋅√6x是整数,则x的最小值()A.2B.3C.4D.183.计算(5√2−2√5)×√15的结果是()A.√10−√2B.√2−2C.√10−2D.√2−√104.计算(1+√2)2024(1−√2)2023的结果是()A.√2−1B.−1C.1D.−1−√25.通过“由特殊到一般”的方法探究下面二次根式的运算规律:特例1:√1+13=√3+13=√4×13=2√13;特例2:√2+14=√8+14=√9×14=3√14;特例3:√3+15=√15+15=√16×15=4√15……应用发现的规律求√2024+12026×√4052的值()A.2024B.2025√2C.2023D.2023√2 6.下列各式中,化简正确的是()A.√(−16)×(−25)=√−16×√−25=20B.√12×27=√4×√81=18C.√16+94=√16+√94=4+32=112D.√4925=√4×√925=2×35=65二、填空题(共4小题)7.计算√3÷√2×2√5÷√110的结果为________.8.计算(√7+√2)(√7−√2)的结果是________.9.长方形的面积为18cm2,一边长为2√3cm,则另一边长为________cm.10.设6−√10的整数部分为a ,小数部分为b ,那么(2a +√10)b =________.三、解答题(共5小题)11.计算:(1)√8×√18; (2)√1.2×102×√3×105;(3)√2×√5×√10;(4)14√12×3√3. 12.计算下列各题.(1)√(−5)2×(−3)2;(2)√(−4)×259×(−169);(3)√−a ⋅√−ab 3;(4)2b √ab 3⋅(−32√a 3b ⋅3√a b ) (a >0,b >0).13.计算:(1)√48÷√3−√13×√18+√24;(2)(√5+1)(√5−1)+(−2)0−√273.14.请观察式子:9√127=√9227=√3,−2√12=−√222=−√2,仿照上面的方法解决下列问题:(1)化简:①5√25;②−7√37;③a√−1a (a <0).(2)把(1−a )√1a−1中根号外的因式移到根号内,化简的结果是________.15.填空(可用计算器计算):√4×9=__________,√4×√9=__________;√4×5=__________,√4×√5=__________;√916=__________,√9√16=__________; √32=__________,√3√2=__________.比较左右两边的等式,你发现了什么?你能用字母表示发现的规律吗?。
初中数学二次根式知识点总结
初中数学二次根式知识点总结一、二次根式的定义和性质1.二次根式:形如√a(其中a≥0)的数叫做二次根式,其中a叫做被开方数。
2.平方数:一些数的平方的结果叫做平方数,如1、4、9等。
平方数的平方根是有理数。
3.二次根式化简:将二次根式中含有相同因式的项合并,并将二次根式的指数化简为最简整数。
4.二次根式的乘除法:二次根式的乘除法可以通过对被开方数和指数进行运算和化简来进行。
二、二次根式的运算1.二次根式的加减法:a)加法:将两个二次根式的被开方数相加,并将其指数化简。
b)减法:将两个二次根式的被开方数相减,并将其指数化简。
2.二次根式的乘法:a)二次根式的乘法使用分配律,将被开方数和指数分别相乘,并将结果进行化简。
b)若二次根式与实数相乘,则可将实数与二次根式的被开方数相乘,并将指数进行化简。
3.二次根式的除法:a)二次根式的除法可以通过将分子和分母的被开方数相除,并将指数进行化简来进行。
b)若二次根式除以实数,可以将实数除以二次根式的被开方数,并将指数进行化简。
三、二次根式的化简1.二次根式化简的基本方法:a)将被开方数分解成素数的乘积。
b)将二次根式的指数约分为最简整数。
c)将二次根式的含有相同因式的项合并。
2.平方根的化简:a)平方根下的分数:将分子和分母分别进行开方,然后化简。
b)分数的平方根:将分子和分母分别进行开方,然后化简。
c)同解式的平方根:可以适用平方根的基本性质将二次根式进行化简。
四、二次根式的应用1.几何意义:二次根式可以表示一些图形的边长或斜边的长度。
a)两点间的距离:利用两点间的距离公式可以将二次根式化简为实数。
b)直角三角形的斜边:利用勾股定理可以将二次根式化简为实数。
2.分数的运算:在分数运算中,往往会出现二次根式,需要将二次根式进行化简并进行运算。
3.实际问题的应用:解决实际问题时,需利用已知条件建立方程,通过方程的求解,将二次根式进行化简。
综上所述,初中数学二次根式是重要的基础知识点,掌握二次根式的运算和化简方法,了解二次根式的几何意义和实际应用,在解决问题中能熟练运用二次根式的相关知识,将有助于提高数学解题能力。
八年级数学《二次根式》知识点归纳和题型归类
二次根式知识点归纳和题型归类一、知识框图二.知识要点梳理知识点一、二次根式的主要性质:1.; 2.; 3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理; (3) 乘法公式的推广:(4)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.2.二次根式的加减运算 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. (3)二次根式运算结果应化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数. 4.简化二次根式的被开方数,主要有两个途径: ○1因式的内移:因式内移时,若,则将负号留在根号外.即:.○2因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即: 三.典型题训练一. 利用二次根式的双重非负性0≥a (a ≥0),1.下列各式中一定是二次根式的是( )。
A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。
(1) (2)121+-x (3)45++x x (4)(5)(6). (7)若1)1(-=-x x x x ,则x 的取值范围是(8)若1313++=++x x x x ,则x 的取值范围是 。
3.若13-m 有意义,则m 能取的最小整数值是 ; 是一个正整数,则正整数m 的最小值是________.1213-+-x x4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。
人教版-数学-八年级下册《二次根式》单元复习教案
《二次根式》单元复习教案1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子.2.熟练地进行二次根式的加、减、乘、除混合运算.在复习过程中,体会知识的连贯性,以及提高对知识的应用能力.感受数学的实用价值,提高解决问题的能力.【重点】含二次根式的式子的混合运算.【难点】综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.二次根式专题一二次根式的定义和性质【专题分析】关于二次根式的定义和性质,主要考查求字母的取值范围,涉及单个知识点或与分式综合在一起考查,一般较为简单,题型以选择题、填空题为主.(2014·巴中中考)要使式子有意义,则m的取值范围是()A.m>-1B.m≥-1C.m>-1且m≠1D.m≥-1且m≠1〔解析〕根据二次根式有意义和分式有意义的条件,得出关于m的不等式组,然后进行求解,得出结论.由题意,得解得m≥-1且m≠1.故选D.几种常见求字母取值范围的类型:所给式子的形式x的取值范围整式全体实数分式使分母不为零的一切实数.注意不能随意约分,同时要区分“且”和“或”的含义偶次根式被开方式为非负数0次幂或负整数指数幂底数不为零复合形式列不等式组,兼顾所有式子同时有意义【针对训练1】(2014·金华中考)在式子,,,中,x可以取2和3的是()A. B.C. D.〔解析〕分别求出各式有意义的条件,再进行选择.当x≠2时,分式有意义;当x≠3时,分式有意义;当x≥2时,二次根式有意义;当x≥3时,二次根式有意义.综上所述,只有中的x可以取2和3.故选C.要求x可以取什么值,对于分式,只需分母不为0;对于二次根式,只需根号里面为非负数.(2014·镇江中考)若实数x,y满足+2(y-1)2=0,则x+y的值等于()A.1B.C.2D.〔解析〕由于,2(y-1)2都是非负数,两个非负数的和为0,故这两个数都等于0.由题意得解得∴x+y=.故选B.初中阶段学习了三种非负数,①|a|≥0;②a2≥0;③≥0(a≥0).若出现几个非负数的和为零,则说明这几个非负数的值都等于0,此时可得一个方程(组),解方程(组)即可求得未知数的值.【针对训练2】(2014·安顺中考)已知等腰三角形的两边长分别为a,b,且a,b满足+(2a+3b-13)2=0,则此等腰三角形的周长为()A.7或8B.6或10C.6或7D.7或10〔解析〕先根据二次根式的双重非负性、完全平方式的非负性列出二元一次方程组,解方程组得到a,b的值,进而求出等腰三角形的周长.∵+(2a+3b-13)2=0,∴解得∴等腰三角形的周长是7或8.故选A.二次根式具有双重非负性,即被开方数是非负数,二次根式为非负数,这一性质经常在化简问题中运用.专题二二次根式的最值问题【专题分析】涉及二次根式的最值问题,一般选择题、填空题或解答题的形式都可以出现,单独考查这一个知识点的情况较少,一般与其他知识点综合考查.当x取何值时,+3的值最小?最小值是多少?〔解析〕由二次根式的非负性可知≥0,即的最小值为0,因为3是常数,所以+3的最小值为3.解:∵≥0,∴+3≥3,∴当9x+1=0,即x=-时,+3有最小值,最小值为3.涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.【针对训练3】代数式++的最小值为()A.0B.1+C.1D.不存在的〔解析〕由二次根式有意义知被开方数必须是非负数,所以x≥0,x-1≥0,x-2≥0,故x≥2,而被开方数越小,算术平方根的值就越小,所以当x=2时,++取得最小值,其值为+1.故选B.解决此类问题一定要熟练掌握二次根式的非负性,即≥0(a≥0),同时需要注意被开方数越小,算术平方根的值就越小.专题三最简二次根式【专题分析】主要考查最简二次根式的概念,考查单个知识点时一般较为简单,题型以选择题、填空题为主.在二次根式的计算中,结果必须要化成最简二次根式.下列式子中,属于最简二次根式的是()A. B. C. D.〔解析〕本题解题的关键在于紧扣住最简二次根式的概念逐个分析.选项A:=4,选项C:=2,选项D:=,根据最简二次根式的概念知选B.判断是不是最简二次根式的方法:在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;在被开方数中,每一个因数或因式如果幂的指数等于或大于2,也不是最简二次根式.【针对训练4】(2014·孝感中考)下列二次根式中,不能与合并的是()A.B.C.D.〔解析〕先将各式化成最简二次根式,再看哪一个被开方数与的被开方数相同即可.A. =,故能与合并;B.=2,故能与合并;C.=2,故不能与合并;D.=3,故能与合并.故选C.最简二次根式的被开方数相同,那么这几个二次根式才能合并.所以判断几个二次根式是否能合并,必须先化简,再判断.专题四二次根式的化简求值及混合运算【专题分析】二次根式的混合运算主要考查二次根式的加、减、乘、除的运算能力,题型为选择题、填空题和解答题均可.二次根式的化简求值主要考查化简的能力和代值计算的能力,化简根式的题目较少,一般是化简分式,然后代入值计算,一般难度不大,题型以解答题为主.计算×+()0的结果为()A.2+B.+1C.3D.5〔解析〕先分别进行二次根式的乘法运算和零指数幂的运算,然后再进行加法运算.原式=2+1=3.故选C.解决此类题目的关键是熟练掌握平方、立方、零指数幂、二次根式等式子的运算.在计算时,需要针对每个式子分别进行计算,然后根据实数的运算法则求得计算结果.【针对训练5】(2014·青岛中考)计算=.〔解析〕先用分子中的每一项与分母相除,然后化为最简二次根式.=+=+1=2+1.故填2+1.计算:(1-2)(1+2)-(2-1)2.〔解析〕可以用平方差公式计算(1-2)(1+2),用完全平方公式计算(2-1)2,再进行二次根式的加减运算,求出结果.解:原式=12-(2)2-=1-12-12+4-1=-24+4.一要注意运算顺序,二要注意利用乘法公式计算二次根式乘法可以使运算更简便.【针对训练6】(2014·凉山中考)已知x1=+,x2=-,则+=.〔解析〕观察x1和x2,正好是两数和、差,再对+运用完全平方公式进行变形,即可简化运算.∵x1=+,x2=-,∴x1+x2=2,x1x2=1.∴+=(x1+x2)2-2x1x2=(2)2-2=10.故填10.解决这类问题,一定要先观察已知条件和问题的特征,灵活运用所学的计算公式,体现最佳解题思路.乘法公式在进行代数式的有关运算中经常用到,要记住常用的乘法公式:①平方差公式:(a+b)(a-b)=a2-b2;②完全平方公式:(a±b)2=a2±2ab+b2.已知a+b=-3,ab=12,求b+a的值.〔解析〕在化为最简二次根式的过程中,要注意a,b的符号,本题中没明确a,b的符号,但可从a+b=-3,ab=12中分析得到.解:∵a+b=-3,ab=12,∴a<0,b<0.b+a=b·+a·=-2=-2=-4.本题最容易出现的错误就是不考虑a,b的符号,把所求的式子化简,直接代入.【针对训练7】先化简,再求值:÷,其中a=1+,b=1-.〔解析〕本题考查了分式的化简求值,以及二次根式的计算,正确地运用分式的运算法则将分式化简是解题的关键.本题应先将分式按照运算顺序进行化简,再将字母的值代入化简后的式子求值.解:原式=÷=÷=×=-.当a=1+,b=1-时,原式=-=-=-.专题五配方法【专题分析】配方法是初中数学中的一种重要的方法,主要是利用完全平方公式把一个式子写成一个二项式的完全平方加上或减去一个常数的形式,常用来解决最值问题.本章中主要是把被开方数配方,然后应用=|a|化简.小东在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如3+2=(1+)2,善于思考的小东进行了如下探索:设a+b=(m+n)2(其中a,b,m,n均为正整数),则有:a+b=m2+2mn+2n2,∴a=m2+2n2,b=2mn.这样,小东找到了把部分a+b形式的式子化为平方式的方法.请你仿照小东的方法探索并解决问题:(1)当a,b,m,n均为正整数时,若a+b=(m+n)2,用含m,n的式子分别表示a,b,得a=,b=;(2)利用所探索的结论,找一组正整数a,b,m,n填空:+=(+)2;(3)若a+4=(m+n)2,且a,b,m,n均为正整数,求a的值.〔解析〕(1)首先对所给材料认真阅读,分析探究小东解决问题的方法,然后进行归纳、迁移,从而可以求解.与小东做法基本一致,把右边完全平方式展开,然后左右式子进行对比,用含m,n的代数式表示出a,b.(2)此题可以采用与小东方法类似的解法,但也可以进行逆推,执果索因,即把m,n选定一组正整数,然后去括号,即可求解.这就是填空题的巧做方法.注意本题答案不唯一,只要符合题中正整数要求即可.(3)认真分析此题,与(1)进行对比,不难发现a 的值与(1)中的表示方法一样,而b=4,即4=2mn,所以mn=2,然后根据正整数的特点,进行分类讨论,即可确定出m,n的值,进而得解.解:(1)m2+3n22mn(2)21,12,3,2(答案不唯一)(3)由b=2mn得4=2mn,即mn=2,且m,n均为正整数,则m=1,n=2或m=2,n=1.当m=1,n=2时,a=m2+3n2=12+3×22=13.当m=2,n=1时,a=m2+3n2=22+3×12=7.综上,a的值为13或7.一般地,对于a±2型的根式,可采用观察法进行配方,即找出x,y(x>y>0),使得xy=b,x+y=a,则a±2=(±)2,于是== ±,从而使得到化简.【针对训练8】若x,y为实数,且y=++15,试求-的值.〔解析〕根据y=++15可以求出x,y的值,然后对-中的被开方数进行配方、化简.解:由二次根式的性质,得∴x=,∴y=15,∴x+y>0,x-y<0,xy>0.∴原式= - =·-=,当x=,y=15时,原式= =.对于形如++2或+-2的代数式,都可变为或的形式,当它们作为被开方数进行化简时,要注意x+y和x-y以及xy的符号.【针对训练9】化简.〔解析〕把5拆成3+2,于是将5-2配方,得5-2=()2+()2-2××=(-)2,然后应用=|a|化简.解:=== =|-|=-.专题六类比思想【专题分析】类比思想是初中重要的数学思想,数学中许多定理、公式和法则都是通过类比得到的,在解题过程中寻找问题的线索,往往要借助类比的方法,从而达到引发思路的目的.本章中二次根式的加法与整式加减法、二次根式的混合运算与有理数的混合运算进行类比.计算.(1)+4;(2)-++2.〔解析〕本题类比合并同类项,先将二次根式化成最简二次根式后,若被开方数相同,再进行合并.解:(1)原式=(1+4)=5.(2)原式=3-+2+2=2+4.整式的加减的实质就是合并同类项,而二次根式的加减实质就是合并被开方数相同的最简二次根式(同类二次根式);利用类比的思想可以归纳二次根式的加减的步骤:一化简,二寻找,三合并.【针对训练10】已知a=-,求 - 的值.〔解析〕先化简二次根式,要保证被开方数结果的正确性,这与a-和a+的结果有直接的关系.解:∵a=-,∴=+,∴a+>0,a-=(-)-(+)=-2<0.∴ - = - =a+--a=2a.当a=-时,原式=2×(-)=2-2.有理数的法则、性质、运算律、公式等,在实数范围内仍然适用,二次根式的运算的最后要注意把结果化成最简二次根式,二次根式的乘除运算要与二次根式的加减运算区分,避免互相干扰.化简求值的题,一定要先化简再代入求值,方法要灵活简便,注意完全平方公式的变形应用.专题七整体思想【专题分析】整体思想方法在二次根式的化简与求值问题中有广泛的应用,整体代入、整体运算、整体设元、整体处理等都是整体思想方法在解决数学问题中的具体运用.已知x=-1,y=+1,求+的值.〔解析〕本题可以直接将+通分,进而用xy和x+y表示,再求出具体的xy和x+y的值,进而代入求解即可.解:∵x=-1,y=+1,∴x+y=(-1)+(+1)=2,xy=(-1)(+1)=1.∴+====6.本题如果直接代入计算,则计算量较大,而且容易出错.通过观察已知条件和欲求值的式子,发现它们都可以化简,这样采取变更问题的条件和结论的方法,然后采取整体代入的思想,比较容易求出问题的解.【针对训练11】若-=2,求的值.〔解析〕将已知条件两边平方得出a+的值,并用含a+的代数式表示a2+,最后将a+视为一个整体代入求值即可.解:∵-=2,∴=4,∴a+=6,∴ = ===4.专题八分类讨论思想【专题分析】主要考查对和|a|形式的式子的化简,需要分情况讨论.一般以填空题和选择题的形式出现居多,分值在3分左右.已知|a|=5,=3,且ab>0,则a+b的值为()A.8B.-2C.8或-8D.2或-2〔解析〕∵|a|=5,=3,∴a=±5,b=±3.又∵ab>0,∴a,b同号,即a=-5,b=-3或a=5,b=3.∴a+b=±8.故选C.对于有的数学问题,可能有几种情况,在未具体指明哪种情况时,需要对各种情况分类讨论,保证解答完整准确,做到不重不漏.【针对训练12】若化简|1-x|-的结果为2x-5,则x的取值范围是()A.x为任意实数B.1≤x≤4C.x≥1D.x≤4〔解析〕由题意可知原式=|1-x|-|x-4|=2x-5,由此通过讨论各种情况可知,只有|1-x|=x-1,且|x-4|=4-x时,满足条件,故由绝对值的意义可得x-1≥0,且4-x≥0,所以1≤x≤4,即x的取值范围是1≤x≤4.故选B.对和|a|形式的式子的化简都应分类讨论.本章质量评估(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.要使+有意义,则x应满足()A.≤x≤3B.x≤3且x≠C.<x<3D.<x≤32.下列各式:①,②,③,④ (x>0)中,最简二次根式有()A.1个B.2个C.3个D.4个3.已知a<b,化简的结果是()A.-aB.-aC.aD.a4.(2015·荆门中考)当1<a<2时,代数式+|1-a|的值是()A.-1B.1C.2a-3D.3-2a5.化简÷(-1)的结果是()A.2-1B.2-C.1-D.2+6.化简× +的结果是()A.5B.6C. D.57.已知(a+1-)2+|b-|=0,那么(a-b)2016的值为()A.-1B.1C.31008D.-310088.下列运算中错误的是()A.×=B.2+3=5C.=D.=-9.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3abB.3abC.0.1ab2D.0.1a2b10.计算(+2)2015×(-2)2016的结果是()A.2-B.2+C.1D.-1二、填空题(每小题4分,共32分)11.若最简二次根式与可以合并,则m=.12.计算÷ ×的值为.13.计算2 -6 +的结果是.14.(2014·德州中考)若y=-2,则(x+y)y=.15.已知a,b为有理数,m,n分别表示5-的整数部分和小数部分,且amn+bn2=1,则2a+b=.16.如图所示,将一个正方形分割成面积分别为S(平方单位)和3S(平方单位)的两个小正方形和两个长方形,那么图中两个长方形的面积和是(平方单位).17.实数a,b在数轴上的对应点如图所示,化简+|a+b|的结果为.18.当x=时,则-的值为.三、解答题(共58分)19.(8分)若最简二次根式与的被开方数相同,求a,b的值.20.(8分)把下列各式化成最简二次根式.(1) .(2)- .21.(10分)计算:(1)+-4 ;(2)(5-6+4)÷.22.(10分)如图所示,已知一块长方形木板的长和宽分别为3 cm和4 cm,现在想利用这块矩形木板裁出面积分别为6 cm2和18 cm2两种规格的正方形木板,能裁出大小正方形木板各几个?请你给出裁割方案,并通过计算说明理由.23.(10分)已知a=(+),b=(-),求a2b-ab2的值.24.(12分)阅读下面的问题:==-1;==-;==2-;….(1)求的值;(2)已知m是正整数,求的值;(3)计算+++…++.【答案与解析】1.D(解析:根据题意得解得<x≤3.故选D.)2.A(解析:因为②=,③=2,④ (x>0)=,所以其中的最简二次根式为①,共1个.故选A.)3.A(解析:先由被开方数-a3b≥0及a<b,判断出a≤0,再化简可得正确答案.=·=-a.故选A.)4.B(解析:∵1<a<2,∴a-2<0,1-a<0,∴+|1-a|=2-a+a-1=1.故选B.)5.D(解析:分子、分母同时乘(+1),则原式===2+.故选D.)6.D(解析:原式=+2=3+2=5.故选D.)7.B(解析:因为(a+1-)2≥0,|b-|≥0,而(a+1-)2+|b-|=0,所以解得所以(a-b)2016=(-1-)2016=1.故选B.)8.D(解析:选项D错误,其正确答案为=-.故选D.)9.A(解析:∵==0.3××,=a,=b,∴=0.3ab.故选A.)10.A(解析:原式=(+2)2015×(-2)2015×(-2)=2015×(-2)=(-1)2015×(-2)=2-.故选A.)11.6(解析:根据最简二次根式可以合并,可得被开方数相同,建立方程可得答案.由已知得6m-3=5m+3,解得m=6.)12.(解析:把除法化为乘法的形式,约分从而得解.原式=× × =.)13.3-2(解析:根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.2 -6 +=2×-6×+2=-2+2=3-2.)14.(解析:根据二次根式的性质得到x的值为4,∴y=-2=-2,∴(x+y)y=(4-2=.)15.2.5(解析:∵2<<3,∴2<5-<3,故m=2,n=5--2=3-.把m=2,n=3-代入amn+bn2=1,得2(3-)a+(3-)2b=1,化简得(6a+16b)-(2a+6b)=1,等式两边相对照,∵结果不含,∴6a+16b=1且2a+6b=0,解得a=1.5,b=-0.5.∴2a+b=3-0.5=2.5.)16.2S(解析:根据题意可知两个小正方形的边长分别是和,由图知长方形的长和宽分别为和,所以两个长方形的面积和为××2=2S.)17.-3b(解析:由题图可知b<a<0,∴a-2b>0,a+b<0.∴+|a+b|=+|a+b|=|a-2b|+|a+b|=a-2b-a-b=-3b.)18.(解析:原式=- ,∵x=,∴=2016,∴x<,∴原式=-+x=x,当x=时,原式=.)19.解:==|b|·.由题意得解得20.解:(1)原式= =×× =9 =3.(2)原式=-× =-.21.解:(1)+-4 =+3-4×=2(+1)+3-2=2+3.(2)(5-6+4)÷=(5×4-6×3+4)÷=(2+4)÷=2+4.22.解:如图所示.∵长方形木板的长和宽分别为3 cm和4 cm,面积为6 cm2的正方形B, 边长为 cm,面积为18 cm2的正方形A,边长为3 cm,∴只能裁出一个A,还能再裁出B,又∵2<4,∴一共能裁出两个B,∴一共能裁出一个面积为18 cm2和两个面积为6 cm2的正方形.23.解:a2b-ab2=ab(a-b),而ab=××(+)(-)=,a-b=(+)-(-)=,∴原式=.24.解:(1)==2-. (2)==-.(3)原式=-1+-+2-+…+-+-=-1=12-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5页/共26页
二、二次根式有以下二个基本性质
1.( a )2 a(a 0)
2.
a2
a
a 0 a
0
第6页/共26页
口算:
(1)( 2 )2 (4) 9 2
(2) (1 2)2
(3) ( 4)2
式
ab a b (a 0,b 0)
a a bb
(a 0,b 0)
运算
a b ab(a 0,b 0)
a a (a 0,b 0) bb
第25页/共26页
感谢您的欣赏!
第26页/共26页
3 (5)
4
(6)(2 x )2
(7) 32 42 (7)2 ( 11)2
(8) a2 2ab b2 (a b)
第7页/共26页
例2、计算
(1)3 5 2 15
(2) 40 45
(3)3 m6n5 5 m4n2 (m、、 为正数)
(4) 1 48 1
2
8
第8页/共26页
三、二次根式的乘除 1、积的算术平方根的性质
练习、当x取何值时,下列二次根式 有意义:
(1) 2x 1 (2) 1 1 3x
(3) x 2 (4) (x 3)2 x2
(5) a 1 1 3a
第1页/共26页
一.二次根式的概念及意义. 形如 a (a≥0 )这样的式子叫做二次根式,
其中a可以是数,也可以是单项式和多项式.
(2)请计算
S1=
1 2
S2=
2 2
…Sn=
S12
S
2 2
S
2 3
S
2 n
n 2
n(n 1) 8
A5 1 A4
1
S4
A6
S5
1 S6
1 A3 1
S3 S2 A2
S1 1
O 1 A1
A7
第24页/共26页
概念
二次根式 最简二次根式 同类二次根式
(a 0)
二
a 0
(a 0)
次
( a a
根
性质 ( a2 a
(1) 3a2b (2) 1.5ab (3) x2 y2 (4) a b
第11页/共26页
最简二次根式的两个条件: (1)被开方数不含分母;(即因数是整数, 因式是整式 (2)被开方数中不含能开得尽方的因数 或因式;
第12页/共26页
3、计算:
(1)2 3 27 1
(2) 3
3
2 5
(3)( 3 2)(2 3)
求a2 2 2a 2 b2 的值
解:
2 a 0, b 2 0
而 2a b2 0
2a0 , b20
a 2, b 2
原式 (a 2)2 b2 ( 2 2)2 22
4
第17页/共26页
练一练 :
1.如果最简根式 ba 3b 和 2b a 2
是同类二次根式,那么a、b的值分别是( ) A.a=0,b=2 B.a=2,b=0 C.a=-1,b=1 D.a=1,b=-2
ab a b(a 0,b 0)
2、二次根式的乘法法则
a b ab(a 0,b 0)
第9页/共26页
3、商的算术平方根的性质
a a (a 0,b 0) bb
4、二次根式的除法法则
a a (a 0,b 0) bb
第10页/共26页
例3、判断下列各式中哪些是最简二次根式, 哪些不是?为什么?(字母为正数)
(4) a2b ab2 a2 b ab a
(2 - 3)2007( 2 3)2008
第13页/共26页
四、二次根式的加减 1、同类二次根式 几个二次根式化成最简二次根式以后,如果 被开方数相同,这几个二次根式就叫做同类 二次根式 2、二次根式的加减(合并同类二次根式)
一化 二找 三合并
第14页/共26页
2.实数a在数轴上的位置如图所示,化简
a
a 1 (a 2)2 =
-1 0 1 2
.
3.若代数式 (2 a)2 (a 4)2 的值是常数2,
则a的取值范围是( )
A. a 2
C. 2 a 4
B. a 2
D. a 2或a 4
第18页/共26页
4、把 a 1 根号外的因式移到根号内得 a
第22页/共26页
拓展2
细心观察图形,认真分析,思考下列问题.
(1)你能求出哪些线段的长?
OA2=__2_S1=__12 _ OA3=__3_S2=__22_
A5
1
1 A4
S4
…… …… A6
S5
OAn=__n_
1 S6
Sn=__2n_
A7
1 A3 1
S3 S2 A2
S1 1
O 1 A1
1
第23页/共26页
2 1 3 2 4 3
2006 2005
第20页/共26页
拓展延伸
1、试写出下列各式的整数部分和小数部分
3 的整数部分 1 ,小数部分 3 1 。 15 的整数部分 3 ,小数部分 15 3。
2、化简: ( 15 3)2 ( 15 4)2
3、若a、b分别是 6 13 的整数部分和 小数部分2a-b的值是 13 。
注:两个非负: ①a≥0
② a ≥0
第2页/共26页
例1、当x取何值时,下列等式成立:
(1) 4 y2 2 y • 2 y (2) (3 2x)2 2x 3
(3) x x x2 x2
第3页/共26页
5
已知y
2x
x
2
5,则
y x
_2___
第4页/共26页
?
若 a2 a ,则实数a在数轴上
1、下列各式与 2是同类二次根式的是( C )
A 10 B 24 C 72
D 2
3
2、若最简根式 X 1 与 3 X 是
同类二次根式,求 X 值
第15页/共26页
例3 :已知:m 1 ,
2 3
求1 2m m2 m 1
m2 2m m2 m
1
的值.
第16页/共26页
例4
设a.b为实数,且 2 a b 2 0
() 5、若化简 1 x x2 8x 16 的结果是2x-5,
则x的取值范围是(
)
第19页/共26页
6. 观察下列分母有理化的计算:
1 2 1 , 1 3 2 ,
2 1
3 2
1 4
3
4
3,
1 5 4 ,…,
5 4
从计算结果中找出规律,并利用这一规律计算:
( 1 1 1
1
)( 2006 1)