微晶纤维素制备

合集下载

微晶纤维素的制备及在医药工业上的应用

微晶纤维素的制备及在医药工业上的应用

微晶纤维素的制备及在医药工业上的应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言在医药工业中,微晶纤维素作为一种重要的药用辅料,在药物制备过程中发挥着关键作用。

提高药物溶出度的微晶纤维素的制备

提高药物溶出度的微晶纤维素的制备

提高药物溶出度的微晶纤维素的制备在制药工业中,微晶纤维素广泛应用于药物制剂,微晶纤维素常用作吸附剂、助悬剂、稀释剂、崩解剂。

近年来,微晶纤维素在片剂生产制造中的应用越来越广泛。

在近些年的新产品开发研制,原有产品处方的改进,均在不同程度上使用了这一新型辅料,并收到了良好的效果。

但对于一些难溶性药物如辛伐他汀、多潘立酮等在使用微晶纖维素的过程中经常会出现药物溶出度波动、偏底线甚至不合格现象。

标签:微晶纤维素;溶出度;吸附1 产品介绍微晶纤维素(microcrystalline cellulose,MCC)是American Viscose公司在20世纪50年代后期研制的新型药用辅料,是天然纤维经强酸在加热条件下水解后,除去其中无定形纤维而得到的棒状或颗粒状晶体。

其分子间存在氢键,外在条件的变化可使氢键缔合和断裂,常作为片剂黏合剂、稀释剂、崩解剂和助流剂使用。

它由纤维素经部分酸水解,收集其中的结晶部分干燥,粉碎而得的聚合度约200的结晶性纤维素。

外观呈白色或类白色,无臭、无味,由多孔微粒组成,是一种晶形粉末产品,不溶于水,性质稳定,与主药不发生化学反应。

作为填充剂,适量用于处方中,可以使制得的颗粒较松散,均匀细小,结合性能好,具有较强的结合力与良好的可压性,亦有“干黏合剂”之称。

同时,由于它吸水后能使片子迅速膨胀而崩解,因此,它又是一种良好的崩解剂。

它在片剂处方中的用量一般为15%~50%。

可用作粉末直接压片,同时具有崩解作用,应用十分广泛。

近年来,作为一种新型辅料,微晶纤维素在片剂生产制造中的应用越来越广泛。

在近些年的新产品开发研制,原有产品处方的改进,均在不同程度上使用了这一新型辅料,并收到了良好的效果。

2 技术方案①水解:放300份水于反应釜中,加入盐酸9.5-11.2份,检测酸浓度为0.30-0.35mol/L,开蒸汽加热至60~80℃,关闭进气阀门,开动搅拌,将切成小薄片的100份精制棉投入反应釜中,投料完毕后,打开蒸汽阀门升温至100℃,反应35-45分钟;②稀释分层:在储槽中放入500-600份水,将上述反应结束的物料放入储槽中,搅匀后静置2-4小时,使物料分层;③离心洗涤:将静置后的物料部分,抽取其上层1/4~3/4浆液进入离心洗涤,浆液甩干后,用反渗透水洗涤至离心机出水口流出的水pH值为6-7,停止洗涤,继续离心甩干,得到物料A,将剩余的下层物料同样通过离心洗涤,得到物料B;④干燥:将离心甩干的物料A置于闪蒸干燥设备中干燥,控制进风温度140~150℃,出风温度60-70℃,得到干物料A,同样将上述物料B同法干燥得到干物料B;⑤粉碎过筛:分别将上步得到的干物料A和干物料B均匀进粉碎机粉碎,粉碎后过筛分别得到微晶纤维素A和微晶纤维素B。

微晶纤维素的研究进展

微晶纤维素的研究进展

微晶纤维素的研究进展微晶纤维素(Microcrystalline cellulose,简称MCC)是一种由纤维素微晶粒子组成的多孔颗粒,广泛应用于制药、食品、化妆品等领域。

在过去的几十年里,对微晶纤维素的研究和应用逐渐增多,取得了一系列重要的进展。

本文将围绕微晶纤维素的制备方法、物理化学性质及其应用领域进行探讨。

首先,关于微晶纤维素的制备方法,目前主要有两种常用方法:酸法和酶法。

酸法是根据纤维素的结构特点,通过强酸(如硫酸)的作用来溶解纤维素,再通过稀释、沉淀和洗涤等步骤得到微晶纤维素。

酶法则是利用纤维素水解酶的作用来水解纤维素,生成微晶纤维素。

这两种方法各有优缺点,研究者们根据不同的需求选择适宜的方法。

其次,关于微晶纤维素的物理化学性质研究,研究者们对微晶纤维素的晶体结构、粒径分布、孔隙结构等进行了详细的研究。

通过X射线衍射、扫描电子显微镜等技术手段,研究者们确定了微晶纤维素的晶体结构为β形或伪β形,粒径分布较为均匀,孔隙结构复杂多样。

此外,研究者们还对其物理力学性质、吸附性能、流变性质等进行了深入研究,丰富了对微晶纤维素性质的认识。

最后,微晶纤维素在制药、食品以及化妆品等领域有着广泛的应用。

在制药领域,微晶纤维素可作为药物的负载剂和稳定剂,改善药物的可控释放性能和稳定性。

在食品领域,微晶纤维素可用作乳化剂、稳定剂和增稠剂,改善产品的质地和口感。

在化妆品领域,微晶纤维素可用作粉体的稳定剂和增稠剂,提高产品的稳定性和延展性。

此外,还有一些新的研究方向值得关注。

例如,近年来研究者们开始关注微晶纤维素的表面改性及其在新型材料制备中的应用。

表面改性可以进一步改善微晶纤维素的分散性和稳定性,从而用于各种纳米复合材料的制备。

另外,微晶纤维素的生物降解性和可再生性也成为研究的热点,人们希望通过研究微晶纤维素的生物降解性,探索其在环境保护和可持续发展领域的应用。

综上所述,微晶纤维素作为一种复合材料的重要组分,在制药、食品和化妆品等领域拥有广泛的应用前景。

直压工艺微晶纤维素型号

直压工艺微晶纤维素型号

直压工艺微晶纤维素型号引言直压工艺微晶纤维素是一种新型的材料,具有优异的性能和广泛的应用领域。

本文将详细介绍直压工艺微晶纤维素的型号及其特点,包括制备工艺、物理性能、应用领域等方面。

通过本文的阅读,您将对直压工艺微晶纤维素有更深入的了解。

制备工艺直压工艺微晶纤维素的制备主要包括以下几个步骤:1.原料准备:选择优质的纤维素原料,如木浆、棉花等。

将原料进行粉碎处理,得到适合制备微晶纤维素的颗粒。

2.纤维素溶解:将颗粒状的纤维素原料与溶剂进行混合,加热搅拌使纤维素溶解。

3.过滤和洗涤:将溶解后的纤维素溶液通过过滤器进行过滤,去除杂质。

然后用洗涤剂进行洗涤,去除残留的溶剂。

4.涂布和干燥:将洗涤后的纤维素溶液均匀涂布在基材上,然后进行干燥处理,使纤维素形成薄膜状。

5.压制和固化:将干燥后的纤维素薄膜放入压制机中,进行高压压制。

通过压制和固化,使纤维素薄膜形成坚固的结构。

物理性能直压工艺微晶纤维素具有以下优异的物理性能:1.高强度:直压工艺使得微晶纤维素的结构更加致密,从而提高了其强度和耐磨性。

2.轻质:微晶纤维素的密度较低,使其成为一种轻质材料,适用于需要减轻重量的应用领域。

3.耐温性:微晶纤维素具有较好的耐温性,能够在高温环境下保持稳定的性能。

4.透明度:微晶纤维素具有较好的透明度,可用于制备透明材料,如透明薄膜、透明容器等。

型号及特点根据不同的应用需求,直压工艺微晶纤维素可以制备成不同的型号,具有以下特点:1.型号1:具有较高的强度和耐磨性,适用于制备耐磨材料,如磨损件、磨粒等。

2.型号2:具有较低的密度和优异的透明度,适用于制备轻质透明材料,如眼镜片、显示器面板等。

3.型号3:具有较好的耐温性和化学稳定性,适用于制备耐高温材料,如热障涂层、耐腐蚀容器等。

4.型号4:具有较高的柔韧性和可塑性,适用于制备柔性材料,如柔性电子产品、弹性垫等。

应用领域直压工艺微晶纤维素的广泛应用领域包括但不限于以下几个方面:1.汽车工业:微晶纤维素可以用于制备汽车内饰件、车身零部件等,具有轻质、耐磨、耐高温等特点。

微晶纤维素 分子量

微晶纤维素 分子量

微晶纤维素分子量微晶纤维素是一种分子量较小的纤维素,具有许多优异的性质和广泛的应用。

本文将从不同角度介绍微晶纤维素的分子量及其相关内容。

一、微晶纤维素的定义和特点微晶纤维素是一种由纤维素分子组成的多聚合物,其分子量较低,通常在几千到几十万之间。

与普通纤维素相比,微晶纤维素的晶体结构更加完善,纤维的直径更小,具有更高的比表面积和更好的可溶性。

二、微晶纤维素的制备方法微晶纤维素的制备方法主要有两种:酸法和酶法。

酸法是将天然纤维素经过酸处理,使其结构发生变化,形成微晶纤维素。

而酶法则是利用酶的作用,将纤维素分解为较小的纤维素分子,然后经过再结晶得到微晶纤维素。

三、微晶纤维素的应用领域1. 医药领域:微晶纤维素可以作为药物的载体,具有较大的比表面积和良好的溶解性,可用于制备口服片剂、控释制剂等。

2. 食品领域:微晶纤维素可以用作食品的增稠剂、稳定剂、乳化剂等,改善食品的质感和口感。

3. 化妆品领域:微晶纤维素可以用作化妆品的胶凝剂、增稠剂、保湿剂等,提高化妆品的稳定性和使用感。

4. 环保领域:微晶纤维素可以用作油水分离剂、吸附剂等,用于处理废水和污染物。

5. 纺织领域:微晶纤维素可以用于纺织品的增强、抗菌等功能改性,提高纺织品的质量和性能。

四、微晶纤维素的优势和挑战微晶纤维素相较于其他纤维素具有以下优势:1. 较小的分子量使其具有更高的溶解性和可溶性,便于制备和加工。

2. 较高的比表面积使其具有更好的吸附性和反应性,适用于各种应用领域。

3. 良好的机械性能和热稳定性使其在复合材料等领域有广泛应用前景。

然而,微晶纤维素也面临一些挑战:1. 制备工艺相对复杂,需要控制好酸碱度、温度等条件,提高制备效率和纯度。

2. 纤维素的来源和可持续性也是一个问题,需要寻找更加环保和可再生的原材料。

五、微晶纤维素的发展前景随着人们对功能性材料和绿色环保的需求不断增加,微晶纤维素作为一种具有良好性能的纤维素材料,具有广阔的应用前景。

微晶纤维素的制备及性质研究

微晶纤维素的制备及性质研究

微晶纤维素的制备及性质研究近年来,由于环境保护意识的不断提高,微晶纤维素(MFC)已成为具有重要意义的可再生资源材料,得到了广泛的关注。

MFC可以用于制造轻质、强度高的复合材料,同时具有良好的耐热性和低燃烧性。

因此,MFC的制备及其性能研究已成为当前研究热点。

本篇文章将介绍MFC的制备方法及其性能研究。

MFC是一种微小纤维形状的纤维素,其制备主要包括水湿法和吹尘法两种方法。

水湿法是一种可逆的碳水化合物结构调整方法,它可以利用木质素的热力学和动力学特性,将木质素降解成由细小的纤维素组成的结构,再经过升温蒸发使结构均匀,最终生成MFC。

吹尘法是一种射流喷雾技术,通过控制木质素微粉末受力状态,使其在一定温度和压力反应形成MFC,并在凝胶凝固和乳化状态间发生转变,从而达到生成MFC的目的。

MFC具有良好的湿稳定性,其分子结构致密,表面电性,因此很容易构筑复合材料。

例如,MFC可以与塑料和橡胶复合,以构建轻质、高性能的复合材料;也可以与金属复合,形成具有良好隔音和节能性能的复合材料;在其它领域也可用于制造电子材料、高性能涂料等。

而在MFC性能研究方面,研究人员一般会探究MFC的力学性能、热性能、电学性能等。

MFC在这些方面的性能比其它类似材料都要好,受到广泛的关注。

例如,在力学性能方面,MFC的抗压强度和抗折强度极高,远超其他类型的纤维素;在热性能方面,MFC的热衰减性能十分突出,比其它类型的纤维素要低;在电学性能方面,MFC的抗电弧性能极佳,可有效抑制电弧传导,有效保护电气设备。

此外,对MFC性能影响最大的因素是MFC的分子结构和形貌。

研究表明,分子结构上,MFC的分子链节点越接近,性能越好;形貌上,MFC表面越细腻、形状越均匀,其性能也越好。

总体而言,MFC具有良好的可再生性、可塑性和性能稳定性,是一种有前景的可再生材料。

研究人员应聚焦于MFC制备方法及其性能的研究,以期开发出更先进、性能更优越的MFC材料,促进MFC在实际应用中的广泛使用。

微晶纤维素的制备及在医药工业上的应用

微晶纤维素的制备及在医药工业上的应用

微晶纤维素的制备及在医药工业上的应用微晶纤维素是一种由纤维素组成的微晶体,具有高纯度、高结晶度和高稳定性等特点。

其制备方法有多种,常见的包括酸浆法、生物法和化学法等。

在医药工业上,微晶纤维素被广泛应用于药物制剂、医用敷料和注射剂等领域。

化学法制备微晶纤维素的方法多种多样。

例如,可以利用溶剂如氢氧化钠和氢氧化钠溶解纤维素,然后通过调节溶液温度和浓度等条件形成微晶纤维素。

在医药工业上,微晶纤维素具有广泛的应用。

首先,微晶纤维素常被用作药物制剂的辅料。

由于其稳定性好、无味无色、无毒副作用等特点,微晶纤维素可以作为药片的包衣材料,保护药物免受湿气和光线的影响。

此外,微晶纤维素还可以作为药片的填充剂,增加药片的体积和重量。

微晶纤维素还可以应用于医用敷料的制备。

由于其纤维结构致密、孔隙率低,微晶纤维素具有较好的吸附性能和渗透性,可以有效吸收和排除口腔、皮肤和器官表面的分泌物。

因此,微晶纤维素常被用于制备伤口敷料、脱脂纱布和清创纱布等医用敷料,用于创面的保护和治疗。

此外,微晶纤维素还被应用于注射剂的制备。

一些药物需要以注射剂的形式给予患者,但药物的溶解度有限,很难通过注射液制备。

而将药物与微晶纤维素复合,可以提高药物的溶解性、稳定性和吸收性,从而增加药物的生物利用度和疗效。

综上所述,微晶纤维素是一种在医药工业上广泛应用的材料,通过不同的制备方法可以得到。

其在药物制剂、医用敷料和注射剂等领域发挥着
重要的作用。

随着科学技术的不断进步,微晶纤维素在医药领域的应用前景将更加广阔。

纳米微晶纤维素的制备、改性及其增强复合材料性能的研究

纳米微晶纤维素的制备、改性及其增强复合材料性能的研究

纳米微晶纤维素的制备、改性及其增强复合材料性能的研究一、本文概述随着纳米科技的快速发展,纳米材料在各个领域的应用日益广泛。

纳米微晶纤维素(Nanocrystalline Cellulose, NCC)作为一种新兴的纳米材料,因其独特的物理和化学性质,在增强复合材料性能方面具有巨大的潜力。

本文旨在探讨纳米微晶纤维素的制备技术、改性方法,以及其在增强复合材料性能方面的应用。

我们将详细介绍纳米微晶纤维素的制备过程,包括原料选择、预处理、酸解条件优化等关键步骤,并分析影响制备效果的主要因素。

随后,我们将探讨纳米微晶纤维素的改性方法,如表面修饰、复合改性等,以提高其在复合材料中的相容性和性能。

在此基础上,本文将重点研究纳米微晶纤维素增强复合材料的性能。

我们将通过对比实验,分析纳米微晶纤维素在复合材料中的分散性、界面结合强度、力学性能等关键指标,探讨其对复合材料性能的影响机制。

我们还将考察纳米微晶纤维素在不同复合材料体系中的应用效果,为其在实际工程中的应用提供理论支持。

本文的研究不仅有助于深入理解纳米微晶纤维素的制备与改性技术,还将为开发高性能复合材料提供新的思路和方法。

我们期望通过本文的研究,为纳米微晶纤维素在复合材料领域的广泛应用奠定坚实基础。

二、纳米微晶纤维素的制备纳米微晶纤维素(Nanocrystalline Cellulose, NCC)的制备主要涉及到纤维素原料的选择、预处理、酸水解和纯化等步骤。

以下是详细的制备过程:选择纤维素含量丰富且结晶度高的植物纤维作为原料,如棉花、木材等。

这些原料经过破碎、研磨等预处理后,得到一定粒度的纤维素粉末。

接着,将纤维素粉末与适量的浓酸(如硫酸)混合,并在一定的温度下进行酸水解。

酸水解过程中,纤维素分子链在酸的作用下断裂,生成较小的纤维素分子片段。

水解的时间和温度会影响最终产物的粒度和结晶度。

水解完成后,需要通过离心、洗涤等步骤去除剩余的酸和水解产物中的杂质。

然后,将得到的悬浮液进行透析,以进一步去除小分子杂质。

微晶纤维素湿法制粒方法

微晶纤维素湿法制粒方法

微晶纤维素湿法制粒方法
微晶纤维素湿法制粒的步骤如下:
湿法制粒的过程涉及物料润湿、粘合和压片。

在制粒过程中,微晶纤维素可以作为主要的辅料,因其吸水量高,在湿法制粒过程中具有良好的粘合能力和压片性能。

在制备过程中,微晶纤维素吸浆能力强,可以在粘合剂中添加其他功能性辅料,使得操作更可控。

同时,微晶纤维素的润湿性好,可以增加物料的润湿均匀性,有利于制粒的均匀性及终产品的含量均匀性。

微晶纤维素的二次压缩成型性差,因此乳糖则相对较好。

微晶纤维素因不溶于水,在溶出过程中会出现“压底”现象,即溶出后期微晶堆积于溶出杯底部,导致活性成分(API)释放不完全。

因此,对于难溶性药物,微晶纤维素的推荐比例不超过30%。

如出现压底现象,可减少微晶比例,或将溶出转速提高(50-
75rpm)。

微晶纤维素的制备及其在功能材料领域中的应用进展

微晶纤维素的制备及其在功能材料领域中的应用进展

微晶纤维素的制备及其在功能材料领域中的应用进展摘要:微晶纤维素(MCC)是由纤维素降解产生的一种功能高分子材料,其具有比表面积大、热稳定性好、结晶度高和聚合度低等优点,在功能材料等相关领域具有较好应用前景。

本文首先介绍了MCC制备过程中所用原料、预处理及制备方法等方面的研究进展,其次对MCC在吸附材料、抗菌材料和发光材料等功能材料领域中的应用状况进行了综述,最后对MCC 的制备及应用研究进展进行了总结和展望。

关键词:MCC;制备;功能材料;应用植物纤维原料具有储量丰富、可再生和绿色环保等优点,其主要成分包括纤维素、半纤维素和木质素,各成分含量随原料种类和内部组织的差异而有所不同。

其中,纤维素是由葡萄糖单元通过β-1,4 糖苷键连接而成的线型高分子,经化学法或生物酶法降解其大部分非结晶区(或无定形区)后,可制得白色或近白色的微晶纤维素(Microcrystalline cellulose,MCC)[1]。

MCC 通常呈粉末状或者短棒状,无味,结晶度一般为55%~80%,粒径范围20~80 μm,是一种结构独特且性能优良的功能高分子材料,其特性是流动性强、绿色无污染和可降解,而且具有亲水性好、比表面积大、杨氏模量高和生物相容性好等优点[2]。

因此,MCC 在众多行业和领域具有较高的应用价值,例如,在食品工业,可作为食品添加剂提升部分食物的口感[3];在能源领域,可作为原料通过催化加氢反应制备乙二醇和山梨醇等化学品[4-5];在医药行业,可以作为黏合剂用于制备药物[6];在功能材料领域,可用于制备吸附、抗菌和发光等功能性材料。

作为一种应用广泛的生物基材料,MCC 的制备、性能和应用研究已成为研究热点。

本文介绍了MCC的制备工艺,对MCC 在吸附、抗菌和发光等功能材料领域的应用进展进行了综述,并对MCC的研究进展进行了展望。

1 MCC的制备1957年Battista 等人[7]采用稀硫酸对棉浆进行酸解,首次制得MCC,其独特的功能作用与优良的性能引起众多学者的关注。

微晶纤维素的生产方法简介

微晶纤维素的生产方法简介

微晶纤维素的生产方法简介大家好呀!今天咱就来聊聊微晶纤维素的生产方法哈。

这微晶纤维素在好多领域都有用处呢,所以了解它的生产方法还是挺有意思的。

一、酸水解法。

这种方法是比较常用的哦。

就是用酸来处理纤维素原料。

一般用的酸有盐酸、硫酸这些。

比如说,把含有纤维素的原料,像木材、棉花这些,放到酸溶液里面去。

酸就会和纤维素发生反应,把它水解成一些小分子的物质。

然后经过一系列的处理,像分离、洗涤、干燥啥的,就能得到微晶纤维素啦。

举个例子哈,就好比你要把一大块积木拆成小块,酸在这里就起到了这个“拆积木”的作用,把纤维素这个“大积木”拆成合适大小的“小积木”,也就是微晶纤维素。

二、酶水解法。

酶水解法也挺厉害的哟。

它是利用酶的催化作用来分解纤维素。

酶就像是一个小小的“工人”,专门负责把纤维素分解掉。

常用的酶有纤维素酶这些。

这种方法相对来说比较温和,对环境也比较友好。

具体操作的时候呢,就是把纤维素原料和酶混合在一起,让酶去发挥它的作用,把纤维素分解成可以得到微晶纤维素的中间产物,再经过后续的处理步骤就好啦。

就好像有一群小工人在有条不紊地把原料加工成我们想要的东西,是不是还挺神奇的?三、机械法。

机械法就是通过物理的方式来制备微晶纤维素啦。

比如说,用一些机械设备,像研磨机、球磨机这些,对纤维素原料进行研磨和粉碎。

在这个过程中,纤维素的结构会被破坏,然后经过筛选等步骤,把合适大小的微晶纤维素筛选出来。

想象一下,这就像是用锤子把东西敲碎,再挑出我们需要的那些小碎片一样。

不过这种方法可能需要比较大的能量,而且生产效率可能相对低一些,但是它也有它的优点啦,就是比较简单直接。

四、溶剂法。

溶剂法也有它的独特之处哦。

它是用一些特殊的溶剂来处理纤维素原料。

这些溶剂可以溶解纤维素,然后通过一些手段,像改变温度、压力这些条件,让纤维素再结晶出来,形成微晶纤维素。

就好像是给纤维素来了一场“魔法变身”,先让它在溶剂里“消失”,然后再以微晶纤维素的形式“出现”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南科技2012.04 下
52
工业技术
INDUSTRY TECHNOLOGY
微晶纤维素为纯棉纤维经水解制得的白色或类白色粉末,无臭无味,不溶于水、稀酸和一般溶剂。

微晶纤维素在药用辅料方面用途广泛,可直接用于干粉压片制造,还可用作药物赋形剂、流动性助剂、填充物、崩解剂、抗黏剂、吸附剂、胶囊稀释剂等。

我国年需求药用微晶纤维素在20 000 t 以上,并以每年10% ~ 15%的速度增长。

已成为现代制药行业中必不可少的优良药用辅料。

一、微晶纤维素的制备
1.制备原理。

微晶纤维素是一种纯净的纤维素解聚产物,主要成分为以 B–1,4葡糖苷基结合的直链式多糖类(多糖聚合度小于4 000个葡萄糖分子)。

在一般的植物纤维素中,微晶纤维素约占70%,其余的为无定形纤维素,经酸水解除去后,即留下微小、耐酸的结晶纤维素。

2.工艺操作过程。

采用酸水解技术生产微晶纤维素,在40%的棉浆柏中加入盐酸酸化、达到极限聚合度后,经中和、脱液、干燥等操作步骤可得成品。

工艺流程如下:首先,称取一定量的棉浆粕,切断粗粉,溶于水中,配成40%的淀粉乳;其次,加入5%的盐酸溶液酸化并升温至90 ℃,1 h 后,反应结束;最后,用水洗涤2次后,经脱液、干燥等操作步骤,至物料含水量达到10%以下后出料、粉碎,得到成品,经检验合格后包装即可。

二、结果与讨论
影响微晶纤维素制备的因素很多,有关研究表明,HC1的用量、水解浓度、水解时间、水解温度作用等因素的影响较大。

故选这4个因素作为研究对象,具体因素水平见表1、试验具体结果见表2。

通过正交试验及对平均收率、平均粒度的检测分析,笔者
微晶纤维素制备
吉林省方圆认证集团有限公司 马 哲 李雪晶 张于平
对最佳反应条件和不同因素对反应的影响程度进行了分析。

(1)产品收率极差分析。

分析结果见表3。

由表3可知,对产品收率影响作用的大小依次为为水解时间 >HC1用量>HC1的水解浓度>水解温度,反应的最佳的工艺条件是A3,B2,C3,D3的组合。

即盐酸的用量600 ml ;HC1的水解浓度5%;水解温度90 ℃;水解时间1 h 。

(2)产品粒度极差分析。

分析结果见表4。

由表4可知,对产品粒度影响的作用大小依次为为HC1的水解浓度>HC1用量>水解温度>水解时间。

反应的最佳的工艺条件是A2,B1,C2, D3组合。

即盐酸的用量700 ml , HC1的水解浓度6%,水解时间1.5 h ,水解温度90 ℃。

三、可溶性淀粉实验结论
1.产品以收率为主要指标,所以取最佳工艺条件为盐酸的用量600 ml ,水解温度90 ℃, HC1的水解浓度5%,水解时间1 h 。

2.酸化时间及温度对产品的黏度及性能影响较大,一般来说,反应温度应控制在90 ℃,时间1 h ,即可收到较好的效果。

3.干燥采用真空耙式干燥器,真空度0.06 ~ 0.08 MPa ,干燥温度60 ~ 70 ℃,时间为6 ~ 8 h 即可。

表1 影响微晶纤维素制备的因素水平因素(以100 g 棉浆粕计)
序号HC1用量31%(A )/ml HC1水解浓度(B )/%水解时间(C )/h 水解温度(D )
/℃1
800(A1)6(B1) 2.0(C1)96(D1)2700(A2)5(B2) 1.5 (C2)93(D2)3
600(A3)
4(B3)
1.0(C3)
90(D3)
表2 反应正交实验及试验结果L9 (34)
序号A B C D 平均收率平均粒度1111175.885.42122282.576.53133380.691.64212382.462.35223185.897.26231274.772.9731328691.78321384.274.39
3
3
2
1
83.482.6
表3 产品收率极差分析A B C D Ⅰ238.9244.2234.7245.0Ⅱ242.9252.5248.3243.2Ⅲ253.6238.7252.4245.2K179.681.478.281.6K281.084.182.881.0K384.579.684.182.4R
4.9
4.6
5.9
1.4
A B C D Ⅰ
253.5239.4232.6265.2Ⅱ232.4248.0221.4241.1Ⅲ248.6247.1280.5228.2K184.579.877.588.4K277.582.773.880.4K382.882.493.576R
7.0
2.9
16
12.4
表4 产品粒度极差分析。

相关文档
最新文档