一元多项式的表达
一元多项式——精选推荐
![一元多项式——精选推荐](https://img.taocdn.com/s3/m/feb29d1f591b6bd97f192279168884868762b83e.png)
第一章 多项式§1 数域 §2 一元多项式一、数域1、定义:P 是由一些复数组成的集合,包含0和1,如果P 中的任意两个数的和、差、积、商(除数不为零)仍在P 中,则称P 为一个数域。
简单地说:P 是一个含0和1的非空集合,且对四种运算封闭。
2、例1:有理数的集合Q ,实数集合R ,复数集合C 均为数域。
例2:{}()2,2Q Q b a b a P =∈+=是一个数域。
证明:Pd c adcb d c bd ac d c d c d c b a d c b a d c d c P bc ad bd ac d c b a P d b c a d c b a P d b c a d c b a Qd c b a P d c b a P P ∈--+--=-+-+=++≠-≠+∈+++=++∈-+-=+-+∈+++=+++∈∈++∀∈+=∈+=2222)2)(2()2)(2(2202,02)5(2)()2()2)(2)(4(2)()()2()2)(3(2)()()2()2)(2(,,,,2,22011;2000)1(2222有若故P 是一个数域。
练习:证{}Q b a bi a i Q ∈+=,)(是一个数域。
二、一元多项式注:在数域P 上进行讨论,x 是一个符号。
1、定义:0111a x a x a x a n n n n ++++-- ,(-∈Z n )称为数域P 上的一元多项式。
其中P a a a n ∈,,,10 ,用 ),(),(x g x f 表示。
若0≠n a ,则称n a 为首项系数,n 为多项式的次数,用))((x f ∂表示。
0a 为常数项。
2、相等:)()(x g x f =当且仅当次数相同,对应系数相等。
3、运算:设0111)(a x a x a x a x f n n n n ++++=-- ,0111)(b x b x b x b x g m m m m ++++=-- ,m n ≥(1) 加法: )()()()()(00b a x b a x b a x g x f m m m n n n +++++++=+其中:011====+-m n n b b b())(),(max ))()((x g x f x g x f ≤+∂ (2) 乘法:snm s s j i j i m n m n m n m n m n xb a b a x b a b a x b a b a x b a x g x f ∑∑+==+-+--+⎪⎪⎭⎫ ⎝⎛=+++++++=0001001111)()()()()(若:0)(,0)(≠≠x g x f ,则))(())(())()((x g x f x g x f ∂+∂=∂ 4、运算规律:(1))()()()(x f x g x g x f +=+(加法交换律)(2)))()(()()())()((x h x g x f x h x g x f ++=++(加法结合律) (3))()()()(x f x g x g x f =(乘法交换律)(4)))()()(()())()((x h x g x f x h x g x f =(乘法结合律) (5))()()()())()()((x h x f x g x f x h x g x f +=+(分配律) (6)若,0)(),()()()(≠=x f x h x f x g x f 则)()(x h x g =(消去律) 5、多项式环。
一元多项式的定义和运算讲解
![一元多项式的定义和运算讲解](https://img.taocdn.com/s3/m/fdc2ef4311a6f524ccbff121dd36a32d7375c7d5.png)
令f (x)是F [x]的一个次数大于零的多项式,并且
此处
定理 2.4.2
例 在有理数域上分解多项式 为不可约因式的乘积.容易看出
(2)
一次因式x + 1自然在有理数域上不可约.我们证明, 二次因式 也在有理数域上不可约.不然的话, 将能写成有理数域上两个次数小于2的因式 的乘积,因此将能写成
这个定义的条件也可以用另一种形式来叙述
若多项式 有一个非平凡因式 而 ,那么 与 的次数显然都小于 的次数.反之,若 能写成两个这样的多项式的乘积,那么 有非平凡因式.因此我们可以说:
这里
多项式的减法
2.1.5 多项式加法和乘法的运算规则
(1)加法交换律:
(2)加法结合律:
(3)乘法交换律:
(4)乘法结合律:
(5)乘法对加法的分配律:
注意:
要把一个多项式按“降幂”书写
当
时,
叫做多项式的首项.
2.1.6 多项式的运算性质
定理
是数环R上两个多项式,并且
定义 2
设 是多项式 与 的一个公因式.若是 能被 与 的每一个公因式整除,那么 叫做 与 的一个最大公因式.
定义 1
的任意两个多项式 与 一定有最大公因式.除一个零次因式外, 与 的最大公因式是唯一确定的,这就是说,若 是 与 的一个最大公因式,那么数域F的任何一个不为零的数 c与 的乘积 ,而且当 与 不全为零多项式时,只有这样的乘积是 与 的最大公因式.
由此得出,
是
与
的最大公因式,而
定理 2.3.3
的两个多项式 与 互素的充分且必要条 件是:在 中可以求得多项式 与 ,使
高等代数一元多项式
![高等代数一元多项式](https://img.taocdn.com/s3/m/4de703e86f1aff00bfd51e2d.png)
证设
f(x) = anxn + an−1xn−1 + · · · + a0, g(x) = bmxm + bm−1xm−1 + · · · + b0,
其中 an ̸= 0, bm ̸= 0. 则 ∂(f(x)) = n, ∂(g(x)) = m.
. .. . . ..
次数公式
(1) 在考虑多项式 f(x) 和 g(x) 的和时,不妨设 n ≥ m 且令 bm+1 = bm+2 = · · · = bn = 0,则
f(x)
+
g(x)
=
∑n (ai
+
bi)xi.
i=0
从而 ∂(f(x) + g(x)) ≤ n = max(∂(f(x)), ∂(g(x))). (2) f(x)g(x) 的首项是 anbmxn+m,显然 anbm ̸= 0,因之,f(x)g(x) ̸= 0 而且它的次数就是 n + m.
. .. . . ..
多项式的运算律
1 加法交换律:f(x) + g(x) = g(x) + f(x). 2 加法结合律:(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)). 3 乘法交换律:f(x)g(x) = g(x)f(x). 4 乘法结合律:(f(x)g(x))h(x) = f(x)(g(x)h(x)).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
次数公式
数据结构_一元多项式的表示与相加
![数据结构_一元多项式的表示与相加](https://img.taocdn.com/s3/m/219dfcc9964bcf84b8d57ba4.png)
实验一一元多项式的表示与相加实验目的:1.复习并熟练掌握数据结构所使用的程序设计语言——C语言;2.学会单步跟踪、调试自己的程序;3.加深对线性表特别是链表知识的理解和掌握,并能够运用相关知识来解决相关的具体问题,如一元多项式相加等;程序流程:1.定义一元多项式链表结构体类型;2.输入多项式项数以分配存储空间;3.输入多项式每项的系数和指数,将其插入当前多项式链表。
同时判断是否有与当前节点指数相同的项,若存在,则将两项系数相加合并。
此外,若存在系数为0的项,将其存储空间释放;4.进行多项数加法时,新建一个存储结果的链表,分别将两多项式各项依次插入结果多项式即完成多项式相加运算;5.进行多项数加法时,将减项多项式各项系数化为相反数后进行加法操作,即完成多项式相减运算;6.对x赋值后,将x值代入多项式进行运算得到多项式的值;7.输出多项式。
注意:进行完一次运算以后,应该及时销毁无用多项式以释放空间以便再次应用。
算法及注释:1)定义一元多项式链表结构体类型typedef struct Lnode{float cof; //定义系数int exp; //定义指数struct Lnode *next; //定义指针变量指向下一个节点}Lnode ,*Linklist; //定义新的变量类型2)建立多项式存储线性链表头结点void makehead(Linklist &head){head=(Linklist)malloc(sizeof(Lnode)); //建立新的节点head->exp=-1;head->next=NULL; //指针赋空head->cof=1;}3)将输入的多项式信息存储于节点中void makelnode(Lnode *&p){p=(Lnode*)malloc(sizeof(Lnode)); //建立新的节点printf("Input the cof and exp\n");scanf("%fx%d",&p->cof,&p->exp); //输入多项式底数指数信息p->next=NULL; //指针赋空}4)清除系数为零的多项式节点void clear(Linklist la){Lnode *p,*q; //定义两个指向结构体的指针p=la;q=p->next;while (q){if (fabs(q->cof)<=0.000001) { //判断系数为零p->next=q->next; //指针指向相隔的下一个节点free(q); //销毁系数为零的节点q=p->next; //指针后移一位}else {p=p->next; //p q分别后移一位q=q->next;}}}5)找到多项式中与当前节点同指数项位置int locate(Linklist l,Lnode *&p,Lnode*e){p=l;//标记表头if (!l->next)return(0);while(p&&e->exp!=p->exp){//当p存在且指数不相等时指针后移p=p->next;}if(p)return(p);//当p存在时,返回p地址else {//没找到时寻找出插入位置p=l;while (p->next&&e->exp<=p->next->exp)p=p->next;if (!p->next){p=p;return(0);}return(0);}}6)将多项式节点插入已有多项式链表中,同时完成系数运算void caseinsert(Linklist &l,Lnode *e){Lnode *p;if (locate(l,p,e)){//指数相同项系数相加p->cof += e->cof;free(e);}else{//插入新的项e->next=p->next;p->next=e;}}7)创建新的多项式链表void creat(Linklist &head,int m){Lnode *p;int i;makehead(head);//建立头结点for (i=1;i<=m;i++){p=(Linklist)malloc(sizeof(Linklist));//建立新的多项式单个节点空间makelnode(p);//建立赋值caseinsert(head,p);//将多项式节点插入已有多项式链表中,同时完成系数运算}clear(head);}8)输入多项式项数并创建节点进行存储void input(Linklist &l){int m;printf("Input the Poly numbers\n");scanf("%d",&m);creat(l,m);//建立一个l指向的头指针有m项的多项式链表}9)输出多项式void print(Linklist l){Lnode *p;p=l->next;printf("Poly:%6fx^%d",p->cof,p->exp);p=p->next;while (p){if(p->cof>0) printf("+");//系数正负号if (fabs(p->cof)<=0.000001); break;//不输出系数为零的项printf("%6fx^%d",p->cof,p->exp);p=p->next;//指针后移}printf("\n");}10)进行多项式加法运算void add(Linklist la,Linklist lb,Linklist &lc){ Lnode *p,*q,*q1,*p1;p=la->next;q=lb->next;makehead(lc);//建立一个新的表头while(p){p1=p->next;caseinsert(lc,p);//将多项式节点p插入已有多项式链表lc中,同时完成系数运算p=p1;//指针后移}while(q){q1=q->next;caseinsert(lc,q);//将多项式节点q插入已有多项式链表lc中,同时完成系数运算q=q1;}}11)将减项多项式转化为系数为相反数的多项式便于转化为加法运算void reverse(Linklist &l){Linklist p;p=l->next;while(p){p->cof*=-1;//系数自乘-1p=p->next;}}12)进行多项式减法运算void sub(Linklist la,Linklist lb,Linklist &lc){reverse(lb);add(la,lb,lc);clear(lc);//清除头结点}13)对x赋值进行多项式赋值运算float value(Linklist l,float x){float sum=0,t;int i;Linklist p=l->next;while(p){t=1;for (i=p->exp;i>0;i--)t*=x;sum=sum+t*p->cof;p=p->next;}return(sum);}14)销毁已有多项式,清除已有多项式占用的存储空间void destroy(Linklist la){Lnode *p,*q;p=la;while(p){q=p;p=p->next;free(q);}}15)创建主程序即菜单界面void main(){Linklist l[10];int c,n,m,i;float a;printf("Choose the number to operate:\n");printf(" 1:Creat a Poly\n");printf(" 2:Poly Addition\n");printf(" 3:Poly Substraction\n");printf(" 4:Evaluation\n");printf(" 5:Destroy a Poly\n");printf(" 6:Print a Poly\n");printf(" 0:Exit\n");printf("\nDestroy the Polys after used.\n");printf("\n*use ',' to separate\n");scanf("%d",&c);while (c){switch (c){case 1: printf("Input the Poly number 1~9\n");scanf("%d",&n);input(l[n]);break;case 2: printf(" Input the Poly number to add,and the Poly number stored in\n");scanf("%d,%d,%d",&n,&m,&i);add(l[n],l[m],l[i]);break;case 3: printf(" Input the Poly number to subtract,and the Poly number stored in\n");scanf("%d,%d,%d",&n,&m,&i);sub(l[n],l[m],l[i]);break;case 4: printf("Input the number to operate and the value of x:\n");scanf("%d,%f",&n,&a);printf("%f\n",value(l[n],a));break;case 5: printf("Input the Poly number:\n");scanf("%d",&n);destroy(l[n]);break;case 6: printf(" Input the Poly number:\n");scanf("%d",&n);print(l[n]);case 0: n=0;break;default:printf("ERROR!");}printf("Choose the number to operate:\n");scanf("%d",&c);}printf("OK!\n");程序运行截图:实验总结:这次实验室数据结构第一次上机实验,由于与C语言课程的学习相隔已经一个学期,对C语言有些生疏和遗忘,在编程过程中出现很多错误。
一元多项式环的概念及其通用性质
![一元多项式环的概念及其通用性质](https://img.taocdn.com/s3/m/d5a1791aac02de80d4d8d15abe23482fb5da0267.png)
03 一元多项式的加法与减法
加法规则
设两个一元多项式为$P(x) = a_0 + a_1x + a_2x^2 + ldots + a_nx^n$和$Q(x) = b_0 + b_1x + b_2x^2 + ldots + b_mx^m$, 则它们的和$P(x) + Q(x)$定义为系数相加,即$(a_0 + a_1x + a_2x^2 + ldots + a_nx^n) + (b_0 + b_1x + b_2x^2 + ldots + b_mx^m) = (a_0+b_0) + (a_1+b_1)x + (a_2+b_2)x^2 + ldots + (a_n+b_n)x^n$。
一元多项式环的概念及其通用性质
目录
• 一元多项式环的定义 • 一元多项式环的基本性质 • 一元多项式的加法与减法 • 一元多项式的乘法 • 一元多项式的除法 • 一元多项式环的特殊性质
01 一元多项式环的定义
定义
一元多项式环是由所有一元多项式构 成的环,其中加法、减法和乘法运算 封闭。
一元多项式环中的元素称为一元多项 式。
THANKS FOR WATCHING
感谢您的观看
举例说明:$(x^2+3x+2) - (x+1) = (1-1)x^2 + (3-1)x + (2-1) = 0x^2 + 2x + 1$。
04 一元多项式的乘法
单项式与多项式相乘
定义
举例
单项式与多项式相乘是指将单项式的每一项 分别与多项式的每一项相乘,并合并同类项。
一元多项式表示与相加
![一元多项式表示与相加](https://img.taocdn.com/s3/m/d133ddfed5bbfd0a78567337.png)
系数 coef 指数 exp 指针 next
结点结构体定义如下: struct Polynode { int coef; int exp; Polynode *next; } Polynode , * Polylist;
例:建立一元多项式链式存储算法 【算法思想】通过键盘输入一组多项式的系数和指数,用尾插法建立一元 多项式的链表。以输入系数 0 为结束标志,并约定建立多项式链表时,总 是按指数从小到大的顺序排列。 【算法描述】
scanf(“%d,%d”,&c,&e);/*键入多项式的系数和指数项*/
while(c!=0)
/*若 c=0,则代表多项式的输入结束*/
{
s=(Polynode*)malloc(sizeof(Polynode)); /* 申 请 新
的结点*/
s->coef=c ;
s->exp=e ;
rear->next=s ;
① 若 p->exp< q->exp,则结点 p 所指的结点应是“和多项式”中的 一项,令指针 p 后移;
② 若 p->exp=q->exp,则将两个结点中的系数相加,当和不为零时 修改结点 p 的系数域,释放 q 结点;若和为零,则和多项式中无此项,从 A 中 删去 p 结点,同时释放 p 和 q 结点。
B(x)=8x+22x7-9x8
polya
-1
polyb
-1
70 81
31
98
5 17 ∧
22 7
-9 8 ∧
(2)多项式相加的运算规则 为了保证“和多项式”中各项仍按升幂排列,在两个多项式中: ①指数相同项的对应系数相加,若和不为零,则构成“和多项式”中的一 项; ②指数不相同的项仍按升幂顺序复抄到“和多项式”中。 【算法思想】以单链表 polya 和 polyb 分别表示两个一元多项式 A 和 B, A+B 的求和运算,就等同于单链表的插入问题(将单链表 polyb 中的结点插入 到单链表 polya 中),因此 “和多项式“中的结点无需另生成。 为实现处理,设 p、q 分别指向单链表 polya 和 polyb 的当前项,比较 p、q 结点的指数项,由此得到下列运算规则:
一元多项式方程的根与系数之间的关系
![一元多项式方程的根与系数之间的关系](https://img.taocdn.com/s3/m/bb8bde9848649b6648d7c1c708a1284ac8500507.png)
一元多项式方程的根与系数之间的关系近年来,数学领域一元多项式方程的根与系数之间的关系备受重视。
一元多项式方程是指仅含有一个未知数的多项式方程,其一般形式可表示为:\[a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0\]其中,\(a_n, a_{n-1}, ..., a_1, a_0\)为实数或复数,\(n\)为非负整数且\(a_n \ne 0\)。
研究一元多项式方程的根与系数之间的关系,不仅可以帮助我们更好地理解方程的性质和解的方式,而且对实际问题中的数学建模具有重要意义。
本文将从多个方面探讨一元多项式方程的根与系数之间的关系。
一、一元多项式方程的根的概念及性质1.1 根的定义一元多项式方程\(a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0\)中,如果\(x = \alpha\)满足该方程,则称\(x = \alpha\)为该方程的一个根。
1.2 根的性质对于一元多项式方程\(a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0\),其根具有以下重要性质:1)方程的n个复数根上线性空间内独立;2)根与系数之间存在着多项式关系;3)根与系数之间的关系为特征根与特征值之间的关系。
二、一元多项式方程的根与系数之间的关系2.1 根与系数的关系定理根与系数之间的关系定理是指一元多项式方程的根与系数之间存在着特定的关系,并且可以通过根与系数之间的关系来推断根的性质。
若一元多项式方程\(a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0\)有n个复数根\(x_1, x_2, ..., x_n\),则有以下关系成立:\[a_n = 1\]\[a_{n-1} = -(x_1 + x_2 + ... + x_n)\]\[a_{n-2} = x_1x_2 + x_1x_3 + ... + x_{n-1}x_n\]\[\vdots\]\[a_0 = (-1)^n x_1x_2...x_n\]其中,\(a_n, a_{n-1}, ..., a_0\)为一元多项式方程的系数。
§1.2_一元多项式的定义和运算
![§1.2_一元多项式的定义和运算](https://img.taocdn.com/s3/m/2177782fdd36a32d737581d2.png)
an 0, bm 0 anbm 0
f x g x 0
f x g x nm
多项式乘法没有零因子。
第一章 多项式
推论1:若 f x g x 0 f x 0或g x 0 证:若f=0或g=0,则必有fg=0。 反之,若 f x 0, g x 0
第一章
多项式
定义2: f x , g x 是两个多项式, f x g x
最高次项, 亦称为首项。 除系数为0的项之外,同次项的系数都相等。 多项式的表法唯一。 方程 a0 a1x an xn 0 是一个条件等式而不是 两个多项式相等。 定义3: 设 f x a0 a1x
k 相乘积的和作为 x 的系数。得:
k f x g x aib j x k 0 i j k 2 3 2 例1.2.3:设 f x 3x 4x 5, g x x 2x x 1
nm
f x g x x 5x 5x 6
f x n.
第一章 多项式
an xn , an 0,
非负整数n称为 f x 的次数,记为:
2 f x 3 x 2x 1, f x 2, 例1.2.2:
f x 3, f x 0
零次多项式:次数为0的多项式即非零常数。 零多项式:系数全为0的多项式。对零多项式不 定义次数,因此,在谈论多项式的次数时,意味着这 个多项式不是零多项式。 首一多项式:首项系数为1的多项式。 二、多项式的运算 定义4: 设 f x a0 a1x
第一章 多项式
一元多项式的定义
![一元多项式的定义](https://img.taocdn.com/s3/m/2dc58ee108a1284ac850433d.png)
as bo as 1b1 a1bs 1 a0bs
ai b j . i js
The Advanced Algebra
Dr. Zhi hui Li
4.多项式运算性质
1) f ( x ) g( x ) 为数域 P上任意两个多项式,则
f ( x ) g( x ), f ( x ) g( x ) 仍为数域 P上的多项式.
Dr. Zhi hui Li
乘法:
f ( x ) g ( x ) anbm x n m (anbm 1 an1bm ) x n m 1
(a1b0 aob1 ) x a0b0
n m
s 1 i j s
( ai b j ) x i
注: f ( x ) g( x ) 中s 次项的系数为
a1 x a0
其中 a0 , a1 , , an P , 称为数域P上的一元多项式. 常用 f ( x ), g ( x ), h( x ) 等表示.
The Advanced Algebra
Dr. Zhi hui Li
注: 多项式 f ( x ) an x an1 x
2 2 2 2
但 ( f ( x )) 为偶数. x( g ( x ) h ( x )) f ( x ),
2 2 2 2
这与已知矛盾.
故 f ( x ) 0,
2 2 g ( x ) h ( x ) 0. 从而
The Advanced Algebra
Dr. Zhi hui Li
3.多项式的运算:加法(减法)、乘法
f ( x ) a n x n a n 1 x n 1 a1 x a0 a i x i ,
一元多项式
![一元多项式](https://img.taocdn.com/s3/m/35de33ea7375a417876f8fb5.png)
所以 r2 x就是 f x与 gx的最大公因式:
f x, gx x 3
定理 1.4.2
若dx 是 P[x] 的多项式 f x与 gx的最大公因 式,那么在 P[x] 里可以求得多项式 ux与vx ,
二、教学目的
1.掌握一元多项式整除的概念及其性质。 2.熟练运用带余除法。
三、重点、难点
多项式的整除概念,带余除法定理
1.3.1 多项式的整除概念
设P是一个数域. P[x]是P上一元多项式.
定义1
设f x, gx P[x] ,如果存在 hx P[x] ,使得
f x gxhx,则称 gx整除 f x ,记为
3
虽然 a1,b1, a2,b2 Z,
不一定属于Z ,所以
不是数域.
a1aa不222 一33bb定122b2属, a于a2b221Z(3ab132b2)2
,因此 Z (
3)
定理1.1 任何数域都包含有理数域 Q. (有理数域是最小的数域).
定理1.2 若数域 P R,则P C. (实数域和复数域之间没有其它的数域).
则 (a1 a2) b1 b2 2 Q 2 ,
a1 b1 2 a2 b2 2
(a1a2 2b1b2 ) a1b2 a2b1 2 Q 2
显然,Q Q( 2) R.
再设 a2 b2 2 0, 即 a2,b2 不全为零,从
而 a2 b2 2 0 , a1 b1 2 a1 b1 2 a2 b2 2 a2 b2 2 a2 b2 2 a2 b2 2
a 叫做 i 次项, i叫做 i 次项的系数.
注 2:在一个多项式中,可以任意添上或去掉一些系
数为零的项;若是某一个i次项的系数是1 ,那 么这个系数可以省略不写。
一元稀疏多项式以循环单链表按降幂排列
![一元稀疏多项式以循环单链表按降幂排列](https://img.taocdn.com/s3/m/c856ea8409a1284ac850ad02de80d4d8d15a0195.png)
一元稀疏多项式以循环单链表按降幂排列一元稀疏多项式是指只含有一种未知数的多项式,并且其中大部分系数为零。
在计算机科学和数学领域,如何高效地表示和计算一元稀疏多项式一直是一个重要的问题。
循环单链表作为一种数据结构,可以很好地解决这一问题。
本文将从深度和广度两个方面来探讨一元稀疏多项式以循环单链表按降幂排列的表示方法。
一、基本概念和原理1. 一元稀疏多项式的定义一元稀疏多项式是指形如P(x)=a0x^m0 + a1x^m1 + ... + anx^mn的多项式,其中ai为系数,mi为指数。
很显然,如果某些项的系数为0,那么这些项可以被省略,从而得到一元稀疏多项式。
2. 循环单链表的定义循环单链表是一种特殊的单链表,它的最后一个节点指向头节点,从而形成一个循环。
这种数据结构可以很好地表示具有环路特性的问题,如环形队列和循环链表。
二、一元稀疏多项式的表示在计算机中,一元稀疏多项式通常以循环单链表的形式进行表示。
每个节点表示多项式的一项,节点中包含系数和指数两个信息。
按降幂排列的循环单链表可以很好地反映多项式的次序关系,从而方便进行各种运算操作。
举例来说,对于多项式P(x)=3x^5 + 2x^3 - x^2 + 4的表示,可以使用如下的循环单链表结构:1. 指数为5,系数为32. 指数为3,系数为23. 指数为2,系数为-14. 指数为0,系数为4这样,通过循环单链表的方式,可以直观地展现出多项式的结构和内容。
三、如何操作循环单链表表示的一元稀疏多项式1. 多项式的相加当需要对两个一元稀疏多项式进行相加时,可以直接对对应指数的节点进行系数相加。
如果某一项在另一个多项式中不存在,则直接将这一项插入到结果多项式的对应位置。
2. 多项式的相乘多项式的相乘需要将一个多项式的每一项依次与另一个多项式的所有项进行相乘,并将结果按指数相加合并。
这个操作需要对循环单链表进行多次插入和删除操作,而循环单链表的特性能够很好地支持这种需求。
一元多项式的定义
![一元多项式的定义](https://img.taocdn.com/s3/m/c58862a40029bd64783e2c65.png)
2 2 从而 g ( x ) + h ( x ) = 0.
The Advanced Algebra
Dr. Zhi hui Li
又 f ( x ), g ( x ) 均为实系数多项式 , 从而必有 g ( x ( x ) = g ( x ) = h( x ) = 0.
an x n + an−1 x n−1 + L + a1 x + a0
其中 a0 , a1 , ⋅ ⋅ ⋅, an ∈ P , 称为数域P上的一元多项式. 称为数域 上的一元多项式. 上的一元多项式 常用 f ( x ), g( x ), h( x ) 等表示. 等表示.
The Advanced Algebra
Dr. Zhi hui Li
f ( x ) = an x n + an−1 x n−1 + L + a1 x + a0 中, 注: 多项式 ai x i 称为 次项,ai 称为 次项系数. 称为i次项 次项, 称为i次项系数 ① 次项系数.
a 首项, ② 若 an ≠ 0, 则称 an x 为 f ( x )的首项, n 为首项
The Advanced Algebra
Dr. Zhi hui Li
2.多项式的相等 .
的同次项系数全相等, 若多项式 f ( x ) 与 g ( x ) 的同次项系数全相等,则 相等, 称 f ( x ) 与g ( x ) 相等,记作f ( x ) = g ( x ).
f ( x ) = an x n + an−1 x n−1 + L + a1 x + a0 , 即,
一元多项式计算与链表 概述及解释说明
![一元多项式计算与链表 概述及解释说明](https://img.taocdn.com/s3/m/df1acb48f02d2af90242a8956bec0975f565a47a.png)
一元多项式计算与链表概述及解释说明1. 引言1.1 概述在计算机科学和数学领域,一元多项式计算是一个重要的问题。
一元多项式是指包含一个未知数的多项式,它由各个项的系数和指数决定。
而链表作为一种常见的数据结构,具有灵活性和高效性,可以应用于各种问题的解决中。
1.2 文章结构本文将首先对一元多项式计算进行介绍,包括多项式的定义与表示方法、多项式加法运算以及多项式乘法运算。
然后,我们将详细探讨链表的概念、特点以及链表在一元多项式计算中的应用。
接下来,将通过实例演示来解释一元多项式计算,并说明链表结构在多项式计算中的优势。
最后,我们将分享解决一元多项式计算问题时相关的考虑事项与技巧,并对研究内容进行总结,并展望其可能的拓展方向。
1.3 目的本文旨在向读者介绍和解释一元多项式计算与链表之间的关系,并探讨链表在该问题中所起到的作用。
通过深入了解一元多项式及其计算方法,以及链表数据结构原理和应用场景,读者将能够更好地理解一元多项式的计算过程,并了解链表在提高计算效率和灵活性方面的重要作用。
同时,通过分享解决问题时的考虑事项与技巧,本文还有助于读者在实际应用中更好地利用链表结构来解决一元多项式计算问题。
2. 一元多项式计算:2.1 多项式定义与表示方法:一元多项式是由若干个单项式构成的代数表达式。
一个单项式由系数和指数组成,通常可以表示为a*x^b的形式,其中a为系数,x为未知数,b为指数。
而一个多项式则是由多个单项式相加得到。
在计算机中,可以用数组或链表来表示一元多项式。
使用数组时,每个元素可以存储一个单项式的系数和指数;而使用链表时,则可以将每个单项式作为节点存储在链表中。
2.2 多项式加法运算:两个多项式相加时,需要将同一个指数的单项式进行合并并对系数进行相加。
具体步骤如下:- 将两个多项式中所有的不同指数提取出来形成一个集合。
- 遍历集合中的每个指数,在两个多项式中查找该指数对应的单项式。
- 如果某个多项式不存在该指数的单项式,则该指数对应的系数为空。
数据结构一元多项式的运算-无删减范文
![数据结构一元多项式的运算-无删减范文](https://img.taocdn.com/s3/m/6de4f036591b6bd97f192279168884868762b81c.png)
数据结构一元多项式的运算数据结构一元多项式的运算简介一元多项式是数学中常见的概念,用于表示一个变量的多项式表达式。
在计算机科学中,经常需要对一元多项式进行各种运算,如加法、减法、乘法等。
为了实现这些运算,可以使用数据结构来存储和操作一元多项式。
本文将介绍一元多项式的数据结构和常见的运算方法,并给出相应的代码示例。
数据结构一元多项式可以用链表来表示。
每个节点包含两个部分:系数(coefficient)和指数(exponent)。
系数表示该项的权重,指数表示该项的幂次。
链表的每个节点按照指数的升序排列。
以下是一个一元多项式的链表表示的示例:```markdown1.2x^2 + 3.7x^4 - 0.5x^3 -2.1x^1 + 4.0``````markdownNode 1: coefficient=1.2, exponent=2Node 2: coefficient=3.7, exponent=4Node 3: coefficient=-0.5, exponent=3Node 4: coefficient=-2.1, exponent=1Node 5: coefficient=4.0, exponent=0```运算方法加法运算两个一元多项式相加可以按照如下步骤进行:1. 遍历两个链表的节点,分别取出当前节点的系数和指数。
2. 如果两个节点的指数相等,将系数相加,并将其作为结果链表的节点。
3. 如果两个节点的指数不相等,将指数较小的节点插入结果链表,并继续遍历指数较大的节点。
4. 当其中一个链表遍历完后,直接将另一个链表的节点插入结果链表。
以下是加法运算的代码示例:```pythondef addPolynomials(p1, p2):result = Nonetl = Nonewhile p1 is not None and p2 is not None:if p1.exponent == p2.exponent:coef_sum = p1.coefficient + p2.coefficient if coef_sum != 0:node = Node(coef_sum, p1.exponent)if result is None:result = tl = nodeelse:tl.next = nodetl = nodep1 = p1.nextp2 = p2.nextelif p1.exponent > p2.exponent:node = Node(p1.coefficient, p1.exponent) if result is None:result = tl = nodeelse:tl.next = nodetl = nodep1 = p1.nextelse:node = Node(p2.coefficient, p2.exponent) if result is None:result = tl = nodeelse:tl.next = nodetl = nodep2 = p2.nextwhile p1 is not None:node = Node(p1.coefficient, p1.exponent)if result is None:result = tl = nodeelse:tl.next = nodetl = nodep1 = p1.nextwhile p2 is not None:node = Node(p2.coefficient, p2.exponent) if result is None:result = tl = nodeelse:tl.next = nodetl = nodep2 = p2.nextreturn result```减法运算减法运算可以看作加法运算的特殊情况,即将第二个多项式的系数取负数,再进行加法运算。
一元多项式
![一元多项式](https://img.taocdn.com/s3/m/c5090d5603768e9951e79b89680203d8ce2f6a78.png)
一元多项式
一元多项式是最简单的一种多项式。
只含一个变数字母且各项最高次数为1的多项式称为一元一次多项式。
它的标准形式是ax+b (a≠0),式中a,b为常数。
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程最早见于约公元前1600年的古埃及时期。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。
16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。
1859年,数学家李善兰正式将这类等式译为一元一次方程。
一元多项式的定义
![一元多项式的定义](https://img.taocdn.com/s3/m/749e4e20c4da50e2524de518964bcf84b8d52d57.png)
一元多项式的定义一元多项式是数学中常见的一个概念,也是代数学中的基础内容之一。
它由一个变量和系数构成,变量通常用字母表示,系数可以是实数或复数。
一元多项式的一般形式为:P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_2x^2 + a_1x + a_0其中,P(x)表示一元多项式,a_n, a_{n-1}, ..., a_0表示系数,x表示变量,n表示多项式的次数。
一元多项式的次数是指最高次项的次数,而系数则表示每个变量的权重。
一元多项式的次数可以是非负整数,次数为0的多项式称为常数。
例如,P(x) = 3x^2 + 2x - 1是一个次数为2的一元多项式。
一元多项式具有以下特性:1. 线性叠加性:任意两个一元多项式相加或相减,仍然是一个一元多项式。
例如,P(x) = 2x^2 + 3x + 1和Q(x) = 4x - 2相加得到R(x) = 2x^2 + 7x - 1。
2. 系数相等性:两个一元多项式在相同的次数上的系数相等,才能认为这两个多项式相等。
例如,P(x) = 2x^2 + 3x + 1和Q(x) = 2x^2 + 3x + 1是相等的一元多项式。
3. 零多项式:所有系数都为零的一元多项式称为零多项式,记作0。
例如,P(x) = 0是一个零多项式。
4. 一元多项式的加法和减法:一元多项式的加法和减法可通过对应项的系数相加或相减得到。
例如,P(x) = 2x^2 + 3x + 1和Q(x) = 4x - 2相加得到R(x) = 2x^2 + 7x - 1,相减得到R(x) = 2x^2 - x + 3。
5. 一元多项式的乘法:一元多项式的乘法是指将两个多项式的每一项进行相乘,并将同次幂的结果合并。
例如,P(x) = (x + 1)(x - 2)展开得到P(x) = x^2 - x - 2。
6. 一元多项式的除法:一元多项式的除法是指将一个多项式除以另一个多项式,得到商式和余式。
多项式的解法公式
![多项式的解法公式](https://img.taocdn.com/s3/m/d73b4e331fb91a37f111f18583d049649b660e89.png)
多项式的解法公式一、一元一次多项式(形如ax + b = 0,a≠0)1. 解法公式。
- 移项:将含x的项移到等号一边,常数项移到等号另一边,得到ax=-b。
- 求解x:x =-(b)/(a)。
二、一元二次多项式(形如ax^2+bx + c = 0,a≠0)1. 解法公式。
- 求根公式:x=frac{-b±√(b^2)-4ac}{2a}。
- 当b^2-4ac>0时,方程有两个不同的实数根。
- 当b^2-4ac = 0时,方程有两个相同的实数根(即一个实数根)。
- 当b^2-4ac<0时,方程没有实数根,在复数范围内有两个共轭复数根。
三、二元一次多项式方程组(形如a_1x + b_1y=c_1 a_2x + b_2y=c_2)1. 解法公式。
- 代入消元法。
- 由第一个方程a_1x + b_1y=c_1解出x(或y),例如x=(c_1 - b_1y)/(a_1)(a_1≠0)。
- 将x=(c_1 - b_1y)/(a_1)代入第二个方程a_2x + b_2y=c_2,得到关于y的一元一次方程,然后求解y。
- 把求出的y值代入x=(c_1 - b_1y)/(a_1)求出x。
- 加减消元法。
- 若要消去x,则给第一个方程乘以a_2,给第二个方程乘以a_1,得到a_1a_2x + a_2b_1y=a_2c_1 a_1a_2x + a_1b_2y=a_1c_2。
- 两式相减(a_1a_2x + a_2b_1y)-(a_1a_2x + a_1b_2y)=a_2c_1 - a_1c_2,即(a_2b_1 - a_1b_2)y=a_2c_1 - a_1c_2,然后求解y。
- 将y的值代入原方程组中的一个方程求解x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}//AddPolyn int
compare(Polyn a,Polyn b){ if(a&&b){
if(!b||a>expn>b>expn) return 1;
else if(!a||a>expn<b>expn) return12 -
1.2.5 一元多项式的乘法运算
感谢下载
13
1.3 基本操作函数说明
5
但对于形如
sx13x100 2 0x 0 20000
的多项式,上述表示方法是否合适 ?
然而,在通常的应用中,多项 式的次数可能很高变化很大,使得顺 序储存结构的最大长度很难确定。
例这如时上,题我要们用可2以00采01用的单线性表来
表链示表,来而实表现中。只在有单三链个表非中零的元每素,这
个结点有两个数感谢据下载 项(系数项
感谢下载
14
1.4 源程序代码
一元多项式 源程序.doc
感谢下载
15
1.5 运行结果
感谢下载
16
感谢下载
17
谢谢
感谢下载
18
针
Polyn qa=pa-
>next;
Polyn qb=pb-
感谢下载
qc=(Polyn)malloc (siz;
switch(compare1(1 q
qc->expn=qa>expn;
qa=qa->next; qb=qb->next; break; } case -1:{ qc->coef=qb>coef; qc->expn=qb>expn;
一元多项式的表达与简单运算
学生:刘霖 袁蕊 李兴容
感谢下载
1
1.1设计内容:
感谢下载
2
感谢下载
3
感谢下载
4
1.2 数据结构设计 1.2.1 一元多项式的表示及相加
pnxp0p1x1p2x2pnxn
nm qm (x)q0q1x1q2x2qm xm
那么Rn pnqm 用顺序储存结构表示
+
=
感谢下载
r=headc; 感谢下载
9
s->coef=x;
}
s->exp=p->exp; while(p!=NULL)
r->next=s;
{s=(pnode
r=s;
*)malloc(sizeof(pn
}
ode));
q=q->next;p=p- s->coef=p-
>next;
>coef;
}
s->exp=p->exp;
else if(p-
r->next=s;
>exp<q->exp)
r=s;
{s=(pnode
p=p->next;
*)malloc(sizeof(p 感谢下载 }
10
1.2.4一元多项式的减法运算
算法:
Polyn
AddPolyn(Polyn
pa,Polyn pb){//求
解并建立多项式
a+b,返回其头指
6
那么
感谢下载
7
1.2 .2 数据结构设计
感谢下载
8
1.2.3 一元多项式的加法运算
算法:
pnode * add(pnode *heada,pnode
*headb)
{pnode *headc,*p,*q,*s,*r;
float x;
p=heada; q=headb;
headc=(pnode
*)malloc(sizeof(pnode));