八年级下册《一次函数》ppt课件1

合集下载

《一次函数》PPT(第一课时)

《一次函数》PPT(第一课时)
(1)有人发现 , 在20~25 ℃时蟋蟀每分钟鸣叫次数
c与温度t(℃)有关 ,即c的值约是t的7倍与35的差 .
(1)c=7t-35 2 0 ≤ t ≤ 2 5
自变量t的取值范围是多 少?
思考:
下列问题中 , 变量之间的对应关系是函数关系吗 ? 如果是 , 请写出函数解析式 , 这些函数解析式有哪 些共同特征 ?
画函数图象有哪些步 骤来着?
x
y=-6x y=-6x+5
… -2 -1 0 1
2…
… 12 6 0 -6 -12 …
… 17 11 5 -1 -7 …
. y=-6x
y
.8 6
4
-3
-2
.. 2
-1
1
2
x
3
-2
.. -4
y=-6x+5
-6
-8
相同点: 1.这两个函数的图象形状都是
直线
, 并且倾斜程度 相同 .
y随x的增大 而增大
y随x的增大 而减小
y
二,三,
0 x 四象限
函数图象从 左往右下降 趋势
y随x的增大 而减小
人教版数学八年级下册
感谢您的观看
1
2
x
3
-8
y=-6x-4
你知道正比例函数图象与一次函数 图象的关联了么?
它可以看作由直线y=kx平移∣ b∣个长度单 位而得到。 当b>0时,向上平移;
当b<0时,向下平移
一次函数图象 图像经 图象变化 y与x的关
过象限 趋势

当 k<0
b<0
y=y -6x-8与y=-6x-4
这的0 k两与个xb函二四有数,象什解三限么,析共式从右下同里左图降往象趋

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500

八年级数学下册《19.2.2一次函数(一)》课件

八年级数学下册《19.2.2一次函数(一)》课件

数形结合试一试吧
看图象,确定一次函数y=kx+b(k≠0)中k,b的符号。
y
y
y
o
x
o
x
o
x
k<0
k>0
k<0
b<0
b>0
b=0
思考
已知Байду номын сангаас次函数 y=kx+b (k≠0);
①如果函数的图象只经过第二、三、四象 限,请你试着确定k和b的符号;
k<0 ,b<0
②如果函数的图象不经过第一象限,请你 试着确定k和b的符号。
抢答:下列函数关系式中,那些是一次函数? 哪些是正比例函数?
(1)y= - x - 4
它是一次函数, 不是正比例函数。
(2)y=x2
它不是一次函数, 也不是正比例函数。
(3)y=2πx
1 (4)y= ——
x
它是一次函数, 也是正比例函数。
它不是一次函数, 也不是正比例函数
应用拓展
若y=(m-2)x +5-m是一次函数. 求m满足的条 件是__m__≠_2___.若此函数是正比例函数,则 m的值为___m__=_5___.
k<0 ,b≤0
一次函数的图象
直线y=2x-3可以由直线y=2x经过 向__上_平__移_2_个__单__位_而得到; 直线y=-3x+2可以 由直线y=-3x经过__向_下__平_移__3_个__单_位___而得 到;直线y=x+2可以由直线y=x-3经过 __向__下__平__移_5_个__单__位___而得到.
正比例函数的一般式:
____y=_k_x_(k_是__常_数_,__k_≠__0_)___

19-2-2一次函数课件人教版八年级数学下册(共18张PPT)

19-2-2一次函数课件人教版八年级数学下册(共18张PPT)
限,
∴k<0,b>0,
故选C.

理解一次函数的性质
当k<0时,一次函数y=kx-k的图象不经过(
(A)第一象限
(B)第二象限
(C)第三象限
(D)第四象限
解:因为一次函数,k<0,而b>0(-k>0),
所以图像经过一、二、四象限,
故不进过第三象限,
选C.
)
什么叫一次函数?
一般地,形如y = kx + b(k, b 为常数, k ≠ 0)
值,从而可以确定函数的解析式。
y = kx ( b 为常数, k ≠ 0)
正比例函

观察与思考
画函数y=2x+1与y=2x-1的图象:
1.列表:
x
0
1
y=2x+1
1
3
y=2x-1
-1
1
x
0
1
y=-x+1
1
0
y=-x-1
-1
-2
y=2x+1(b>0)
y=-x+1(b>0)
y=-x-1
(b<0)
2.描点:
3.连线:
一次函数y=kx+b(k>0),y随x增大而增大;
y=-5x+50 (0≤ x ≤10)
问题
ห้องสมุดไป่ตู้

表示函数的三种方法:
列表法
海拔
x/km
气温
/℃
解析式法
… −2 −1
图像法
0
1
2 …
… −1 −4 −7 -10 -13 …
= −6 + 5
5 = −6 + 5

一次函数课件ppt

一次函数课件ppt
掌握如何根据直线的方程求解一次函数,并了解直线的性质。
一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

人教版八年级下册19.1一次函数ppt课件

人教版八年级下册19.1一次函数ppt课件
区别:一次函数有常数项, 正比例函数常数项为零。
联系:正比例函数是一种特殊的一次函数, 一次函数不一定是正比例函数。
练习:下列哪些函数是一次函数, 哪些又是正比例函数.k和b的值是?
( 1 ) y 3 x 4 ; 是一次函数,k=-3,b=-4
(2)y 7 ;
不是
x
( 3 ) y 9 x ; 是正比例函数,也是一次函数
Y=2X
…. -4 -2 0
2 4 ….
Y=2X+1 …. -3 -1 1 3 5 ….
2、描点:分别以表中的X作为横坐标,Y作为纵坐 标,得到两组点,写出这些点(用坐标表示).再画 一个平面直角坐标系,并在坐标系中画出这些点.
这两个函数的图象 形状都是 直线 ,
8 YY=2X+1
7
6
Y=2X
并且倾斜程
y
解: x 0 -1/2
4
y =2x+1 1 0
3
y =2x+1
x
0 1/2
2
y=-2x+1 1 0
1 (0,1)
(-1/2,0)
(1/2,0)
x
-4 -3 -2 -1 o 1 2 3 4 -1
-2 y= -2x+1
一次函数y=kx+b (k‡0)的性质: 当k>0时,y随x的增大而增大;
y
x
一次函数y=kx+b (k‡0)的性质: 当k<0时,y随x的增大而减小.
所以一次函数 y = k x + b 经过 (- —b , 0) 点.
精选ppt课件
k
24
你会画出函数 y=2x-1与 y=-0.5x+1 的图象吗?

初二数学《一次函数》课件

初二数学《一次函数》课件

进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。

一次函数的图象和性质(第1课时)PPT课件

一次函数的图象和性质(第1课时)PPT课件

7.若一次函数y=kx+4的图像经过点(1,2).
(1)求k的值;
(2)在所给直角坐标系中画出此函数的图像;
(3)根据图像回答:当x
时,y>0.
解析:(1)把点(1,2)代入函数解析式,利用方程来求得k的值;(2)由 两点确定一条直线进行作图;(3)根据图像解答即可.
解:(1)依题意,得2=k+4,解得k=-2,即k的值是-2.
A.x<-2
B.x>-2
C.x<2
D.x>2
解析:由图像可得一次函数的图像与x轴的 交点为(-2,0),当y<0时,x<-2.故选A.
6.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若
该水库的蓄水量v(万米3)与降雨的时间t(天)的关系如图所示,
则下列说法正确的是
( B)
A.降雨后,蓄水量每天减少5万米3
达成共识. 1.图像为一条直线. 2.由画图过程,知一次函数y=2x-1的图像是由所有满足关系式y=2x-1 的点(x,y)连线而得到的.因此,凡满足关系式y=2x-1的x,y的值所对应 的点都在一次函数y=2x-1的图像上.

因为一次函数的图像是一条直线,所以也把一次函数y=kx+b 的图像称为直线y=kx+b.
为(0,2),与x轴的交点为
2 3
,0
.故选C.
4.函数
yk x
的图像经过点(1,-1),则函数y=kx-2的图像是
图中的
(A)
解析:∵
y
k x
的图像经过点(1,-1),∴k=xy=-1,∴函数解析式
为y=-x-2,所以函数图像经过(-2,0)和(0,-2).故选A.

初二数学《一次函数》ppt课件

初二数学《一次函数》ppt课件
直线y=3x+2还经过第二象限
倾斜度一样(平行)
都经过一、三象限
直线 还经过第二象限
b相同
k不同
都与y轴相交于点(0,2)
都经过一、二、三象限
倾斜度不一样(不平行)
1
-1
2
3
4
5
-4
-3
-2
-5
1
2
3
4
5
-1
-2
-3
-4
-5
0
观察:这些函数的图像 有什么特点?
x
y
在同一个平面直角坐标系中画出下列函数的图象: 1. 2. y=3x y=3x+2
y
x
o
-4
2
7.一个函数图像过点(1,2),且y随x增大而增大,则这个函数的解析式是___
B
如图所示,三峡工程在6月1日至6月10日下阐蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图像中,能正确反映这10天水位h(米)随时间t(天)变化的是( )
从图中可以看出: 1.当一次函数的k值相等时,直线互相平行.
2.当一次函数的b值相等时,直线在y轴交于一点.
特殊位置关系—平行
y=3x
y=3x+2
观察函数y=3x和y=3x+2的图象,我 们知道:它们是互相平行的,所以 ,其中 一条直线可以看作是由另一 条直线平移得到的。 你能说出直线y=3x+2是由直线y=3x 向____平移____个单位得到的吗?
3.一次函数y=x+2的图像不经过第____象限
EX
5.一次函数 y 1=kx+b与y 2=x+a的图像如图所示,则下列结论(1)k<0;(2)a>0;(3)当x<3时,y 1<y 2中,正确的有____个

人教版八年级数学下册课件:19.2.2一次函数(共17张PPT)

人教版八年级数学下册课件:19.2.2一次函数(共17张PPT)
1.是含有两个变量的等式;
2.自变量和因变量的指数都是一次;
3.自变量的系数不为0 。
一次函数定义
一般地,形如y=kx+b(k,b为常数,k≠0)的形
式,则称 y是x的一次函数(x为自变量,y为因 变量) 特别地,当b=0时,称y= kx是x的正比例函数
函数是一次函数 函数是正比例函数
解析式为:y=kx+b(k,b为常数,k≠0) 解析式为:y=kx (k≠0)
例1:下列函数关系式中,哪些是一次函
数?哪些是正比例函数?
(1) y x 4
它是一次函数, 不是正比例函数.
(2) y x2
它不是一次函数, 也不是正比例函数.
(3) y 2x
它是一次函数, 也是正比例函数.
(4) y 1 x
它不是一次函数, 也不是正比例函数.
(5) y 4x 1 2
一次函数
回顾与思考 1、什么叫函数?
在某个变化过程中,有两个变量x和 y,如果给定一个x值,相应地就确定一个y 值,那么我们称y是x的函数,其中x是自变 量,y是因变量.
情景问题1
• 情境1:在某一高速公路上,老师乘坐的 车以100千米/小时的速度匀速行驶,在这 一段汽车行驶的过程中
• (1)你能找出其中的常量和变量;
(4)高速列车以 300 km/h的速度驶离 A 站,列车的路程 y (km)随行驶时间 x (h) 变化而变化;
(5)如图, A、B两站相距 200 km,一列火车从 B 地出发以 120 km/h 的速度驶向C站,火车离A 站的路 程 y (km)随行驶时间 t (h)变化 2)x3 m n 2 m,n为何值时, 是一次函数?m,n为何值时,是正比例函数?
通过这节课的学习, 有哪些收获? 有哪些注意点和大家分享? 你还有什么困惑?

人教版八年级数学下册19.2.2一次函数(1)(29张PPT)

人教版八年级数学下册19.2.2一次函数(1)(29张PPT)

法是,以厘米为单位量出身高值 h ,再减常数105,所得
差是G 的值;
G=h-105
问题2 下列问题中,变量之间的对应关系是函数关
系吗?如果是,请写出函数解析式,这些函数解析式有
哪些共同特征?
(3)某城市的市内电话的月收费额 y(单位:元)包
括月租费22元和拨打电话 x min 的计时费(按0.1元/min
解:(1)当m=1.5时,此函数是正比例 函数。
(2)当m ≠ 2时,此函数是一次函数。
10、梯形的上底长x,下底长15,高8; (1)写出梯形的面积y与上底x的关系式,是一次
函数吗? (2)当x每增加1时, y是如何变化的? (3)当x=8时, y等于多少?此时y的意义是什么?
x
8
15
解:(1)y=8(x+15)/2=4x+60; 此函数是一次函数; (2)y增加4; (3)x=8,y=92; 此时的意义是梯形面积是92。
(2)求t的取值范围; (3)求3.5 s时,小球的速度; (4)当t为何值时,小球的速度为16m/s.
解:(1)小球速度v与时间t之间的函数解 析式为:v=2t;
(2)t的取值范围为:2≤t≤20; (3)当t=3.5 s时,小球的速度v=7m/s; (4)由v=16,得2t=16
t=8.
当t=8s时,小球的速度为16m/s
联系: 正比例函数是特殊的一次函数, 一次函数不一定是正比例函数。
典型例题
例1.下列函数关系式中,哪些是一次函数? 哪些是正比例函数?
(1)y=2πx
(3)y 1 x
(2)y=-x-4 (4)y=x2 -3x
(5) y=8x2+x(1-8x)
典型例题

一次函数(第1课时)人教数学八年级下册PPT课件

一次函数(第1课时)人教数学八年级下册PPT课件
2
(3)∵ S 1 AD BC 1 3 x x 3 x2,
2
22
4
即 S 3 x2, ∴S不是x的一次函数.
4
课堂小结
一次函数 的概念及 简单应用
一次函数 的概念
形式:y=kx+b(k≠0) 特别地,当b=0时, y=kx(k≠0)是正比例函数
一次函数的简单应用
感谢您的聆听
2
h AD AB2 BD2 x2 1 x2 3 x,
4
2
即 h 3 x.
2
∴h是x的一次函数,且 k 3 ,b 0.
2
B DC
课堂检测
(2)当 h 3 时,求x的值. (3)求△ABC的面积S与x的函数解析式.S是x的一次函数吗?
解: (2)当 h 3 ,有 3 3 x .解得x=2.
(2)当x=Βιβλιοθήκη .5时, y=3×2.5 - 9= -1.5.
课堂检测
拓广探索题
如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的一次函数吗?
如果是,请指出相应的k与b的值.
A
解: (1)∵BC边上的高AD也是BC边上的中线,
∴BD= 1.x 在Rt△ABD中,由勾股定理,得
一次函数的特点如下:
(1)解析式中自变量x的次数是 1 次;
(2)比例系数 k≠0

(3)常数项:通常不为0,但也可以等于0.
探究新知
【讨论】一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数 是正比例函数. (2)正比例函数是一种特殊的一次函数.
(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位: ℃)有关,即c的值约是t的7倍与35的差.

人教版数学八年级下册《一次函数》PPT课件

人教版数学八年级下册《一次函数》PPT课件

A.1
B.2
C.3
D.4
(来自《典中点》)
知1-练
5 已知y=(m-3)x|m|-2+1是y关于x的一次函 数,则m的值是( A )
A.-3
B.3
C.±3
D.±2
(来自《典中点》)
知1-练
6 下列说法正确的是( A ) A.正比例函数是一次函数 B.一次函数是正比例函数 C.对于变量x与y,y是x的函数,x不是y的函数 D.正比例函数不是一次函数,一次函数也不是 正比例函数
2
(3)因为y=3x2-x(3x-2)=2x,k=2,b=0,
所以它是一次函数,也是正比例函数.
(4)x2+y=1,即y=1-x2.因为x的指数是2,
所以x2+y=1不是一次函数.
(5)因为 y 3 中 3 不是整式,不符合y=kx+b的形式, xx
所以它不是一次函数.
(来自《点拨》)
总结
知1-讲
(来自《教材》)
归纳
知1-导
一次函数: 若两个变量x,y间的对应关系可以表示成
y=kx+b(k,b为常数,k≠0) 的形式,则称y是x 的一次函数.
(来自《教材》)
知1-讲
例1 下列函数中,哪些是一次函数,哪些又是正比例函
数?
(1)y=-2x2;(2)y= x 1 ; 2
(3)y=3x2-x(3x-2);
判断函数式是否为一次函数的方法: 先看函数式是否是整式的形式,再将函数式进行恒 等变形,看它是否符合一次函数解析式y=kx+b的 结构特征:(1)k≠0;(2)自变量x的次数为1;(3)常数 项b可以为任意实数.
(来自《点拨》)
知1-练
1 下列函数中哪些是一次函数,哪些又是正比例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的有( D ) (A )1个 ( B)2个 ( C)3个 ( D)4个
2.下列说法不正确的是( D )
(A)一次数不一定是正比例函数
(B)不是一次函数就一定不是正比例函数
(C)正比例函数是特定的一次函数
(D)不是正比例函数就不是一次函数
例二:已知函数y=(2-m)x+2m-3.求当m为何 值时, (1)此函数为正比例函数 (2)此函数为一次函数 3 解:(1)由题意, 得2m-3=0,m= 2 ,所以当 m= 时,函数为正比例函数y= (2)由题意得2-m≠0, m≠2,所以m≠2时, 此函数为一次函数
(3)写出关系式并验证。
一次函数定义
一般地,形如y=kx+b (k,b为常数,k≠0)的函 数,叫做一次函数
当b=0时,y=kx+b即y=kx,所 以说正比例函数是一种特殊的一 次函数.
例1:下列函数关系式中,哪些是一次 函数,哪些是正比例函数? (1)y=-x-4 它是一次函数,不是正比例函数。
解:由题意得,函数关系式为y=50-5t.
自变量x的取值范围是0≤t≤10
y是x的一次函数.
1.一次函数的定义 2.正比例函数是特殊的一次函数
3.对于日常生活中的实际问题,解题的 关键是把问题转化成数学问题,即构建 相应的数学模型,建立函数关系式,通过 题中条件做出答案. 4.注意和正比例函数进行对比和类比的 学习方法。
下列问题中变量间的对应关系可用怎样 的函数表示?这些函数有什么共同点?
(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫 次数c与温度t(单位:℃)有关,即c的值约 是t的7倍与35的差; 解:C=7t-35 (2)一种计算成年人标准体重G(单位:千克) 的方法是:以厘米为单位的身高值h减常数105, 所得的差是G的值; 解:G=h-105 (3)某城市的市内电话的月收费额y(单 位:元)包括:月租费22元,拨打电话x 分的计时费按0.01元/分收取; 解:y=0.01x+22 (4)把一个长10cm、宽5cm的长方形的长减 少xcm,宽不变,长方形的面积y(单位: cm2)随x的值而变化。 解:y= -5x+50
一次函数1
浏阳一中初二年级备课组
问题:某登山队大本营所在地的气温为 5℃.海拔每升高1 km气温下降6℃,登 山队员由大本营向上登高x km时,他们 所在位置的气温是y℃.试用解析式表示 y与x的关系.
解:y与x的函数关系式为y=-6x+5
当登山队员由大本营向上登高0.5km时, 他们所在位置的气温就是当x=0.5时函数 y=-6x+5的值,即y=-6×0.5+5=2℃
可以得出上面问题中的函数解析式分别为:
(1)c=7t-35
(2)G=h-105
(3)y=0.01x+22
(4)y=-5x+50
上面这些函数的形式都是自变量x的k(常数) 倍与一个常数的和.
根据实际问题写出一次函数关系式,要注意 以下几点: (1)尽可能多地取一些符合要求的有序数对; (2)观察这些数对中数值的变化规律;
解: (1)y与x之间的关系式为y=380-60x
(2)当x=2、5、8、11时y的值分别是 260、80、-100、-280. (3)在离地面13 km的高空处、气温是-280.
2 小明根据某个一次函数关系式填写了下 表:
x y -2 3 -1 0 1 1 0
其中有一格不慎被墨汁遮住了,想想看,该 空格里原来填的数是多少?解释你的理由。
(2)y=5x2+6它不是一次函数,也不是正比例函数。 (3)y=2πx 它是一次函数,也是正比例函数。 它不是一次函数,也不是正比例函数
(4) y

8 x
(5)y=-8x
它是一次函数,也是正比例函数。
x 1 y x ;s=60t;y=100-25x,其中表示 2
1 1.已知下列函数:y=2x+1; y x
2.一个小球由静止开始在一个斜坡向下滚 动,其速度每秒增加2米。 (1)求小球速度v随时间t变化的函数关系 式,它是一次函数吗? (2)求第2.5秒时小球的速度.
解: (1)由已知得,函数关系式为v=2t 是一次函数,
(2)当t=2.5秒时,v=5米/秒
3.汽车油箱中原有油50升,如果行驶中每 小时用油5升,求油箱的油量y(单位:升)随 行驶时间x(单位:时)变化的函数关系式, 并写出自变量x的取值范围.y是x的一次 函数吗?
3 2 3 x 2
练习
1.若函数y=(m-1)x|m|+m 是关于x的一次函数,试 求m的值. 2.要使y=(m-2)xn-1+n是 关于x的一次函数,n,m 应满足 , .
应用拓展
3:已知函数y=(m+1)x+(m2-1),当m取
什么值时, y是x的一次函数?当m取
什么值时,y是x的正比例函数?
1. 气温随着高度的增加而下降,下降的一般规律是 从地面到高空11km处,每升高1 km,气温下降 6℃.高于11km时,气温几乎不再变化,设地面的 气温为38℃,高空中xkm的气温为y℃. (1)当0≤x≤11时,求y与x之间的关系式? (2)求当x=2、5、8、11时,y的值。 (3)求在离地面13 km的高空处、气温是多少度? (4)当气温是一16℃时,问在离地面多高的地方?
相关文档
最新文档