二叉树.ppt

合集下载

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)
如下图所示的是二叉树及其对应的二叉链表实现示意图。
A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。

《二叉树模型》课件

《二叉树模型》课件

二叉树的分类
01 满二叉树
如果一个二叉树的每个节点都有两个子节点,则 该二叉树称为满二叉树。
02 完全二叉树
如果一个二叉树的最后一层是满的,且除了最后 一层外,其他各层的节点数达到最大,则该二叉 树称为完全二叉树。
03 平衡二叉树
平衡二叉树是一种特殊的完全二叉树,它的左右 子树的高度差不超过1。
二叉树的应用场景
详细描述
在n叉树模型中,每个节点可以拥有任意数 量的子节点,而不仅仅是两个。这种模型在 处理具有多个分支的数据结构时非常有用, 例如决策树和知识图谱。n叉树模型在搜索 、排序和数据压缩等领域有广泛应用。
B树模型
要点一
总结词
B树模型是一种自平衡的多路搜索树,用于数据库和文件系 统的索引。
要点二
详细描述
详细描述
二叉树的插入操作包括节点的添加和位置调整两个步骤。在添加节点时,需要找到合适 的位置将其插入到二叉树中,并保持二叉树的平衡性。位置调整是为了维护二叉树的性
质,确保每个节点的左子树和右子树的高度差不超过1。
插入操作的时间复杂度
总结词
插入操作的时间复杂度取决于具体的实现方式和数据结构。
详细描述
在平衡二叉树中,插入操作的时间复杂度为O(log n),其中n为二叉树中节点的数量。而在一般的二 叉树中,插入操作的时间复杂度可能达到O(n),因为可能需要遍历整棵树才能找到合适的位置插入新 节点。因此,选择合适的二叉树数据结构和算法对于提高插入操作的效率至关重要。
05
二叉树算法的应用
堆排序算法
平衡二叉树的性质:平衡二叉树具有以下性质:1)它的左右子树的高度差不超过1;2)它的左 子树和右子树都是平衡二叉树;3)它的左子树和右子树的节点数相差不超过1。

非递归中序遍历二叉树课件

非递归中序遍历二叉树课件
由于在非递归实现中,我们使用栈来 模拟递归的过程,因此遍历后的结果 与递归实现相同。
04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。

二叉树的遍历PPT-课件

二叉树的遍历PPT-课件

4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所

二叉树遍历稿ppt课件

二叉树遍历稿ppt课件
特别讨论
若已知先序(或后序)遍历结果和中序遍历结 果,能否“恢复”出二叉树?
例:已知一棵二叉树的中序序列和后序序列分别是 BDCEAFHG 和 DECBHGFA,请画出这棵二叉树。 分析:
①由后序遍历特征,根结点必在后序序列尾部(即A);
②由中序遍历特征,根结点必在其中间,而且其左部必全 部是左子树的子孙(即BDCE),其右部必全部是右子树的 子孙(即FHG);
知识拓展—利用遍历建立二叉树
如何把二叉树存入电脑内? 怎样利用遍历建立一棵二叉树?
例:将下面的二叉树以二叉链表形式存入计算机内。
A
B
C
D
E
F
考虑1:输入结点时怎样表示“无孩子”? 考虑2:以何种遍历方式来输入和建树?
字符串输完后应当再 以加先一序特遍殊历的最结为束合符适号, 用空格字符表示 让(如每$个),结因点为都能及时无 ‘无孩子’或指针 被法连惟接一到表位示。结束。 为空
三种遍历算法分析
1. 从前面的三种遍历算法可以知道:如果将print语句抹去, 从递归的角度看,这三种算法是完全相同的,或者说这三种 遍历算法的访问路径是相同的,只是访问结点的时机不同。
A
B
C
D
E
F
G
从虚线的出发点到终点的路径 上,每个结点经过3次。 第1次经过时访问,是先序遍历 第2次经过时访问,是中序遍历 第3次经过时访问,是后序遍历

的遍历方法。
二叉树遍历
➢理解二叉树
的应用。

的遍历算法
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人

金融工程二叉树定价课件

金融工程二叉树定价课件

35
u和d 的选取
已知股票的波动率,一种 u 和 d 的取法 ud = 1 u = e Dt d = e- Dt
若d>erT,则在期初借钱买入股票,到期股价即 使下跌到dS0,也要卖出股票,偿还银行借款, 到期获益为正。
16
重做例1
S0=20 V0=?
S0u = 22 Vu = 1
S0d = 18 Vd = 0
在Q的意义下,股价预期收益率是r,
即,EQ (ST) = puS0 +(1-p)dS0 = erTS0
= e–rT EQ (VT)
在Q的意义下,期权的 预期收益率是r
12
续(4)
在上面的定义中,p 为股票价格上升的概 率,q=1-p 为股价下降的概率。但它们不 是股价上升和下降的实际概率。
S0u
Vu
S0
V0=?
S0d
Vd
13
续(5)
EQ (ST) = puS0 +(1-p)dS0 = erTS0
21
Delta
注意,在[t, t+Δt]中,
Dt
=
Vu t +Dt Stu
-
Vt
d +Dt
- Std
Delta (D) 表示期权价格变化与标的资产价格变
化的比率。
D-对冲就是构造由标的资产和期权组成的无风 险投资组合
D的值是随时间变化的,这说明为保持一个无风 险对冲,需要定期调整所持有的标的资产数量。
为期权的风险中性价格。 风险中性世界:所有人对风险都是无差异
的,在这样的世界中,人们对风险不要求 补偿,所有证券的预期收益都是无风险利 率。
15
市场无套利 d < erT < u

第五章二叉树-.ppt

第五章二叉树-.ppt

1
2
3
4
5
6
7
图5.9 满二叉树
则称这样的二叉树为完全二叉树,图5.10(b)、 (c)是2棵非完全二叉树。满二叉树是完全二叉树的 特例。
1
2
3
45
6
(a)完全二叉树
1
2
3
4
5
7
(b)非完全二叉树
图5.10 完全二叉树
1
2
3
6
7
( c)非完全二叉树
完全二叉树的特点是:
(1)所有的叶结点都出现在第k层或k-1层。
n0,度为2的结点数为n2,则n0=n2+1。
设二叉树中度为1的结点数为n1,二叉树中总结点数 为N,因为二叉树中所有结点均小于或等于2,所以
有:N=n0+n1+n2
(5-1)
再看二叉树中的分支数,除根结点外,其余结点都
有一个进入分支,设B为二叉树中的分支总数,
则有:N=B+1。
由于这些分支都是由度为1和2的结点射出的,所有有: B=n1+2*n2 N=B+1=n1+2×n2+1 (5-2)
5.1 树的定义和基本术语
定义:树(Tree)是n(n>=0)个结点的有限集T,T为 空时称为空树,否则它满足如下两个条件:
(1)有且仅有一个特定的称为根(Root)的结点;
(2)其余的结点可分为m(m>=0)个互
不相交的子集T1,T2,T3…Tm,其中每 个子集又是一棵树,并称其为子树
(Subtree)。
第五章 二叉树
树型结构是一类重要的非线性结构。树型结 构是结点之间有分支,并且具有层次关系的结构, 它非常类似于自然界中的树。树结构在客观世界 国是大量存在的,例如家谱、行政组织机构都可 用树形象地表示。树在计算机领域中也有着广泛 的应用,例如在编译程序中,用树来表示源程序 的语法结构;在数据库系统中,可用树来组织信 息;在分析算法的行为时,可用树来描述其执行 过程。等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 初始化二叉树
• 合并两棵二叉树 二叉树的大部分运算都是围绕结点进行的
• 访问某个结点的左子结点、右子结点、父结点
• 访问结点存储的数据。
4.3 二叉树的抽象数据类型
二叉树结点抽象数据类型BinaryTreeNode是带有参数
T 的模板,T是存储在结点中的数据类型
每个元素结点都有leftchild()和rightchild()左右子结点结构
4.3 二叉树的抽象数据类型
public: BinaryTreeNode(); //缺省构造函数 BinaryTreeNode(const T& ele);//拷贝构造函数
//给定了结点值和左右子树的构造函数
BinaryTreeNode(const T& ele, BinaryTreeNode<T>* l, BinaryTreeNode<T>* r); T value() const;//返回当前结点的数据 //返回当前结点指向左子树
BinaryTreeNode<T>* leftchild() const;
4.3 二叉树的抽象数据类型
//设置当前结点的左子树 void setLeftchild(BinaryTreeNode<T>*) ; //设置当前结点的右子树
void setRightchild(BinaryTreeNode<T>*) ;
定该抽象数据类型的存储方式 template <class T> class BinaryTree { private: //二叉树根结点指针
பைடு நூலகம்
BinaryTreeNode<T>* root;
//从二叉树的root结点开始 //查找current结点的父结点 BinaryTreeNode<T>*
4.3 二叉树的抽象数据类型
扩充二叉树
二叉树的定义
二叉树由结点的有限集合构成:
或者为空集
或者由一个根结点及两棵不相交的分别称作这个根的左子树
和右子树的二叉树(它们也是结点的集合)组成
这是个递归的定义。二叉树可以是空集合,因此根
可以有空的左子树或右子树,或者左右子树皆为空
二叉树的五种基本形态
(a)空 (b)独根 (c)空右 (d)空左 (e)左右都不空
满二叉树
如果一棵二叉树的任何结点,或者是树叶,
或者恰有两棵非空子树,则此二叉树称作 满二叉树
完全二叉树
若一颗二叉树
最多只有最下面的两层结点度数可以小于2
最下面一层的结点都集中在该层最左边的若干位置上,
则称此二叉树为完全二叉树
在许多算法和算法分析中都明显地或隐含地用到完
全二叉树的概念
完全二叉树
template<class T> void BinaryTree<T>::PreOrderWithoutRecusion (BinaryTreeNode<T>* root) //非递归前序遍历二叉树或其子树
非递归前序周游二叉树
{ using std::stack; //使用STL中的stack stack<BinaryTreeNode<T>* > aStack; BinaryTreeNode<T>* pointer=root; while(!aStack.empty()||pointer){ if(pointer){ //访问当前结点
二叉树
主要内容
4.1 4.2 4.3 4.4 4.5 4.6 4.7
二叉树的概念 二叉树的主要性质
二叉树的抽象数据类型
周游二叉树 二叉树的实现 二叉搜索树 堆与优先队列
4.8
Huffman编码树
4.1 二叉树的概念
4.1.1
4.1.2
二叉树的定义及相关概念
满二叉树 完全二叉树
//删除二叉树或其子树
void DeleteBinaryTree(BinaryTreeNode<T>* root);
};
4.4 周游二叉树

周游
系统地访问数据结构中的结点。每个结点都正好被访问到一次。
周游一棵二叉树的过程实际上就是把二叉树的结点放入一个线性序列的 过程,或者说把二叉树进行线性化
4.4 周游二叉树

二叉树周游
4.4.1 深度优先周游二叉树 4.4.2 非递归深度优先周游二叉树 4.4.3 广度优先周游二叉树
深度优先周游二叉树
我们变换一下根结点的周游顺序,可以得到 以下三种方案:
① 前序周游(tLR次序):访问根结点;前 序周游左子树;前序周游右子树。 ② 中序周游(LtR次序):中序周游左子 树;访问根结点;中序周游右子树。 ③ 后序周游(LRt次序):后序周游左子 树;后序周游右子树;访问根结点。
4.2 二叉树的性质
2.满二叉树定理推论:一个非空二叉树的空子树(指针) 数目等于其结点数加1。 证明:设二叉树T,将其所有空子树换为树叶,记新 的
扩充满二叉树为T’。所有原来T的结点现在是T’的分
支结点。根据满二叉树定理,新添加的树叶数目等于T
结点个数加1。而每个新添加的树叶对应T的一个空子树。
扩充二叉树
当二叉树里出现空的子树时,就增加新的、特
殊的结点——空树叶
对于原来二叉树里度数为1的分支结点,在它下面增 加一个空树叶 对于原来二叉树的树叶,在它下面增加两个空树叶
扩充的二叉树是满二叉树,新增加的空树叶(外
部结点)的个数等于原来二叉树的结点(内部结 点)个数加1
扩充二叉树
扩充二叉树
因此T中空子树数目等于T中结点数加1。
4.2 二叉树的性质
3.任何一颗二叉树,度为0的结点比度为2的结点多一个
证明:设有n个结点的二叉树的度为0、1、2的结点数
分别为=n0,n1,n2,则 n = n0 + n1 + n2 (公式4.3) 设边数为e。因为除根以外,每个结点都有一条边进入,故 n = e + 1。由于这些边是有度为1和2的的结点射出的, 因此e = n1+ 2·n2,于是 n = e + 1= n1 + 2·n2 + 1 因此由公式(1)(2)得 (公式4.4)
4.2 二叉树的性质
二叉树的高度定义为二叉树中层数最大的叶结点的层数加1
二叉树的深度定义为二叉树中层数最大的叶结点的层数
4.3 二叉树的抽象数据类型
定义了二叉树的逻辑结构之后,我们需要考虑在二叉树逻辑结
构之上的各种可能运算,这些运算应该适合二叉树的各种应
用: 二叉树的某些运算是针对整棵树的
public: BinaryTree(root=NULL); //构造函数 ~BinaryTree() {DeleteBinaryTree(root);};//析构函数
bool isEmpty() const;
//返回二叉树根结点
//判定二叉树是否为空树
BinaryTreeNode<T>* Root(){return root;}; //返回current结点的父结点 BinaryTreeNode<T>* Parent(BinaryTreeNode<T>* current);
//设置当前结点的数据域 void setValue(const T& val); //判定当前结点是否为叶结点,若是返回true bool isLeaf() const; //重载赋值操作符 BinaryTreeNode<T>& operator=
4.3 二叉树的抽象数据类型
二叉树的抽象数据类型的C++定义BinaryTree,没有具体规
深度优先周游二叉树

深度周游如下二叉树
深度优先周游二叉树
深度周游二叉树结果
① 前序周游:ABDCEGFHI ② 中序周游:DBAEGCHFI ③ 后序周游:DBGEHIFCA
深度优先周游二叉树(递归实现)
template<class T> void BinaryTree<T>::DepthOrder root) { if(root!=NULL){ Visit(root); Visit(root); Visit(root); } //前序 //中序 //后序 DepthOrder(root->leftchild()); //访问左子树 DepthOrder(root->rightchild());//访问右子树 (BinaryTreeNode<T>*
//返回current结点的左兄弟
4.3 二叉树的抽象数据类型
//返回current结点的右兄弟 BinaryTreeNode<T>* RightSibling( BinaryTreeNode<T>* current);
// 以elem作为根结点,leftTree作为树的左子树,
//rightTree作为树的右子树,构造一棵新的二叉树 void CreateTree(const T& elem, BinaryTree<T>& leftTree, BinaryTree<T>& rightTree); //前序周游二叉树或其子树
4.2 二叉树的性质
4.
二叉树的第i层(根为第0层,i≥1)最多有2i个 结点 高度为k(深度为k-1。只有一个根结点的二叉树 的高度为1,深度为0)的二叉树至多有2k-1个结点 有n个结点(n>0)的完全二叉树的高度为log2 (n+1) (深度为log2 (n+1) - 1)
5.
6.
相关文档
最新文档