“数学”简介、含义、起源、历史与发展
三年级数学数的文化与历史
三年级数学数的文化与历史数字是我们生活中不可或缺的一部分,数学作为一门学科,既考究数字的计算,又深入探讨了数字的文化与历史背景。
本文将带您一起走进三年级数学的世界,了解数字的文化与历史。
一、数字的起源与发展数字的起源可以追溯到人类的远古时代。
在石器时代,人们通过一些简单的符号来表示数目,例如用竹竿刻上的刻痕、用石块摆出的排列等。
这种简单的表示方法主要用于计数和记录。
随着人类社会的发展,数字的表示方法也逐渐变得复杂起来。
在古代埃及,人们发明了一种称为“埃及分数”的计数系统,它使用了一系列分数来表示一个数。
古代巴比伦人则使用了一种基于60的计数系统,这个系统对我们现在的时间计量有着深远的影响。
古希腊的数学家们则开始研究抽象的数学概念,例如无理数和无穷大。
他们认为数字是智慧的象征,通过数学的研究可以揭示世界的本质。
在中国,早在三千多年前,古人就发展出了完整的数字表示系统,即十进制。
十进制是指用十个数码来表示所有数字,这种表示方法简单易懂,而且适用于各种计算。
这一发明被认为是中国古代数学的伟大贡献。
二、数字的文化内涵数字不仅仅是一个计量工具,它还蕴含着丰富的文化内涵。
在不同的文化中,数字往往具有特殊的象征意义。
在中国文化中,数字一直扮演着重要的角色。
例如,数字“八”在中文中的发音与“发”相近,因此被认为是一个吉利的数字,常常用于表示富贵和成功。
而数字“四”则被认为是一个不吉利的数字,因为它的发音与“死”相近。
在印度文化中,数字“零”被称为“阿拉伯数字”,它是一个非常重要的发明。
有了零的存在,我们才能使用十进制计数系统,并进行更加复杂的计算。
在日本文化中,数字也有着独特的文化意义。
例如,数字“三”被认为是一个幸运的数字,因为日语中的“三”发音与“生”相近,寓意着生命的延续和繁荣。
数字的文化内涵不仅体现在语言上,还体现在各种文化活动中。
例如,在中国的传统节日“元宵节”中,人们会点亮各种形状的灯笼,其中很多灯笼上都有数字的图案,这些数字代表着幸福和吉祥。
“数学”简介、含义、起源、历史与发展
数学数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。
由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。
在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。
刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。
在这本着作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。
虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。
至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。
早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。
古希腊发现了有非分数的数,即现称的无理数。
16世纪以来,由于解高次方程又出现了复数。
在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。
开平方和开立方是解最简单的高次方程。
在《九章算术》中,已出现解某种特殊形式的二次方程。
发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。
与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。
在中国以外,9世纪阿拉伯的花拉子米的着作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。
数学的起源与发展
数学的起源与发展数学是一门古老而又神秘的学科,它存在于人类文明的起源,并随着时间的推移不断发展。
本文将探讨数学的起源、重要里程碑以及它对人类社会的影响,以展示数学的卓越之处。
一、数学的起源数学的起源可以追溯到远古时代的人类社会。
早在古代文明时期,数学就已经被应用于建筑、贸易和天文观测等领域。
人们开始意识到,通过对物体和现象进行计数和测量,可以为社会带来更大的效益。
在古代埃及,人们需要利用数学来测量土地并确保农田的公平分配。
埃及人发明了用于计数的符号和方法,这成为我们今天所熟知的阿拉伯数字系统的前身。
古希腊时期是数学发展史上的一个重要时刻。
数学家毕达哥拉斯提出了毕达哥拉斯定理,揭示了三角形边长之间的关系。
此外,古希腊人还发展了几何学,创造了几何公理体系,为后来的数学研究奠定了基础。
二、数学的重要里程碑数学的发展充满了重要的里程碑。
以下是几个值得关注的例子:1. 阿拉伯数字系统的引入:8世纪时,阿拉伯人将印度的数字系统引入欧洲,并取得了广泛的应用。
这个新的数字系统在商业和科学领域取得了突破性的进展,极大地促进了数学的发展。
2. 笛卡尔的解析几何学:17世纪的法国数学家笛卡尔提出了解析几何学,通过将代数和几何结合起来,使数学变得更加抽象和普遍化。
这项创新为后来函数、曲线和空间研究打下了基础。
3. 微积分的发展:17世纪英国数学家牛顿和莱布尼茨独立地发明了微积分学,这被认为是数学发展的一个重大里程碑。
微积分的应用范围广泛,从物理学到经济学,都离不开这一领域的数学工具。
三、数学对人类社会的影响数学在人类社会中起着重要的作用,影响着各个领域的发展。
以下几个方面展示了数学对社会的积极影响:1. 科学的推动力:数学作为科学的基石,为科学家们提供了分析和解决问题的工具。
从物理学到天文学,从生物学到社会科学,数学的方法和原理都在各个科学领域发挥着不可或缺的作用。
2. 技术的进步:现代技术离不开数学的支持。
数学在计算机科学、通信技术和人工智能等领域扮演着重要角色。
关于数学的由来简介3篇
关于数学的由来简介第一篇:数学的起源和发展数学作为一门学科,其起源可以追溯到古代。
在人类的文明历程中,各个文明古国都有自己的数学思想和数学成果,如古埃及、古印度、古希腊、古罗马等。
科学技术的进步推动了数学的飞速发展,数学也成为了现代科学的基础和重要组成部分。
首先,古埃及是世界上最早的数学文明之一,其数学成就主要表现在测量、几何和代数方面。
例如,古埃及人使用极其简单的方法进行高精度的土地测量。
他们还学会了推导和使用勾股定理,以及计算圆周率等。
古印度数学发展的历史同样悠久,隋末唐初,印度《一百至一千的称数》和《大乘法经》广传中国。
印度数学家阿耳戈摩哥的《九章算术》对中国《九章算术》也有很大的影响。
印度数学的代表成就之一是无穷级数的概念,还有计算出了$2^{216}-1$为质数。
其次,古希腊的数学成就尤为显著,视为世界上最早的发扬光大的数学文明。
希腊数学的代表人物是欧几里得,他所创立的《几何原本》被视为数学史上的里程碑。
对几何的研究,让古希腊数学家不断地发现新的定理和方法,打下了一定的代数基础。
此外,希腊人还发明了一些几何工具,如竖劈仪、刻度尺等,用于测量距离、角度等。
古罗马数学的贡献主要体现在实用性方面。
罗马人对数字的发明使用、商业计算都有极其扎实的功底,达到了非常高的精度。
再者,中世纪欧洲的数学发展又格外活跃。
欧洲学者将古代各国的数学思想和成果进行整理、推广和吸收,开展了广泛而深入的数学研究,如对等式、代数式、解析几何等的深入探究,推进了几何、代数、微积分、数论等数学领域的发展。
伟大的意大利数学家菲波那契在欧洲广泛传播印度阿拉伯算术之后,自创了一套计算工具,被誉为欧洲数学的重要里程碑,菲波那契数列至今仍是数学研究的重要问题之一。
总的来说,数学在不同时期有着不同的发展阶段和成就,但它作为一门高度抽象、逻辑精密的学科,在实践和理论中不断提高人类的认知水平和创造力,并且在现代社会中发挥了重要的作用,也为科学技术的进步提供了强有力的支持。
数学中的数学史与数学文化
数学中的数学史与数学文化数学作为一门科学,拥有悠久的历史和丰富的文化内涵。
在数学中,数学史和数学文化是两个重要的方面,它们相互交融,共同构成了数学的发展和独特魅力。
本文将从数学史和数学文化的角度,探讨数学在历史中的发展轨迹以及对于当代社会的影响。
一、数学史1. 古代数学的起源和发展古代数学的起源可以追溯到古埃及和古巴比伦时代。
这些文明古国的数学发展对于数学史有着重要的影响。
埃及人发展了计算面积和体积的方法,并应用于建筑和土地测量。
巴比伦人则为世界数学史上的一个重要里程碑,他们发明了60进制的计数系统,并提出了代数和几何的问题。
2. 古希腊数学的辉煌时期古希腊以其杰出的数学家而闻名于世。
毕达哥拉斯、欧几里得、阿基米德等数学家在几何学、数论、解析学等方面做出了许多突出的贡献。
欧几里得的《几何原本》被誉为几何学的经典之作,对后世产生了深远的影响。
3. 中世纪数学的发展与变革中世纪欧洲的数学发展在某种程度上受到了宗教和哲学思想的限制。
然而,在阿拉伯世界和印度的影响下,阿拉伯数字和代数学得到了推广和应用。
同时,欧洲的数学家们开始从几何向代数的转变,并逐渐建立了现代数学的基础。
4. 近代数学的革命与创新在近代科学革命的推动下,数学经历了一系列重大的突破和创新。
牛顿和莱布尼茨的微积分发现引发了一场数学革命,为理论物理学的发展奠定了基础。
同时,统计学、概率论、数理逻辑等新的数学分支也相继涌现,推动了数学的多元发展。
5. 当代数学的新起与前沿当代数学的发展进入了新的时代。
数学的前沿领域包括数学物理学、计算数学、拓扑学等。
数学的应用领域也正在不断扩展,如金融数学、密码学、数据科学等。
当代数学正日益成为社会发展的重要力量,展示着其无限的潜力。
二、数学文化1. 数学的哲学与思维方式数学作为一门科学,不仅仅是一种工具或技术,更代表着一种独特的哲学和思维方式。
数学所强调的严密性、逻辑性和推理能力等都对人类思维产生了积极影响,培养了人们的逻辑思维和分析问题的能力。
数学的历史与文化意义
数学的历史与文化意义数学是一门古老而且普遍的学科,它伴随着人类文明的发展而发展。
数学的历史非常丰富,蕴含着深厚的文化意义。
本文将通过回顾数学的历史,探讨数学在不同文化中的意义以及它对人类社会的重要贡献。
一、数学的起源与发展数学这门学科的起源可以追溯到远古时代的人类文明。
早期人类探索周围世界时,开始意识到要计数和度量。
他们掌握了简单的概念,比如计算物体数量和测量距离。
这些基本的数学能力随后演变成更复杂的数学体系统。
古代文明如古希腊、古巴比伦、古埃及等对数学的贡献是无可忽视的。
古希腊的毕达哥拉斯定理、欧几里得几何学等都是数学史上的里程碑。
古巴比伦的六十进制计数系统和埃及的分数系统等也为后世的数学发展提供了基础。
二、数学在不同文化中的意义1. 数学作为一种组织和分析事物的工具,对个人和社会都具有重要意义。
它不仅可以帮助人们更好地管理时间和资源,还能够提供决策的依据。
数学的逻辑推理和分析能力使人们更善于解决问题和思考。
2. 数学在艺术中也具有重要作用。
许多美学原则,如黄金分割和对称性,都是建立在数学的基础上。
绘画、建筑、音乐等领域都在不同程度上运用了数学的原理。
3. 数学在不同文化中有不同的象征意义。
例如,在中国文化中,数字符号和数字谐音往往被用来象征吉祥和幸运。
同时,数学也被视为是智慧和学问的象征。
三、数学对人类社会的贡献1. 技术与科学的发展离不开数学的支持。
计算机科学、物理学、工程学等领域都离不开数学模型和方法的应用。
数学的研究和发展推动了许多科技领域的进步。
2. 数学为经济和商业提供了分析工具。
经济学、金融学等领域的模型和算法都是基于数学原理建立起来的。
数学在商业决策和风险管理中有着重要的应用。
3. 数学在解决实际问题中发挥着重要的作用。
举例来说,数学在物流和运筹学中帮助人们优化运输路线和资源分配,提高效率;在医学领域,数学模型和算法能够帮助科学家们研究疾病传播和药物治疗效果。
结语数学作为一门学科,不仅有着悠久的历史,而且对于人类社会的发展和文化传承有着重要的意义。
数学史简介
数学史简介数学,作为人类智慧的结晶,自古以来就与人类文明的发展紧密相连。
从最初的计数和测量,到抽象的代数和几何,再到现代的计算机科学和量子力学,数学始终在各个领域发挥着重要作用。
本文将简要介绍数学的发展历程,以展示这一学科的无穷魅力。
一、古代数学数学的起源可以追溯到史前时期,当时的人们为了解决实际问题,如土地测量、天文观测等,开始研究数学。
古埃及和巴比伦是数学发展最早的地区之一,他们研究了几何学和算术,并制定了一些数学规则。
约公元前300年,古希腊数学家欧几里得发表了《几何原本》,这是一部系统地阐述了平面几何知识的著作,对后世产生了深远影响。
二、中世纪数学在中世纪,阿拉伯世界成为了数学研究的中心。
阿拉伯数学家对古希腊数学进行了翻译和传承,并在此基础上进行创新。
他们引入了印度数学中的数字系统,即阿拉伯数字,这一系统在当时比罗马数字更为先进。
阿拉伯数学家还研究了代数学,提出了方程的解法和代数符号。
三、文艺复兴时期数学文艺复兴时期,欧洲数学迅速发展。
这一时期的数学家开始研究更为复杂的数学问题,如三次方程的解法、无穷级数等。
意大利数学家伽利略和德国数学家开普勒在天文学领域取得了重要成果,为后来牛顿和莱布尼茨创立微积分奠定了基础。
四、现代数学17世纪,英国数学家牛顿和德国数学家莱布尼茨几乎同时发明了微积分。
这一学科的出现标志着现代数学的诞生。
此后,数学家们开始研究更为抽象的数学问题,如拓扑学、群论等。
19世纪,法国数学家庞加莱提出了拓扑学的基本概念,为现代几何学的发展奠定了基础。
20世纪,数学家们继续深入研究各个领域,如概率论、数论、计算机科学等,使数学得到了空前的发展。
五、数学在中国中国古代数学也有着悠久的历史。
早在商周时期,我国就有了甲骨文中的数学记载。
汉代,数学家赵爽提出了勾股定理的证明,被称为“赵爽定理”。
唐代,数学家李冶、秦九韶等人研究了高次方程的解法。
宋代,数学家贾宪、杨辉等人研究了几何学和算术。
数学的发展历史
数学的发展历史从古至今,数学一直在人类社会中起着至关重要的作用。
它作为一门学科,其发展历史丰富多彩,并为人们的生活与技术进步做出了巨大贡献。
本文将回顾数学的发展历史,探讨它的重要里程碑,并展望未来的发展趋势。
一、数学的起源数学的起源可以追溯到古代文明的崛起。
早在埃及、巴比伦、古希腊和古印度等古代文明时期,人们就开始意识到数学的存在和重要性。
这些文明以各自独特的方式发展了代数、几何和三角学等数学分支。
其中,古埃及的数学主要用于土地测量和建筑工程,古巴比伦的数学则与天文学和商业有关。
二、古希腊数学的辉煌希腊古代数学的发展被认为是数学史上的一大里程碑。
在公元前6世纪至公元前4世纪,一批杰出的数学家如毕达哥拉斯、欧几里德、阿基米德等相继涌现。
他们的贡献不仅仅在于解决实际问题,更在于构建了严谨的数学体系和证明方法。
欧几里德的《几何原本》成为了欧洲西方世界数学教材的基石。
三、中世纪的数学复兴尽管中世纪欧洲的思想受到了宗教的限制,但在阿拉伯学者的传承下,数学仍得以保留和发展。
通过回归古希腊的数学遗产,中世纪的数学家们进一步强化了代数和几何的研究。
阿拉伯人引入十进制数制和阿拉伯数字,这无疑加速了数学的推广和发展。
四、近代数学的飞跃17世纪至18世纪,数学在欧洲经历了一场革命般的变革。
牛顿和莱布尼茨开创了微积分学,为物理学、天文学等其他科学领域的研究提供了重要工具。
同时,代数学、数论、概率论等新的数学分支相继涌现,在数学的应用和理论方面取得了重大突破。
五、现代数学的发展20世纪,数学进入了一个全新的阶段。
在这个时期,数学与计算机科学和工程学等学科紧密结合,引发了许多数学应用于实际问题的研究。
线性代数、离散数学、图论、数值计算等分支蓬勃发展,为信息技术和通信技术的迅猛发展提供了坚实基础。
六、未来数学的前景随着科技的不断进步和人类对知识的渴求,数学在未来的发展前景是无限的。
数学将继续在科学研究、工程技术和金融领域发挥至关重要的作用。
数的起源与发展
数的起源与发展引言概述:数是人类认识和描述世界的基础工具,它的起源和发展经历了漫长的历史。
本文将从数的起源、数的发展过程、数的分类、数的应用以及数的未来发展等五个方面进行详细阐述。
一、数的起源1.1 古代数的起源- 人类最早的数是通过手指计数而来的,这种计数方式称为原始计数法。
- 随着社会的发展,人们开始使用自然物体如石头、贝壳等来代表数量。
1.2 埃及和巴比伦的数学- 埃及人和巴比伦人是数学发展的重要贡献者,他们创造了简单的计数系统和运算规则。
- 埃及人发明了分数,并用于商业和建筑领域。
- 巴比伦人发明了基于60的进位制,这种制度至今仍在时间和角度的计量中使用。
1.3 希腊数学的兴起- 希腊人对数学的发展起到了重要的推动作用。
- 希腊人通过几何学的发展,建立了严谨的证明体系。
- 希腊人提出了无理数的概念,推动了数学的发展。
二、数的发展过程2.1 阿拉伯数字的引入- 阿拉伯数字的引入使数的表示更加简洁和灵活。
- 阿拉伯数字的特点是使用有限的符号来表示无限的数。
- 阿拉伯数字的传入欧洲,推动了数学的发展和商业的繁荣。
2.2 笛卡尔坐标系的建立- 笛卡尔坐标系的建立将代数和几何学联系在一起,为数学的发展开辟了新的道路。
- 笛卡尔坐标系的应用使得解决几何问题变得更加简单。
2.3 微积分的诞生- 微积分的诞生标志着数学的一次革命。
- 微积分的发展推动了物理学和工程学等应用学科的发展。
三、数的分类3.1 自然数和整数- 自然数是最早出现的数,表示物体的个数。
- 整数是自然数的扩展,包括正整数、负整数和零。
3.2 有理数和无理数- 有理数是可以表示为两个整数之比的数,包括分数和整数。
- 无理数是不能表示为两个整数之比的数,如π和√2。
3.3 实数和复数- 实数包括有理数和无理数,是数学中最基本的概念。
- 复数是实数的扩展,包括实部和虚部,广泛应用于物理学和工程学。
四、数的应用4.1 数的应用于科学- 数学是科学的基础,几乎所有科学领域都离不开数学的应用。
数学的发展与演变从一到无穷大的数学进程
数学的发展与演变从一到无穷大的数学进程在人类文明的进步过程中,数学作为一门基础科学,始终起着举足轻重的作用。
从最早的数数到无穷大的概念,数学一直在不断发展与演变。
本文将从古代数学的起源开始,逐步追溯数学的进程,展示数学的发展与演变过程。
一、古代数学的起源最早的数学可以追溯到约5000年前的古埃及和美索不达米亚文明。
古埃及人运用数学知识来解决土地测量和建筑工程问题,而美索不达米亚人则用数学进行商业交易和税收计算。
这些最早的数学思想体现了人们对数数和计算的需求。
二、希腊数学的兴起古希腊是数学发展史上的重要时期。
毕达哥拉斯学派的出现使数学融入了哲学的范畴。
毕达哥拉斯定理是他们最著名的成果之一,该定理说明了直角三角形斜边的平方等于两直角边平方和。
同时,欧几里得也在古希腊时期确立了几何学的基本原理,他的《几何原本》成为欧洲学习几何学的标准教材。
三、中世纪与文艺复兴时期的数学革命中世纪的数学受到了基督教教义的束缚,但在文艺复兴时期,数学的地位逐渐恢复。
意大利的数学家费拉拉克里奥和卢卡·帕西奥利在代数学和几何学方面作出了重要的贡献。
此外,文艺复兴时期的数学家卡布拉诺也发现了复数的存在,这一发现在数学发展史上具有重要意义。
四、十七世纪的数学革命十七世纪是数学史上的黄金时期,伽利略、笛卡尔、费马等众多数学家的贡献使数学呈现出前所未有的发展势头。
伽利略提出了匀速运动的概念,笛卡尔则运用代数符号将几何问题转化为代数问题。
此外,牛顿和莱布尼茨的微积分发现被誉为数学的革命,为后来科学的发展奠定了基础。
五、现代数学的新兴进入现代,数学的领域日益增加。
在几何学方面,黎曼几何为后来的广义相对论奠定了基础;在代数学中,群论、环论等新的分支先后出现;在概率论和统计学中,人们开始研究随机事件和数据分析。
同时,计算机的发明和普及也为数学的发展带来了重大影响,数值计算、优化问题等新的数学分支应运而生。
六、数学的无穷大数学的进展并不止于此,无穷大的概念是数学领域中重要的发展方向。
中国数学的起源与发展
中国数学的起源与发展中国数学的起源与发展经历了漫长的历史过程,主要如下:1.起源:- 远古时期的记数意识:在远古时代,人们就有了记数的意识。
大约7000年以前,人们对数字的认知还非常有限,甚至数到2以上都有困难。
后来人们逐渐把数字和双手联系起来,每只手代表一个“1”,这是最初对数字的直观理解。
为了记录和表达数量,祖先们先是结绳记数,后来发展到“书契”记数。
在五六千年前,已经能够书写1至30的数字,到了春秋时代,能书写3000以上的数字,并且有了加法和乘法的意识。
- 早期的数学知识记载:春秋时期孔子修改过的《周易》中出现了八卦,这是一种具有深刻数学内涵的符号系统,对后世数学的发展产生了深远影响。
八卦在数学、天文、物理等多方面都发挥着重要作用。
- 战国时期的数学突破:这一时期中国数学取得了显著进展。
算术领域,四则运算得到确立,乘法口诀已经在一些著作中零散出现,分数计算也开始应用于生产生活,比如种植土地、分配粮食等方面;几何领域,出现了勾股定理;代数领域,出现了负数概念的萌芽;并且出现了“对策论”的萌芽,如战国时期孙膑提出的“斗马术”问题,就反映了对策论中争取总体最优的数学思想。
2.发展:- 秦汉时期:这一时期在记数和计算方法上有了进一步的发展。
乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法口诀。
在几何方面,对于长方形面积的计算以及体积计算的知识也更加丰富。
同时,算筹和十进位制系统的出现和应用,为数学计算提供了便利的工具和有效的计数方法。
算筹是一些直径1分、长6分的小棍儿,质料有竹、木、骨、铁、铜等,其功用与算盘珠相仿。
- 西汉末期至隋朝中叶:这是中国数学理论的第一个高峰期,标志是《九章算术》的诞生。
《九章算术》是中国秦汉时期一二百年的数学知识结晶,全书共分为九章,收录了246道数学应用题,每道题都分为问、答、术(解法,有的一题一术,有的一题多术)三部分,内容与社会生产紧密联系。
这一时期除了《九章算术》,还出现了刘徽注的《九章算术》以及《海岛算经》《孙子算经》等数学专著。
数学的起源与发展3篇
数学的起源与发展
第一篇:数学的起源
数学是人类基本学科之一,涉及数、量、结构、空间以
及变化等方面的研究。
从古代就有数学的产生,但数学的起源并不清晰。
在早期的文化中,人们已经开始掌握了计数的能力,并用图形、符号和文字来表示数的概念。
最早的数学思想和技术可以追溯到约5000年前的数学文化,如古代埃及、美索不达米亚、印度和中国。
这些文化的数学都是为了实际应用而发展的,如测量土地、建筑设计、财务记录等。
古代希腊数学家毕达哥拉斯是数学史上一个重要的人物,他提出了毕达哥拉斯定理,发现了整数与比例之间的关系,并通过几何形式化证明数学。
除此之外,他还探究了音乐与数学之间的联系。
公元前三世纪至公元前一世纪,亚历山大渊博的图书馆
和博物馆成为了数学研究的中心。
这个时期有很多著名的数学家,如欧多克索斯、阿基米德、阿波罗尼奥斯等,他们的成就包括几何学的重大进展,如欧几里得在《几何原本》中所做的贡献,以及支配航海、建造和战争中的数学原理。
中世纪之前,中国和印度也取得了不俗的成就。
公元三
世纪至四世纪,中国曹操的大将王充所著的《论衡》是历史上第一部数学著作。
在中国,数学发展迅速,发明了算盘,并开创了代数学,如问经、数术和海岸等。
在印度,数学家阿耶波多在公元五世纪编写了用于解决
二次方程的著作,而布拉马格普塔则在公元七世纪解决了不定方程的问题和错误,他们所发明的一些数学方法为其他数学家提供了灵感。
总之,数学的起源是复杂而多样化的,不同的文化有其特定的地位和贡献。
虽然人们在数字方面的知识和技能的发展是相互关联的,但每个文化都为数学的起源和发展做出了巨大的贡献。
数学的发展与历史
数学的发展与历史数学是一门古老而伟大的学科,它贯穿了人类的历史,并且在不断地发展与演进。
本文将追溯数学的历史,探索数学的发展脉络,并展望未来数学的前景。
一、古代数学的萌芽与起源数学的历史可以追溯到远古时代。
早在人类尚未掌握文字的时候,原始人类就开始用手指计数,并逐渐形成了最初的数学概念。
随着人类社会的进步与发展,日常生活中的实际问题激发了人们对数学的更深入探索。
埃及、巴比伦等古代文明都有独特的数学符号和计算方法,为古代数学的形成打下了基础。
二、古希腊数学的兴盛古希腊是数学史上的一座高峰。
在古希腊时期,众多杰出的数学家如毕达哥拉斯、欧几里得等相继涌现。
毕达哥拉斯学派的建立使数学走上了理论化的道路,欧几里得的《几何原本》成为了数学的经典之作。
古希腊数学在几何学、数论等领域取得了巨大的成就,为后世的数学研究提供了宝贵的遗产。
三、中世纪数学的低谷与复兴中世纪欧洲的数学发展相对较为缓慢。
由于宗教和政治等原因,当时数学的研究进展受到了限制。
然而,阿拉伯的数学著作通过翻译传播到欧洲,推动了数学在西方的复兴。
斐波那契的《算盘书》介绍了阿拉伯的计算方法,极大地促进了欧洲数学的发展。
数学开始应用于天文学、导航等领域,世界上第一所大学——波尔多大学的建立也为数学的学术研究提供了平台。
四、近代数学的革命与进步17世纪至18世纪是数学史上的革命时期。
伽利略、牛顿、莱布尼兹等杰出的科学家和数学家推动了数学在现代科学中的地位。
微积分的发现与应用使得数学与物理学的联系更加紧密,为科学革命的推进提供了重要的数学工具。
拉格朗日、欧拉等数学家的贡献使得概率论、数论等分支学科得以逐步形成。
五、现代数学的多样性与应用20世纪以来,数学的发展进入了一个新的阶段。
随着计算机和信息技术的迅速发展,数学在应用领域得到了广泛的应用。
线性代数、优化理论、密码学等等新的数学分支相继涌现,为当代科学技术的发展提供了强有力的支撑。
数学在数据分析、人工智能等领域的进展,进一步推动了科技的发展与社会的进步。
数学发展的历史介绍
引言概述:数学作为一门古老而且普遍存在的学科,在人类文明发展的过程中扮演着重要的角色。
数学的发展历史可以追溯到古代文明,并随着时间的推移逐渐演化和发展。
本文将介绍数学的历史发展,从古代数学的起源开始,逐步展开正文,分五大点来阐述数学的进展与演化。
正文内容:一、古代数学的起源1.原始数学:人类最早的数学思想主要是基于实际需求的,主要应用于计数和测量。
2.古代数学的典范:古埃及的几何学和古代巴比伦的代数学。
3.古希腊数学的诞生:毕达哥拉斯定理和欧几里得的几何学。
二、中世纪数学的发展1.印度数学的传播:阿拉伯数学家将印度数字系统和代数学引入欧洲。
2.贝克勒尔学派:贝克勒尔、纳西尔丁·图西和奥马尔·海亚姆等数学家对代数和几何学作出了重要贡献。
3.罗益席尔皮和方程的大发现:罗益席尔皮在解决高次方程时提出了新的解法。
三、现代数学的崛起1.十七世纪的数学革命:笛卡尔几何学的诞生和数学分析的发展。
2.牛顿和莱布尼茨的微积分学:微积分的发明进一步推动了数学的进步。
3.概率论与统计学的兴起:贝努利家族和拉普拉斯等人对概率论和统计学的贡献。
四、数学的现代化与应用1.抽象代数学的兴起:伽罗华和埃尔米特等人将代数学从具体问题中抽象出来。
2.黎曼几何学:黎曼将几何学从平面拓展到曲面,为现代几何学奠定了基础。
3.数学与信息科学的结合:在计算机科学和密码学领域,数学的应用越来越广泛。
五、当代数学的发展1.数学的交叉学科:数学与物理学、工程学等学科的交叉研究成为当代数学的一个重要方向。
2.数学的开放性问题:著名的费马猜想和黎曼猜想等问题一直未能得到证明。
3.数学的计算机辅助研究:计算机技术的进步使得数学研究更加高效和精确。
总结:数学发展的历史演化是一段源远流长的故事。
从原始数学到古代数学的起源,再到中世纪数学的发展,数学以其独特的逻辑和思维方式为人类文明进程提供了重要的支撑。
现代数学的崛起与应用为科学技术的发展和社会进步提供了坚实的基础。
数学的历史与发展
数学的历史与发展数学是一门古老而重要的学科,它扎根于人类文明的发展中,并在不断的演进中发挥着至关重要的作用。
本文将探讨数学的历史与发展,从古代到现代,从基础概念到前沿领域,全面展示数学这一学科的发展轨迹和价值。
一、数学的古代起源数学作为人类文明的一部分,其起源可以追溯到数千年前的古代文明。
早在古埃及、古代巴比伦时期,人们就开始使用数学技术解决实际问题,比如土地测量、建筑设计等。
古代埃及人通过观测河流的水位来测量土地面积,而巴比伦人则发展出了一套复杂的算术体系,记录财产和进行贸易。
二、希腊数学的发展古希腊是数学史上一个重要的里程碑,许多数学原理和概念都是在这一时期产生和发展的。
毕达哥拉斯学派提出了著名的毕达哥拉斯定理,将几何学与数学联系在一起。
数学家欧几里得则创立了几何学的公理体系,并写成了著名的《几何原本》。
他的工作对后世的数学发展产生了深远的影响。
三、中世纪的数学复兴在中世纪,数学几乎停滞不前。
然而,在阿拉伯世界的文化复兴中,数学再次焕发出活力。
阿拉伯数学家穆罕默德·本·穆萨(Muhammadibn Musa al-Khwarizmi)是代表性的数学家之一,他对代数学的发展做出了重要贡献,并使阿拉伯数字在全世界传播开来。
四、近代数学的革命进入近代,数学经历了一场革命性的变革。
数学家们开始运用符号表示法进行研究,推动了微积分的诞生与发展。
牛顿和莱布尼茨的微积分理论为数学打开了新的大门,并为物理学的发展提供了重要的工具。
在19世纪,数学家高斯、欧拉、拉格朗日等人的工作进一步丰富了数学体系,使代数、分析和几何学等分支得到快速发展。
五、现代数学的辉煌成就现代数学涵盖了广泛而复杂的领域,许多前沿理论和应用都显示出了数学的强大潜力。
在20世纪,数学家们以公理化的方法建立了集合论和数理逻辑。
同时,理论物理学的快速发展也推动了数学的进步。
黎曼几何、拓扑学和群论等新的数学分支得到了广泛研究,为解决复杂问题提供了高效的数学工具。
2024版《数学史》数学的起源ppt课件
微积分的应用
在物理学、工程学、经济学等领 域有广泛应用,如求解速度、加 速度、曲线的长度、面积、体积
等问题。
概率论与数理统计的兴起
1 2 3
概率论的起源 起源于17世纪中叶人们对机会性游戏的数学研究, 如赌博中的骰子点数问题。
数理统计的发展 随着数据收集和分析的需求增加,数理统计逐渐 从概率论中独立出来,成为一门研究如何从数据 中提取有用信息的学科。
《数学史》数学的起源ppt课件
目录
• 引言 • 古代数学的起源 • 中世纪数学的发展 • 近代数学的崛起 • 现代数学的发展与挑战 • 数学史对数学教育的启示
01
引言
Chapter
数学的定义与重要性
数学是研究数量、结构、空间及变化等概念的一门学科。
数学作为一种普遍适用的技术,有助于人们解决各种问 题,推动科技进步和社会发展。 数学在自然科学、社会科学、工程学、医学等领域都有 广泛应用,具有不可替代的重要性。
数学史的研究意义
了解数学发展的历史 进程,探究数学思想 和方法的演变。
借鉴历史经验,为现 代数学教育和研究提 供启示和借鉴。
揭示数学与人类社会、 文化、科技等方面的 互动关系。
课件内容与结构
课件内容
介绍数学的起源、早期数学的发展、古代数学的辉 煌成就、中世纪数学的停滞与复兴、近代数学的兴 起与发展等。
概率论与数理统计的应用 在金融、保险、医学、社会科学等领域有广泛应 用,如风险评估、质量控制、假设检验、回归分 析等。
代数与几何的变革
代数的抽象化
19世纪,数学家们开始研究抽象代数结构,如群、环、域 等,使得代数的研究对象从具体的数扩展到更一般的数学 对象。
几何的变革 非欧几何的兴起打破了欧几里得几何一统天下的局面,揭 示了几何学的多样性。同时,微分几何和拓扑学的发展也 为几何学注入了新的活力。
数学的简介
数学的简介数学是研究数量、结构、变化以及空间模型等概念的一门学科。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
1、数学的由来:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。
但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。
可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。
而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。
几何学则是最早开始被人们研究的数学分支。
2、西方数学简史:数学的演进大约可以看成是抽象化的持续发展,或是题材的延展,而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物件的数量,史前的人类也了解如何去数抽象概念的数量,如时间——日、季节和年,算术(加减乘除)也自然而然地产生了。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普。
历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算。
数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。
这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
数学的历史与文化背景
数学的历史与文化背景数学作为一门学科,拥有悠久的历史和深厚的文化背景。
它不仅是人类思维和智慧的结晶,也承载着人类社会发展的伟大成就。
本文将从数学的起源开始,探讨数学的历史脉络以及它与不同文化背景的关系。
1. 数学的起源数学的起源可以追溯到古代文明。
早在公元前3000年左右的古代埃及和巴比伦,人们就开始运用简单的计数和几何概念来解决实际问题。
例如,古埃及人利用数学方法计算农田面积以确定税收,巴比伦人则制定了一个复杂的法典,其中包括了关于土地交易和建筑规划的几何问题。
同时,古希腊的数学也对后世产生了深远影响。
毕达哥拉斯学派的出现引导了抽象的数学思维,创立了几何学的基本概念和定理。
而欧几里德的《几何原本》更是成为了后世数学发展的重要参考。
2. 数学与不同文化背景的交融随着古代文明的兴起和交流,不同文化背景中的数学开始相互影响和交融。
例如,印度的数学家通过阿拉伯人传入欧洲,将印度的算术和代数学知识带到了西方世界。
这对于欧洲文艺复兴时期的数学发展起到了重要的推动作用。
此外,中国古代的数学也以其独特的发展路径和重要贡献而闻名。
中国古代数学家发明了十进位制和算盘,推动了代数学和几何学的发展。
中国数学还以其注重实用和应用的特点而与其他文化相区别,例如通过应用数学解决土地测量和水利工程等实际问题。
3. 数学在不同文化中的应用数学不仅仅是一门学科,也被广泛应用于各个文化领域。
例如,古代文明的天文观测和历法制定离不开对数学的运用。
埃及人和中美洲的玛雅人利用几何学和数值系统来建造庞大的金字塔和城市。
另一方面,数学在艺术领域也有重要的地位。
数学原理和比例被应用于建筑、绘画和音乐等艺术形式中,赋予作品以美感和和谐。
例如,古代希腊的黄金分割理论影响了许多建筑和艺术作品的设计。
4. 数学与现代文化的关系在现代社会,数学已经成为科学研究和技术应用的重要基础。
物理学、化学、经济学等学科离不开数学方法的应用。
同时,信息技术的迅猛发展也使得数学在计算机科学和人工智能领域扮演着关键角色。
数学由来介绍
数学由来介绍数学是一门研究数量、结构、变化以及空间等概念的学科,它的发展历史可以上溯至远古时代。
数学的源头可以追溯到人类最早开始感知、计数和测量的时期。
本文将介绍数学的由来及其发展历程。
一、古代数学的起源古代数学的起源可以追溯到一些早期文明,例如古埃及、古巴比伦和古印度。
这些文明在建筑、土地测量和贸易等领域的需求中逐渐开发出数学的基础概念和方法。
在古埃及,人们开始使用简单的技巧来计数,比如使用手指、石头和棍棒等。
他们还发展了一种叫做"记数法"的系统,将不同的符号代表不同的数量。
这种记数法成为了古埃及人解决问题的基础。
古巴比伦人也对数学作出了很多贡献。
他们发现一个有趣的数学规律,即"毕达哥拉斯定理",即直角三角形的两条直角边的平方和等于斜边的平方。
古巴比伦人还发展了一种叫做"巴比伦乘法"的方法,可以用简单的加法和平方运算来实现乘法运算。
古印度数学家也对数学有着深入的研究。
他们发展了一种叫做"十进制"的计数系统,使用十个不同的符号来表示不同的数字。
这一系统在全球范围内被广泛使用,成为了我们现代计数系统的基础。
二、数学的发展与蓬勃进展在古希腊时期,数学取得了巨大的进步。
众所周知,古希腊数学家毕达哥拉斯是数学发展的关键人物。
毕达哥拉斯学派提出了一系列关于几何学的理论,他们认为几何学是数学的基石。
随着时间的推移,数学开始具备了更加抽象和理论化的特点。
古希腊数学家欧几里得在他的著作《几何原本》中系统地阐述了几何学的理论,成为了几何学研究的重要参考。
随后,数学的发展进入了一个相对缓慢的时期。
直到16世纪,随着文艺复兴运动的兴起,数学再次迎来了蓬勃发展。
一些伟大的数学家,如伽利略、笛卡尔和牛顿,以及他们的研究成果,使数学在科学领域中具有了重要地位。
三、现代数学的研究与应用现代数学是一门高度抽象和理论化的学科。
它包括了许多不同的分支,如代数学、几何学、数论和概率论等。
数学简史简介
数学简史简介嘿,宝子们!今天咱们来唠唠数学简史这事儿。
一、数学的起源数学这玩意儿可古老啦。
在远古时代,人们就开始有了数学的概念。
比如说,原始人要数自己打猎得到了多少猎物,这就是最基本的计数需求。
那时候可能没有咱们现在这么复杂的数字系统,但是用小石子或者在树上刻记号来表示数量的事儿可不少见呢。
古埃及人在建造金字塔的时候,就用到了很多数学知识,像测量土地、计算角度这些。
他们的数学知识可都是从实际生活中慢慢积累起来的。
还有古巴比伦人,他们对数学的贡献也不小。
他们在天文历法方面的计算,那也是离不开数学的。
那时候的数学,就像是一颗刚刚发芽的小树苗,虽然简单,但是却有着无限的生命力。
二、数学在古代文明中的发展咱们再说说古代希腊,那可是数学发展的一个高峰时期啊。
像毕达哥拉斯,这哥们儿可不得了。
他提出了毕达哥拉斯定理,也就是咱们说的勾股定理。
这个定理在数学界那可是相当有名的。
还有欧几里得,他写了一本几何原本,把当时的几何知识都系统地整理了出来。
这本书就像是数学界的一部宝典,影响了一代又一代的数学家。
在古代中国,数学也有着辉煌的成就。
九章算术就是一部经典的数学著作,里面包含了各种各样的数学问题,从算术到几何,应有尽有。
咱们老祖宗的智慧可真是不容小觑啊。
三、数学在中世纪和近代的发展到了中世纪,数学在阿拉伯地区得到了很好的发展。
阿拉伯的数学家们翻译和保存了很多古代的数学著作,并且在代数等方面有了新的发展。
像花拉子米,他写的关于代数的著作,对后来欧洲数学的发展有着很大的影响。
后来到了近代,随着科学技术的发展,数学的应用越来越广泛。
牛顿和莱布尼茨发明了微积分,这可是数学史上的一个大事件。
微积分在物理学、工程学等很多领域都有着不可替代的作用。
四、现代数学的发展现代数学那更是五花八门了。
有各种各样的分支,像拓扑学、数论、概率论等等。
这些分支的发展让数学变得更加深奥和复杂。
数学家们不断地探索新的理论和方法,解决着一个又一个的难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ “数学”简介、含义、起源、历史与发展数学数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。
由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。
在成书不迟于 1 世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。
刘徽在他注解的《九章算术》(3 世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在 16 世纪 S.斯蒂文以后)十进小数才获通用。
在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。
虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。
至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。
早在欧几里得的《几何原本》中,即有素数的概念和素数个数1 / 9无穷及整数惟一分解等论断。
古希腊发现了有非分数的数,即现称的无理数。
16 世纪以来,由于解高次方程又出现了复数。
在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。
开平方和开立方是解最简单的高次方程。
在《九章算术》中,已出现解某种特殊形式的二次方程。
发展至宋元时代,引进了天元(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。
与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。
在中国以外, 9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。
中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。
16 世纪时, F.韦达以文字代替方程系数,引入了代数的符号演算。
对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集体的理论研究。
形的研究属于几何学的范畴。
古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。
规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。
《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。
《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。
在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。
例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5 世纪祖暅提出幂势既同则积不容异的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。
但自五代(约 10 世纪)以后,中国在几何学方面的建树不多。
中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视形的性质与各种性质间的相互关系。
欧几里得的《几何原本》,建立了用定义、公理、定理、证明3 / 9构成的演绎体系,成为近代数学公理化的楷模,影响及于整个数学的发展。
特别是平行公理的研究,导致了 19 世纪非欧几里得几何学的产生。
欧洲自文艺复兴时期起出现了射影几何学。
18 世纪, G.蒙日应用分析方法于形的研究,开微分几何学的先河。
C.F.高斯的曲面论与(G.F.) B.黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法; 19 世纪(C.) F.克莱因以群的观点对几何学进行统一处理。
此外,如 G.(F.P.)康托尔的点集理论扩大了形的范围;(J.-)H.庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。
这些都使几何学面目一新。
在现实世界中,数与形,如影之随形,难以分割。
中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。
例如勾股测量提出了开平方的要求,而开平、立方的方法又奠基于几何图形的考虑。
二次、三次方程的产生,也大都来自几何与实际问题。
至宋元时代,由于天元与相当于多项式概念的引入,出现了几何代数化。
在天文与地理中的星表与地图的绘制,已用数来表示地点,不---------------------------------------------------------------最新资料推荐------------------------------------------------------ 过并未发展到坐标几何的地步。
在欧洲, 14 世纪N.奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽,而 17 世纪 R.笛卡儿提出了系统的把几何事物用代数表示的方法及其应用,在其启迪之下,经 G.W.莱布尼茨、 I.牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。
这是数学史上的一件大事。
在 20 世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。
18 世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。
由于自然界的客观规律大多是以微分方程的形式表现的,微分方程的研究一开始就受到重视。
微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了内在的现代微分几何。
19、 20 世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。
对客观世界中随机现象的分析,产生了概率论。
5 / 9第二次世界大战军事上的需要以及大工业与管理的复杂化产生了运筹学、系统论、信息论、控制理论与数理统计学等学科。
实际问题要求具体的数值解答,产生了计算数学。
选择最优途径的要求又产生了各种优化的理论、方法。
力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。
此外在 19 世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些高深数学。
19 世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展。
也产生了把数学看作一个整体的各种思潮和数学基础学派。
特别是 1900 年 D.希尔伯特关于当代数学重要问题的演讲,以及 30 年代开拓以结构概念统观数学的法国布尔巴基学派的兴起,对 20 世纪数学发展的影响至深且巨。
科学的数学化一语也往往为人们所乐道。
数学的外围向自然科学、工程技术甚至社会科学不断渗透扩大并从中吸取营养,出现了一些边缘数学。
数学本身的内部需要也孳生了不少新的理论与分支。
同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。
总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。
本卷详细地介绍了数学的各个分支与各种流派。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 在数学的蓬勃发展过程中,数与形的概念不断扩大,日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。
虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。
如把函数看成是某种空间的一个点之类。
这种做法之所以行之有效,归根结蒂还是因为数学家们已经熟悉了那种简易的数学运算与图形关系。
而后者又有着长期深厚的现实基础。
而且,即使是最原始的数字如 1、 2、 3、 4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。
因此,如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。
由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界。
生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键的作用。
理论上的丰富提高与应用的广泛深入在数学史上始终相伴相生,相互促进。
但由于各民族各地区的客观条件不同,数学的具体发展过程是7 / 9有差异的。
大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。
计算方法的优越有助于对实际问题的具体解决。
由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。
而在古希腊则着重思维,追求对宇宙的了解。
由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。
中国的数学体系在宋元时期达到高峰以后,陷于停顿且几至消失。
而在欧洲,经过文艺复兴、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。
机器的使用,不论中外都由来已久。
但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。
在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。
当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。
解析几何与微积分的诞生,成为数学发展的一个转折点。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 17 世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。