自动控制原理试验指导书
自动控制原理实验指导书
![自动控制原理实验指导书](https://img.taocdn.com/s3/m/5ff5ef7ba55177232f60ddccda38376baf1fe0a0.png)
⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
自动控制原理实验实验指导书
![自动控制原理实验实验指导书](https://img.taocdn.com/s3/m/e011ce83a0116c175f0e48dc.png)
自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
自动控制原理实验指导书
![自动控制原理实验指导书](https://img.taocdn.com/s3/m/34b1d5215901020207409c73.png)
自动控制原理实验指导书信息工程学院自动化教研室目录目录...................................................... 错误!未定义书签。
第一章虚拟示波器........................................... 错误!未定义书签。
第一节虚拟示波器的类型................................. 错误!未定义书签。
第二节虚拟示波器的使用................................. 错误!未定义书签。
第二章自动控制原理实验..................................... 错误!未定义书签。
实验一典型环节的模拟研究............................... 错误!未定义书签。
实验二典型二阶系统瞬态响应和稳定性 (12)实验三控制系统的频率特性 (15)实验四系统校正 (20)实验五典型非线性环节 (24)附录一 LCAACT集成调试环境 (31)第一节 LCAACT软件界面介绍 (31)第二节第二节 88串行监控命令 (43)第三节 LCAACT软件调试 (46)第四节快速入门 (48)第一章虚拟示波器第一节虚拟示波器的类型虚拟示波器的类型为了满足自动控制不同实验的要求我们提供了示波器的三种使用方法。
(1)示波器的一般用法(2)幅频相频示波器的用法(3)特征曲线的用法第二节虚拟示波器的使用一.设置用户可以根据不同的要求选择不同的示波器,具体设置方法如下:1.示波器的一般用法:运行LCAACT程序,点击开始即可当作一般的示波器使用。
2. 实验使用:运行LCAACT程序,选择‘自动控制 / 微机控制 / 控制系统’菜单下的相应实验项目,再选择开始实验,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1、CH2测孔测量波形。
自动控制原理(实验指导书)
![自动控制原理(实验指导书)](https://img.taocdn.com/s3/m/a63e124276232f60ddccda38376baf1ffc4fe33a.png)
⾃动控制原理(实验指导书)⽬录实验⼀典型环节的模拟研究(验证型)(2)实验⼆典型系统的瞬态响应和稳定性(设计型)(9)实验三动态系统的数值模拟(验证型)(15)实验三动态系统的频率特性研究(综合型)(16)实验四动态系统的校正研究(设计型)(18)附录XMN—2学习机使⽤⽅法简介(20)实验⼀典型环节的模拟研究⼀、实验⽬的:1、了解并掌握XMN-2型《⾃动控制原理》学习机的使⽤⽅法,掌握典型环节模拟电路的构成⽅法,培养学⽣实验技能。
2、熟悉各种典型线性环节的阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响。
⼆、实验设备Uo(S)=(K+TS 1)S1?)1()()(21210210CS R R RR R R R S U S U i +++≈(1-19)⽐较式(1-17)和(1-19)得K=21R R R +T=C R R R R ?+2121 (1-20)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。
则由式(1-17)得到111)()(23111022100210++?+++=S C R S C R C R C R S C R R R R S U S U i (1-24) 考虑到R 1》R 2》R 3,则式(1-24)可近似为S C R R R S C R R R S U S U i 2021100101)()(++≈(1-25)⽐较式(1-23)和(1-25)得K P =1R R , T 1=R 0C 1T D =2021C R R R ? (1-26)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。
则由式(1-23)得到U o (S)=(K P +ST 11+T D S )S 1?五、实验报告要求:1、实验前计算确定典型环节模拟电路的元件参数各⼀组,并推导环节传递函数参数与模拟电路电阻、电容值的关系以及画出理想阶跃响应曲线。
2、实验观测记录。
自动控制原理实验指导书
![自动控制原理实验指导书](https://img.taocdn.com/s3/m/ce979a31f01dc281e53af0aa.png)
目录实验一控制系统典型环节的模拟 (1)实验二二阶系统的瞬态响应分析 (4)实验三线性系统稳态误差的研究 (6)实验四线性系统的频率特性的测试 (9)实验五自动控制系统的动态校正 (10)实验六典型非线性环节的静态特性 (14)实验七非线性系统的描述函数法 (19)实验八非线性系统的相平面分析法 (25)实验九控制系统极点的任意配置 (30)实验十具有内部模型的状态反馈控制系统 (36)实验十一状态观测器及其应用 (41)实验十二采样控制系统的分析 (44)实验十三采样控制系统的动态校正 (47)实验一 控制系统典型环节的模拟 一、 实验目的 1、掌握用运放组成控制系统典型环节的电子电路2、测量典型环节的阶跃响应曲线3、通过实验了解典型环节中参数的变化对输出动态性能的影响二、 实验仪器1、自控原理电子模拟实验箱一台2、电脑一台(虚拟示波器)3、万用表一只三、 实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是由R 、C 构成。
基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得: 120)(Z Z U U s G i =-= (1) 由上式可求得由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节比例环节的模拟电路如图1-2所示:图1-1、运放的反馈连接 1212)(R R Z Z s G == (2)图1-2 比例环节取参考值K R 1001=,K R 2002=;或其它的阻值。
2、惯性环节惯性环节的模拟电路如图1-3所示:111/1/)(21212212+=+•=+==TS K CS R R R R CS R CSR Z Z s G (3)图1-3 惯性环节取参考值K R 1001=,K R 1002=,uF C 1=。
3、积分环节积分环节的模拟电路如图1-4所示:TSRCS R CS Z Z s G 111)(12==== (4)图1-4 积分环节取参考值K R 200=,uF C 1=。
《自动控制原理》实验指导书
![《自动控制原理》实验指导书](https://img.taocdn.com/s3/m/8eab3f29a417866fb84a8ee7.png)
《自动控制原理》实验指导书梅雪罗益民袁启昌许必熙南京工业大学自动化学院目录实验一典型环节的模拟研究--------------------------1 实验二典型系统时域响应和稳定性-------------------10 实验三应用MATLAB进行控制系统根轨迹分析----------15 实验四应用MATLAB进行控制系统频域分析------------17 实验五控制系统校正装置设计与仿真-----------------19 实验六线性系统校正-------------------------------22 实验七线性系统的频率响应分析---------------------26 附录:TDN—ACP自动控制原理教学实验箱简介----------31实验一 典型环节的模拟研究一. 实验目的1.熟悉并掌握TD-ACC +设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1.比例环节 (P)A 方框图:如图1.1-1所示。
图1.1-1B 传递函数:K S Ui S Uo =)()( C 阶跃响应:)0()(≥=t Kt U O 其中 01/R R K =D 模拟电路图:如图1.1-2所示。
图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
E 理想与实际阶跃响应对照曲线:① 取R0 = 200K ;R1 = 100K 。
② 取R0 = 200K ;R1 = 200K 。
2.积分环节(I)A .方框图:如右图1.1-3所示。
图1.1-3B .传递函数:TSS Ui S Uo 1)()(=C .阶跃响应: )0(1)(≥=t t Tt Uo 其中 C R T 0=D .模拟电路图:如图1.1-4所示。
《自动控制原理》实验指导书
![《自动控制原理》实验指导书](https://img.taocdn.com/s3/m/dcbd37e0f8c75fbfc77db2b5.png)
信 号 源
自动控制原理实验模块
计算机控制原理实验模块
控制对象模块
CPU 控制模块
RS232 接口
控制对象输出显示模块 图 1-1-1 上位机
各模块相互交联关系框图
自动控制原理实验模块由六个模拟运算单元及元器件库组成,这些模拟运算单元的输入回路和 反馈回路上配有多个各种参数的电阻、电容,因此可以完成各种自动控制模拟运算。 例如构成比例 环节、惯性环节、积分环节、比例微分环节,PID 环节和典型的二阶、三阶系统等。利用本实验机 所提供的多种信号源输入到模拟运算单元中去,再使用本实验机提供的虚拟示波器界面可观察和分 析各种自动控制、计算机控制原理实验的响应曲线。利用本实验平台及虚拟示波器还可以用相轨迹 法和相平面法观察和分析非线性系统的瞬间响应和稳态误差等。 本实验机的元器件库中还提供了直读式的可变电阻和可变电容, 使实验可更方便、 简捷地进行。 由于本实验机除了提供了丰富的元器件库,并且在 A1-A6 模拟运算单元的输入回路和反馈回路 中还预留了多个可由实验人员自行接续的电阻/电容位置, 将方便地扩展各种实验。 预留位置在实验 机中用‘RES’表示。 计算机控制原理实验模块由模数转换器,数模转换器,8253 定时器,8259 中断控制器及模拟运 算单元组成。在 CPU 的运算和控制下,可完成数字 PID 控制,最少拍控制及大林算法等实验。 控制对象模块由温度控制模块, 直流电机模块和步进电机模块组成。 可实现温度闭环控制实验, 直流电机闭环调速实验和步进电机调速实验。还包括外设接口模块,可实现扩展外设各种实验。 CPU 控制模块由十六位微机 8088 及只读存储器 27512, 随机存取存储器 62256, 时钟芯片, RS232
5
(3)运行、观察、记录: 运行 LABACT 程序,进入自动控制菜单下的线性系统的时域分析下的典型环节的 模拟研究实验项目, 再选择开始实验。点击右下角开始, 在按下 SB2 按钮瞬间 (0→+2V 阶跃) ,观察 A6 输出端(Uo)的实际响应曲线 Uo(t) 。然后点击停止, 在观察到的曲 线上移动标尺,测量放大倍数 K,并记录响应曲线。
《自动控制原理》实验指导书
![《自动控制原理》实验指导书](https://img.taocdn.com/s3/m/3ea7705a571252d380eb6294dd88d0d233d43c2e.png)
《自动控制原理》实验指导书31000字实验一、开关量控制与监测实验目的:掌握开关量控制与监测的基本原理及方法。
实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、继电器、开关。
实验内容:1. 使用PLC编程软件进行PLC的程序编写。
2. 使用直流电源作为控制电源,将继电器与开关连接,利用PLC实现开关量控制和监测。
实验步骤:1. 利用PLC编程软件进行PLC的程序编写。
2. 将直流电源的正极与继电器的常闭端相连,继电器的常开端与开关相连。
3. 将开关的另一端与PLC的输入端相连,PLC的输出端与继电器的控制端相连。
4. 将直流电源的负极与PLC实验箱的接地端相连。
5. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。
6. 按下开关,观察继电器的输出,检查程序的正确性。
实验结果:1. 开关按下,PLC输出信号,继电器吸合。
2. 开关松开,PLC输出信号,继电器断开。
实验二、模拟量采集和控制实验目的:掌握模拟量采集和控制的基本原理及方法。
实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、电位器、LED灯。
实验内容:1. 使用PLC编程软件进行PLC的程序编写。
2. 使用电位器作为模拟量输入信号源,利用PLC采集电位器的模拟量信号,并控制LED灯的亮度。
实验步骤:1. 利用PLC编程软件进行PLC的程序编写。
2. 将电位器的信号通过模拟量转换模块输入到PLC的模拟量输入端。
3. 利用PLC的模拟量比较指令,将电位器的模拟量信号转换成数字量信号。
4. 根据数字量输出信号的状态,控制LED灯的亮度。
5. 将直流电源的负极与PLC实验箱的接地端相连。
6. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。
7. 调节电位器,观察LED灯的亮度变化。
实验结果:1. 电位器调整时,模拟量输入信号发生变化。
2. 根据模拟量输入信号的大小,PLC输出数字量信号,控制LED灯的亮度。
自动控制原理实验指导书
![自动控制原理实验指导书](https://img.taocdn.com/s3/m/cd57d9aac9d376eeaeaad1f34693daef5ef713e8.png)
目录第一章自动控制原理实验 (3)1.1线性系统的时域分析 (3)1.1.1典型环节的模拟研究 (3)1.1.1.1比例环节 (3)1.1.1.2惯性环节 (3)1.1.1.3积分环节 (4)1.1.1.4比例积分环节 (4)1.1.1.5比例微分环节 (5)1.1.1.6 PID(比例积分微分)环节 (5)1.1.2二阶系统瞬态响应和稳定性 (6)1.1.3三阶系统的瞬态响应和稳定性 (7)1.2线性系统的频域分析 (8)1.2.1一阶惯性环节的频率特性曲线 (8)1.2.2二阶闭环系统的频率特性曲线 (8)1.2.3二阶开环系统的频率特性曲线 (9)1.3线性系统的校正与状态反馈 (10)1.3.1频域法串联超前校正 (10)1.3.2频域法串联迟后校正 (13)1.3.3时域法串联比例微分校正 (16)1.3.4时域法局部比例反馈校正 (18)1.3.5时域法微分反馈校正 (19)1.3.6线性系统的状态反馈及极点配置 (21)1.4非线性系统的相平面分析 (22)1.4.1典型非线性环节 (22)1.4.1.1 测量继电特性 (22)1.4.1.2 测量饱和特性 (23)1.4.1.3 测量死区特性 (23)1.4.1.4 测量间隙特性 (24)1.4.2二阶非线性控制系统 (24)1.4.2.1 继电型非线性控制系统 (24)1.4.2.2 饱和型非线性控制系统 (25)1.4.2.3 间隙型非线性控制系统 (25)1.4.3三阶非线性控制系统 (26)1.4.3.1 继电型非线性三阶控制系统 (26)1.4.3.2 饱和型非线性三阶控制系统 (27)第二章计算机控制技术实验 (28)2.1采样与保持 (28)2.1.1采样实验 (28)2.1.2采样控制 (28)2.2微分与数字滤波 (29)2.2.1一阶微分反馈控制 (29)2.2.2四点微分均值反馈控制 (30)2.2.3模拟一阶惯性数字滤波 (30)2.2.4四点加权平均数字滤波 (31)2.3数字PID控制 (31)2.3.1被控对象辨识 (34)2.3.1.1 对象开环辨识 (34)2.3.1.2 对象闭环辨识 (34)2.3.2二阶PID控制 (35)2.3.2.1 位置型PID控制 (35)2.3.2.2 增量型PID控制 (35)2.3.2.3 积分分离PID控制 (36)2.3.2.4 带死区PID控制 (37)2.3.2.5 Ⅰ型位置型PID控制 (37)2.3.2.6 Ⅰ型增量型PID控制 (38)2.3.2.7 带有延迟对象PID控制 (38)2.3.3三阶PID控制 (39)2.3.3.1 位置型PID控制 (39)2.3.3.2 Ⅰ型位置型PID控制 (40)2.3.3.3 Ⅰ型增量型PID控制 (40)2.3.4串级控制 (41)2.3.4.1 二阶串级PID控制 (42)2.3.4.2 三阶串级PID控制 (43)2.3.5比值控制 (43)2.3.5.1 单闭环比值PID控制 (44)2.3.5.2 双闭环比值PID控制 (45)2.3.6前馈-反馈控制 (45)2.3.6.1 静态前馈-反馈PID控制 (46)2.3.6.2 动态前馈-反馈PID控制 (47)2.3.7解耦控制 (47)2.3.7.1 静态前馈补偿解耦PID控制 (48)2.3.7.2 动态前馈补偿解耦PID控制 (51)2.4二阶位式控制 (51)2.5直接数字控制实验 (52)2.5.1大林算法控制 (52)2.5.1.1 大林算法控制(L=2) (53)2.5.1.2 消除振铃大林算法控制(L=2) (54)2.5.2最少拍控制 (54)2.5.2.1最少拍有纹波控制系统 (55)2.5.2.2最少拍无纹波控制系统 (56)第三章控制系统应用实验 (57)3.1直流电机PID控制 (57)3.2温度PID控制 (58)3.3温度PWM方式PID控制 (58)3.4温度位式控制 (59)3.5烤箱PWM方式PID控制 (60)3.6步进电机控制 (61)附录:验机与随机附件清单 (62)第一章 自动控制原理实验1.1 线性系统的时域分析1.1.1典型环节的模拟研究1.1.1.1比例环节典型比例环节模拟电路如图1-1-1所示。
实验 自动控制原理实验指导书
![实验 自动控制原理实验指导书](https://img.taocdn.com/s3/m/33049a38f111f18583d05ac9.png)
自动控制原理实验指导书吴鹏松编班级学号姓名2012 年 3 月前言自动控制原理实验是自动化类学科的重要理论课程实验。
本科自动控制原理分为经典控制理论和现代控制理论基础两部分,自动控制原理实验主要是针对经典控制理论的实验,采用的运算电路来进行的。
现代控制理论实验由于模型比较复杂,采用MATLAB软件进行数字仿真实验。
离散控制系统实验与计算机控制系统实验是有很大区别的,不能简单的认为在自动控制原理实验箱上就能进行计算机控制系统实验。
自动控制原理实验预习时需要对电路图进行理论分析和综合,可以借助MATLAB软件进行辅助分析和综合。
自动控制原理实验指导书不包括实验箱和实验软件的使用说明,相关的内容参考实验软件LABACT软件中的帮助文件。
由于作者水平有限,书中错误之处在所难免,恳请广大师生及读者提出宝贵意见及建议。
编者目录实验一典型环节的模拟研究实验二二阶系统特征参数对系统性能的影响实验三典型系统的动态特性与稳定性测试实验四开环增益与零极点对系统性能的影响实验五典型系统的频率特性测试实验六线性系统的串联校正实验七A/D与D/A 转换及零界阶保持器实验八离散控制系统动态性能和稳定性的混合仿真研究实验九非线性系统的相平面法分析实验十非线性系统的描述函数法分析附录1 教学考核方法附录2 实验课安排时间要求实验一 典型环节的模拟研究一.实验目的1.通过搭建典型环节模拟电路,熟悉并掌握自动控制综合实验台的使用方法。
2.熟悉各种典型环节的的阶跃响应。
3.研究参数变化对典型环节阶跃响应的影响。
4.掌握ACES 软件的使用方法。
二.实验仪器1.自动控制综合实验箱 2.计算机 3.LABACT 软件三.实验内容1.观察比例环节的阶跃响应曲线典型比例环节模拟电路如图1-1所示,比例环节的传递函数为: K s U s U i =)()(0图1-1 典型比例环节模拟电路(1) 比例系数(放大倍数)选取: A .当K=1、K=2、K=5时,分别观测阶跃响应曲线,并记录输入信号输出信号波形;B .比例放大倍数 K=R2/R1;(2) 阶跃信号设置:阶跃信号的幅值选择1伏(或5伏)(3) 连接虚拟示波器:A .将输入阶跃信号用排题线与示波器通道CH1相连接;B .将比例环节输出信号(实验电路A2的“OUT2”)与示波器通道CH2相连接。
《自动控制原理》实验指导书
![《自动控制原理》实验指导书](https://img.taocdn.com/s3/m/37ee4db102d276a201292e08.png)
目录实验一典型环节的电路模拟 (1)实验二典型二阶系统动态性能和稳定性分析 (3)实验三典型环节(或系统)的频率特性测量 (5)实验四线性系统串联校正 (7)实验五MATLAB控制系统数学模型仿真 (11)实验六SIMULINK环境下典型环节阶跃响应仿真及分析 (14)附录1 ACT-I控制理论实验箱说明 (16)附录2 实验一模拟电路参考及分析 (18)附录3 实验三参考电路及分析 (22)实验一典型环节的电路模拟(设计性)一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。
2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。
二.实验内容1.设计各种典型环节的模拟电路。
2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。
三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
注意实验接线前必须先将实验箱上电,以对运放仔细调零。
然后断电,再接线。
接线时要注意不同环节、不同测试信号对运放锁零的要求。
在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。
2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
无上位机时,利用实验箱上的信号源单元U2所输出的周期阶跃信号作为环节输入,即连接箱上U2的“阶跃”与环节的输入端(例如对比例环节即图1.1.2的Ui),同时连接U2的“锁零(G)”与运放的锁零G。
然后用示波器观测该环节的输入与输出(例如对比例环节即测试图1.1.2的Ui和Uo)。
注意调节U2的周期阶跃信号的“频率”电位器RP5与“幅值”电位器RP2,以保证观测到完整的阶跃响应过程。
《自动控制原理》实验指导书(正文全)
![《自动控制原理》实验指导书(正文全)](https://img.taocdn.com/s3/m/69e5bae9f8c75fbfc67db204.png)
实验一基于MATLAB实验平台的系统被控对象的建立与转换[说明]一个控制系统主要由被控对象、检测测量装置、控制器和执行器四大部分构成。
用于自控原理实验方面的被控对象可以有①用于实际生产的实际系统的真实被控对象,如进行温度控制的锅炉、进行转速控制的电机等;②用于实验研究的真实被控对象,如进行温度控制的实验用锅炉、进行转速控制的电机等;③用运算放大器等电子器件搭建的电模拟被控对象(电路板形式),它们的数学模型与真实被控对象的数学模型基本一致,而且比真实被控对象更典型,更精准。
它们是实物型原理仿真被控对象。
④计算机仿真的被控对象,它们是非实物型原理仿真被控对象,是以各种形式展现的被控对象的数学模型。
它们通过计算机屏幕展示,或是公式形式的数学算式,或是数字形式的数表、矩阵,或是图形形式的结构框图,或是动画形式的真实被控对象实物的动态图形。
在自控原理实验中,①极少用;②用的不多;③用的较多;④在MATLAB软件广泛使用后,用的较多。
③、④各有其优缺点。
MATLAB软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。
我们的实验采用的是④:采用MATLAB软件平台的计算机仿真的被控对象。
这里“被控对象的建立”,指在MATLAB软件平台上怎样正确表示被控对象的数学模型。
[实验目的]1.了解MATLAB软件的基本特点和功能;2.掌握线性系统被控对象传递函数数学模型在MATLAB环境下的表示方法及转换;3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法;4.掌握在SIMULINK环境下系统结构图的形成及整体传递函数的求取方法。
[实验指导]一、被控对象模型的建立在线性系统理论中,一般常用的描述系统的数学模型形式有:(1)传递函数模型——有理多项式分式表达式(2)传递函数模型——零极点增益表达式(3)状态空间模型(系统的内部模型)这些模型之间都有着内在的联系,可以相互进行转换。
1、传递函数模型——有理多项式分式表达式设系统的传递函数模型为1110111......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++==---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。
自动控制原理实验指导书
![自动控制原理实验指导书](https://img.taocdn.com/s3/m/8f0d7eaad1f34693daef3ee1.png)
实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.PC计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2.时域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2)测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。
5)鼠标单击实验课题弹出实验课题参数窗口。
在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6)利用软件上的游标测量响应曲线上的最大值和稳态值,带入下式算出超调量:YMAX - Y∞Ó%=——————×100% Y∞TP 与TS:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到TP 与TS。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。
1 G(S)= -R2/R12.惯性环节的模拟电路及其传递函数如图1-2。
G(S)= - K/TS+1K=R2/R1,T=R2C3.积分环节的模拟电路及传递函数如图1-3。
自动控制原理试验指导书
![自动控制原理试验指导书](https://img.taocdn.com/s3/m/adcd54e481c758f5f61f6723.png)
《自动控制原理》实验指导书目录实验一典型环节的模拟研究及动态系统的时域分析(验证型)(2)实验二线性控制系统根轨迹分析(验证型)(2)实验三频率响应和频率特性曲线的绘制(综合型)(2)实验一典型环节的模拟研究及动态系统的时域分析一、实验目的1. 熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
2.了解参数变化对典型环节动态特性的影响。
3. 观察和分析二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线。
4.研究二阶闭环系统的结构参数(无阻尼振荡频率和阻尼比)对过渡过程的影响。
5.在阶跃信号输入时,掌握欠阻尼二阶闭环系统的动态性能指标的计算。
6.了解参数对系统瞬态性能及稳定性的影响。
二、实验设备PC机及MATLAB平台三、实验原理及方法典型环节的方块图及传递函数如表1-1 所示。
表1-1 典型环节的方块图及传递函数图2-1 是典型二阶系统的方块图,本实验以Ⅰ型二阶系统为例,观察和分析二阶系统的瞬态响应。
四、实验内容及步骤1.观测比例、积分、惯性、微分和振荡环节的阶跃响应曲线,用Matlab 进行二阶系统建模。
2.二阶系统的阶跃响应;五、实验报告要求:1.实验前按给定参数算出二阶系统的性能指标,,p s r t t 的理论值。
2.实验观测记录。
3.实验结果分析、体会和建议。
附表实验二线性控制系统根轨迹分析一.实验目的1. 掌握用计算机绘制根轨迹的方法。
2. 通过仿真结果和理论计算的对比,加深对根轨迹绘图规则的理解。
3. 通过计算机绘制的根轨迹图,分析系统的稳定性。
二.实验仪器设备PC机及MATLAB平台三.实验原理及方法1. 实验原理控制系统的稳定性,由其闭环极点唯一确定,而系统过渡过程的基本特性,则与闭环零极点在s 平面的位置有关。
根轨迹法就是在已知控制系统开环传递函数零极点分布的基础上,研究某些参数变化时控制系统闭环传递函数零极点分布影响的一种图解方法。
利用根轨迹法,能够分析系统的瞬态响应特性以及参数变化对瞬态响应特性的影响。
自动控制原理实验指导书(1-4)
![自动控制原理实验指导书(1-4)](https://img.taocdn.com/s3/m/a7457e6f0b1c59eef8c7b470.png)
4、分析ξ和ωn 对二阶系统动态响应的影响;
五、实验步骤
5
《自动控制原理》实验指导书
1)点击“开始”菜单中的 如图 2 所示窗口;
图标,进入 EWB 实验平台。这时 EWB 会自动打开
自定义器件 信号源库 基本电路器件库
二极管库 晶体三极管库
逻辑门电路库 数字集成芯片库 数字电路库
元器件特性 运行或停止实验
5)测量出该系统的穿越频率 ωc 、相角裕量 γ 和幅值裕量 K g 。
9
《自动控制原理》实验指导书
2、 G2 (S )
=
6(1 + 0.9s) S 2 (0.1S + 1)
1)按同样的方法构建一个开环传递函数为:G2 (S )
=
6(1 + 0.9s) S 2 (0.1S + 1)
的单位反馈系统的实验模
13
《自动控制原理》实验指导书
R(s)
GC(S)
20
C(s)
S (0.5S +1)
图 3—4 校正后系统方块图
注意校正后系统负反馈的实现。
四、实验内容及步骤
1、测量未校正系统的性能指标。
(1)按图 3-2 接线画图;
(2)加阶跃电压,观察阶跃相应曲线,并测出超调量 MP 和调节时间 ts。 2、测量校正后系统的性能指标。
分析图形
虚拟器件库
其它器件库
模拟集成芯片库 混和集成芯片库
显示器件库 控制器件库
图2
在此窗口下,同学们就可以自己在元件库中选择元件组图了。组图完成后点击运行按钮开始 各项实验内容。为了让同学们有更多的时间分析电路和思考问题,实验室现将实验电路绘制 于"D:\My Documents\EDA user\EWB"文件夹中.同学们可以根据下面的步骤来完成 实验。
自动控制原理实验指导书
![自动控制原理实验指导书](https://img.taocdn.com/s3/m/39aa546ac950ad02de80d4d8d15abe23482f037a.png)
自动控制原理实验指导书自动控制原理实验指导书实验一控制系统典型环节的模拟及一阶系统的特性分析第一部分:典型环节的模拟一、实验目的1、熟悉超低频扫描示波器的使用方法2、掌握用运放组成控制系统典型环节的电子模拟电路3、测量典型环节的阶跃响应曲线4、通过本实验了解典型环节中参数的变化对输出动态性能的影响二、实验仪器1、控制理论模拟实验箱一台2、超低频慢扫描示波器一台3、万用表一只三、实验原理以运算放大器为核心组件,由其不同的输入R-C 网络和反馈R-C 网络构成控制系统的各种典型环节。
各典型环节的模拟电路及结构图如下: 1.比例环节1.1比例环节电路图:G (S )=-K其中K =R2/R11.2比例环节结构图:2. 惯性环节2.1惯性环节电路图: G(S)=1KTs -+ K =R 2/R 1 T =R 2C2.2惯性环节结构图:图1-1图1-2图1-3图1-43积分环节3.1积分环节电路图G(S)=1TST=R 1C图1-5 积分环节电路图3.2积分环节结构图图1-64微分环节4.1微分环节电路图图1-74.2微分环节结构图图1-85. 比例微分环节5.1比例微分环节电路图:图1-9比例微分环节电路图根据以上环节得:G(S)=31221[()1]1R R R Cs R R Cs +++ 此时:R 1C=51K×1u=0.051<<1故1R Cs 项可忽略不计,得传递函数为:G(S)=3122[()1]R R R Cs R ++ 5.2比例微分环节结构图图1-10其中:K=R3/R2 T=R1+R2 四、实验内容1、在模拟实验箱连线实现下列典型环节,观察并记录它们的阶跃响应波形。
1)比例环节 2)积分环节 3)微分环节 4)惯性环节 5) 比例微分环节五、实验报告要求1、画出五种典型环节的实验电路图,并注明参数。
2、测量并记录各种典型环节的单位阶跃响应,并注明时间坐标轴。
第二部分:一阶系统的特性分析一、实验目的K(TS+1)1、观察一阶系统在阶跃和斜坡输入信号作用下的瞬态响应。
自控原理实验指导书
![自控原理实验指导书](https://img.taocdn.com/s3/m/e05b3f7002768e9951e7385c.png)
实验一典型环节及其阶跃响应一、实验目的1、学习构成典型环节的模拟电路。
2、熟悉各种典型环节的阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响,并学会由阶跃响应曲线计算典型环节的传递函数。
二、实验内容各典型环节的模拟电路及结构图如下:图1-1-1 比例环节电路图图1-2-1 惯性环节电路图图1-1-2 比例环节结构图2-2 惯性环节结构图图1-3-1 积分环节电路图图1-4-1 微分环节电路图图1-3-2 积分环节结构图图1-4-2 微分环节结构图三、实验步聚1、 将输入端ui 与数据通道接口板上的DAO 连接、输出端uo 与实验平台信号引出区的INO 孔连接。
(若无特别声明,其它实验中涉及运放电路板及ui 及uo 均按此连线,不再赘述)。
2、 启动计算机,运行“系统设置”菜单,选择串口。
(若无特别声明,其它实验中均同此,不再赘述。
如不选择,则设为默认值,选择COM1通讯端口)3、 打开“自动控制原理实验系统”,打开“实验选择”菜单,选择“典型环节及其阶跃响应”实验。
4、 选择“参数设置”命令,设置采样周期,采样点数和设定电压。
5、 选择“运行观测”命令,观察阶跃响应曲线,改变模拟电路参数后,再重新观察阶跃响应曲线的变化。
6、 为了更好的观察曲线,再“参数设置”命令中,设置“曲线放大”倍数,“运行观测”。
7、 记录波形及数据(保存结果、打印图象)。
8、 连接其它模拟电路,重复步骤3、4、5、6注:打印图像只有在曲线放大为“1”时打印(其它实验相同)四、实验报告1、 画出惯性环节、积分环节、比例微分环节的电路图和所记录的响应曲线。
2、 由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与值比较。
图1-5-1 比例微分环节电路图传递函数为:G(s) = (R3/R2) ((R1+R2)CS+1)图1-5-2 比例微分环节结构图实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的阻尼比ξ和无阻尼自然频率ω对系统动态性能的影响。
(完整word)自动控制原理实验指导书
![(完整word)自动控制原理实验指导书](https://img.taocdn.com/s3/m/b9f228e16edb6f1afe001fb6.png)
目录第一部分使用说明书 (1)第一章系统概述 (1)第二章硬件的组成及使用 (2)第二部分实验指导书 (4)第一章控制理论实验 (4)实验一典型环节的电路模拟 (4)实验二二阶系统的瞬态响应 (9)实验三高阶系统的瞬态响应和稳定性分析 (11)实验五典型环节和系统频率特性的测量 (16)实验七典型非线性环节的静态特性 (21)实验十三采样控制系统的分析 (26)附录上位机软件使用流程 (29)第一部分使用说明书第一章系统概述“THKKL—6”型控制理论及计算机控制技术实验箱是我公司结合教学和实践的需要而进行精心设计的实验系统。
适用于高校的控制原理、计算机控制技术等课程的实验教学。
该实验箱具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。
实验箱的硬件部分主要由直流稳压电源、低频信号发生器、阶跃信号发生器、交/直流数字电压表、电阻测量单元、示波器接口、CPU(51单片机)模块、单片机接口、步进电机单元、直流电机单元、温度控制单元、通用单元电路、电位器组等单元组成。
数据采集部分采用USB2。
0接口,它可直接插在IBM-PC/AT 或与之兼容的计算机USB通讯口上,有4路单端A/D模拟量输入,转换精度为12位;2路D/A模拟量输出,转换精度为12位;上位机软件则集中了虚拟示波器、信号发生器、Bode图等多种功能于一体。
在实验设计上,控制理论既有模拟部分的实验,又有离散部分实验;既有经典控制理论实验,又有现代控制理论实验;计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验;第二章硬件的组成及使用一、直流稳压电源直流稳压电源主要用于给实验箱提供电源。
有+5V/0。
5A、±15V/0。
5A及+24V/2.0A四路,每路均有短路保护自恢复功能。
它们的开关分别由相关的钮子开关控制,并由相应发光二极管指示。
其中+24V主要用于温度控制单元.实验前,启动实验箱左侧的电源总开关。
自控原理实验指导书
![自控原理实验指导书](https://img.taocdn.com/s3/m/128c0363a45177232f60a2b4.png)
《自动控制原理》实验指导书《自动控制原理》课程组2006年5月目录实验一典型线性环节的暂态特性 (1)实验二二阶系统的阶跃响应 (3)实验三线性系统稳定性研究 (5)实验四线性系统稳态误差的研究 (7)实验五控制系统的校正(设计性实验) (9)实验六典型非线性环节的静态特性 (10)实验七非线性系统的描述函数法 (14)实验八采样控制系统的分析 (17)实验九单闭环温度恒值控制系统(选作实验) (20)实验十单容水箱液位定值控制系统(选作实验) (24)实验一典型线性环节的暂态特性一、实验目的1. 熟悉THBDC-1型控制理论·计算机控制技术实验平台及上位机软件的使用。
2. 熟悉各典型环节的传递函数及其特性,掌握典型环节的电路模拟。
3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线;三、实验内容1. 设计并组建各典型环节的模拟电路;2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;四、实验步骤1. 比例(P)环节根据比例环节的方框图,选择实验台上的通用电路单元设计并组建模拟电路,如下图所示。
图中后一个单元为反相器,其中R0=200K。
若比例系数K=1时,电路中的参数取:R1=100K,R2=100K。
若比例系数K=2时,电路中的参数取:R1=100K,R2=200K。
当u i 为2V阶跃信号时,用上位软件观测并记录相应K值时的实验曲线,并与理论值进行比较。
另外R2还可使用可变电位器,以实现比例系数为任意值。
注:实验操作前必须先熟悉“THBDC-1 使用说明书”部分。
2. 积分(I)环节根据积分环节的方框图,选择实验台上的通用电路单元设计并组建模拟电路,如下图所示。
图中后一个单元为反相器,其中R0=200K。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自动控制原理》实验指导书(适用于11、12级自动化、测控技术与仪器专业、电气工程及其自动化)沈阳理工大学应用技术学院2010年10月实验一认识性实验 (3)——仿真软件入门 (3)实验二典型环节的模型电路和软件仿真 (7)实验三积分环节、微分环节和的模拟仿真 (9)实验四一阶系统的阶跃响应 (14)实验五二阶系统阶跃响应 (17)实验六控制系统稳定分析 (22)实验七控制系统的稳态误差分析 (26)实验八一阶系统频率特性测量 (31)实验一认识性实验——仿真软件入门一、实验目的1.了解和熟悉仿真软件Multisim的基本功能和使用方法。
2.掌握在仿真软件Multisim平台上绘制电路图和进行仿真实验。
二、实验内容1、线性电阻软件的伏安特性曲线测试(1)单击计算机的Mulitsim图标进入基本界面。
(2)用鼠标单击仿真软件基本界面上面的真实元件工具条中的“Basic”按钮,如图1所示,在弹出的的对话框“Family”栏下选取“RESISTOR(电阻)”,再在“Component”栏下选取“3000hm 5%”的电阻,如图2所示,最后点对话框的右上角的”OK”按钮,将电阻调入电路窗口。
图1(3)按工具条中的“Source(电源)”按钮,在“Family”栏中选取“POWER_SOUCERS”,再在“Component”栏下选取“DC_POWER”,将直流电源调入电路窗口。
(4)按上述方法,再选取“GROUND”,将底线符号调入窗口。
(5)在窗口右侧的虚拟仪表中调用“Multimeter(数字万用表)”,放入电路窗口中。
(6)按下图3连成电路,最后按界面右上角的“仿真开关”进行仿真,观察两块万用表的数值。
图32、RC 振荡电路(1)按上述选取电路器件的方法选取划线变阻器、电源、电容、开关、接地、示波器,接成如图4的电路图。
图4(2)观察示波器的波形,将波形的变化图画在实验报告中。
3、555定时器(1)按前面介绍的方法选取图5中所用到的电路器件,并按图5连成电路图。
VCC图5(2)观察示波器的中的波形,当改变图中电阻R1,R2阻值或电容C1的容值,观察小灯的闪烁情况。
(CR R f )2(43.121+=)(3)把图5连成实物图,并将波形图画在实验报告上。
三、实验报告1、将图4,图5的线路图和波形图画在报告中,并讨论图5中的灯的闪烁频率受什么影响。
2、画出下面的电路图,并附在实验报告中。
10mV实验二 典型环节的模型电路和软件仿真一、实验目的(1)学习比例环节,惯性环节的模拟方法。
(2)学习比例环节,惯性环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
(3)掌握用运放组成控制系统比例环节,惯性环节的电子电路。
(4)通过实验了解典型环节中参数的变化对输出动态性能的影响。
二、实验内容(1)构成比例、惯性环节的模拟电路。
(2)用Multisim 仿真各典型环节。
(3)由阶跃响应计算典型环节的传递函数。
三、电路模拟实验原理1.构成比例环节的模拟电路(见图1) 该电路的传递函数为:12)(R R s G -=。
U1图1 比例环节的模拟电路原理图比例环节中,分别取以下数据,观察现象:①K R OK R 20,121== ②M R M R 5.1,121== ③K R K R 120,1521==2.构成惯性环节的模拟电路(见图2) 该电路的传递函数为:1)(+-=Ts Ks G ,其中12R R K =,12C R T =。
C10.1uF图2 惯性环节模拟电路原理图惯性环节中,分别取以下数据,观察现象: ①M R M R 1,121==F C μ01.0= ②M R M R 1,121==F C μ5.0= ③110R =M ,220R =M ,0.01C F μ=。
四、实验报告要求(1)写出图1、图2的传递函数。
(2)把图1、图2示波器的波形画在实验报告中。
五、问题讨论根据测得的比例和惯性环节单位阶跃响应曲线,分析参数变化对动态特性的影响?实验三 积分环节、微分环节和的模拟仿真一、实验目的1、学习积分环节,微分环节的模拟方法。
2、学习积分环节,微分环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
3、掌握用运放组成控制系统积分环节,微分环节的电子电路。
4、通过实验了解典型环节中参数的变化对输出动态性能的影响。
二 实验设备和仪器实验采用Multisim 电子仿真软件,进行典型环节的仿真。
三、实验线路及原理以运算放大器为核心元件,有不同的R-C 输入网络和反馈环节网络组成的各种典型,如图1,图中1z ,2z 为复数阻抗,它们都由R ,C 构成。
图1 运放的反向连接基于图中A 点的电位为虚地, 略去流入运放的电流,则由图1得:由上式可求得由下列模拟电路组成典型环节的传递函数及其单位阶跃响应。
四 实验步骤1、在仿真软件中画出实验原理图,并进行仿真,观测计算机屏幕出现的响应曲线及数据。
2、记录波形及数据。
3、分析实验响应曲线与理论仿真曲线的区别,并分析出差异的原因。
五 实验内容(1)分别画出积分,微分和振荡环节的模拟电路图。
(2)按下列分典型环节的传递函数,调节响应的模拟电路的参数,观察并记录其单位阶跃响应波形。
1、积分环节:积分环节的传递函数如下:TSS C R R S C s G 111)(11111=== 式中积分常数11C R T =。
积分环节的模拟电路如图2所示,其中1,0.01R C μ=M =。
其输出响应曲线如图3所示。
图2 积分环节的模拟电路图3 积分环节的输出曲线其中1,0.01R C μ=M = 2、微分环节:11110()()1()R U S G S R C S TS Ui S C S====式中微分常数11C R T =。
微分环节的模拟电路如图4所示,其中1,0.01R C μ=M = 其输出响应曲线如图5所示。
0.01uFJ1Key = AV1-1 V23图4 微分环节的模拟电路图5 微分环节的输出曲线3、比例加微分环节:图6和图7分别为比例微分环节的模拟电路和输出曲线。
图6比例微分的模拟电路图7 比例微分的输出曲线其中11R =M ,21R =M ,0.001C F μ=实验四 一阶系统的阶跃响应一、实验目的1、研究一阶系统数学模型的建立及函数表达式的推导;2、研究一阶系统的时域响应,以及分析系统的时间常数对系统性能的影响;3、掌握线性定常系统动态性能指标的测试方法;4、、研究线性定常系统的参数对其动态性能的影响。
二、实验设备及软件Multisim 软件三、实验内容用Mulitsim 软件画出一阶系统模拟电路图如图1,并研究其阶跃响应,响应曲线如图2,研究一阶系统的瞬态反应。
图1二阶系统模拟电路图上图一阶系统的传递函数为:011()11()()11i U s G s U s R C S TS ===++ 其中:11C R T =四、实验步骤(1)分别取FC M R μ04.0,111==;FC M R μ01.0,111==;F C R μ06.0,25.011==数据,画出模拟电路图,记录每组数据的输出曲线,观察示波器的输出波形。
(2) 测出上面数据所对应曲线的上升时间r t 、调节时间s t 、超调量%σ,把测出的数据填入下表。
(注:上升时间可以认为是输出响应从零开始第一次达到稳态时的90%时所用的时间。
)五、实验报告1、画出一阶系统的模拟电路图,并求系统的传递函数和时间常数。
2、将3组数据所对应上升时间、调节时间、超调量填入表中。
本次实验中,决定一阶系统响应快慢的都有那些因素?实验五二阶系统阶跃响应一、实验目的1、掌握二阶控制系统的电路模拟方法及定量分析二阶系统的阻尼比ξ和自ω对系统动态性能的影响。
然振荡频率n2、在Mulitsim中建立二阶电路,通过示波器观测控制系统的各项性能指标。
3、加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
二、实验内容1、分析典型二阶系统的和变化时,对系统的阶跃响应的影响。
2、用Mulitisim软件画出二阶系统的模拟电路图(如图1)并仿真出不同时的阶跃响应曲线。
3、用实验的方法测出二阶系统的上升时间、峰值时间、调节时间、超调量。
三、实验原理1、选取信号源为直流电压源,电阻和电容选用现实原件,运放和电位计选用虚拟原件,对电位计R设置B作为增加数值的触发信号(相应的,shift+B作为减小数值的触发信号)。
2、仿真分析该二阶系统的传递函数的传递函数是图1 二阶系统电路图由公式:可以得到:,电位计R的范围是0~250KΩ,调节电位计R的大小以及开关的开合,可以观察到二阶系统的上升时间、峰值时间、调试时间、超调量等性能指标的变化。
四、实验步骤1、当开关J2断开时,阻尼比系数,即无阻尼情况,观察输出波形图(见图2),并求出各个性能指标。
图2 时的阶跃曲线2、开关J2闭合,当R为250 KΩ时,阻尼比系数,为欠阻尼情况,观察输出波形图(见图3),并求出各个性能指标。
图3 时的阶跃曲线3、开关J2闭合,当R为50 KΩ时,阻尼比系数,为临界阻尼情况,观察输出波形图(见图4),并求出各个性能指标。
图4时的阶跃曲线4、开关J2闭合,当R为25 KΩ时,阻尼比系数,为过阻尼情况,观察输出波形图(见图5),并求出各个性能指标。
图5时的阶跃曲线五、实验报告1、画出二阶系统的模拟电路图,仿真出不同时的曲线。
2、根据不时的曲线,在模拟示波器上求出上升时间、峰值时间、调节时间、超调量,并填入下表:建立RLC振荡电路的数学模型,求出其传递函数,并指出自然振荡频率和表达式。
实验六 控制系统稳定分析一、实验目的本实验的目的在于检验系统的稳定性与系统本身结构参数的关系。
在控制理论中所讨论的系统稳定性是指在脉冲响应下,系统响应是收敛还是发散的,本实验系统输入阶跃信号。
1、观察系统的不稳定现象。
2、研究系统开环增益和时间常数对稳定性的影响。
二、实验内容构成下述环节的模拟线路,并测量其阶跃响应。
分析开环增益oK 和时间常数T 改变对习题稳定性的影响,以及利用劳斯判据确定其稳定域值。
图1 稳定性实验习题的模拟电路系统开环传递函数:)1)(11.0(10)(++=Ts s s K s G o其中,12R R Ko =,Ω=K R 1001,Ω==Ω-=K R RC T K R 100,,50002,取F C μ1.0=三、实验步骤1、按照电路图接好线路,输入信号F,=;改变电位1.01=CVUrμ器,使R2的有效阻值分别等于100KΩ、200 KΩ、300 KΩ,观察系统的输出波形(波形见图2、3、4),分析Ko变化对系统稳定性的影响。
2、在步骤1的条件下,使系统工作在不稳定状态,即工作在等幅振荡情况,电容0.1μf变成1μf,观察系统稳定性的变化。