数三考研不用看的部分内容及重要性分布
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4区间估计(●)
5正态总体均值与方差的区间估计(●)
6(0-1)分布参数的区间估计(●)
7单侧置信区间(●)
3频率与概率
4等可能概型(古典概型)
5条件概率
6独立性
第二章随机变量及其分布(★)
1随机变量
2离散型随机变量及其分布律
3随机变量的分布函数
4连续型随机变量及其概率密度
5随机变量的函数的分布
第三章多维随机变量及其分布(★)
1二维随机变量
2边缘分布
3条件分布
4相互独立的随机变量
5两个随机变量的函数的分布
第一节对弧长的曲线积分
第二节对坐标的曲线积分
第三节格林公式及其应用
第四节对面积的曲面积分
第五节对坐标的曲面积分
第六节高斯公式通量与散度
第七节斯托克斯公式环流量与旋度
总习题十一
第十二章无穷级数
第一节常数项级数的概念和性质(☆)(●其中柯西审敛)
第二节常数项级数的审敛法(★定理1、2及推论、3、4。☆定理6.、7、8。
●定理5、9、10)
第三节幂级数(☆)
第四节函数展开成幂级数(☆)
第五节函数的幂级数展开式的应用(☆一、二。●三)
第六节函数项级数的一致收敛性及一致收敛级数的基本性质(▲)
第七节傅里叶级数(▲)
第八节一般周期函数的傅里叶级数(▲)
《概率论与数理统计》
第一章概率论的基本概念(★)
1随机试验
2样本空间、随机事件
第五节积分表的使用(★)
总习题四
第五章定积分
第一节定积分的概念与性质(☆)
第二节微积分基本公式(★)
第三节定积分的换元法和分部积分法(★)
第四节反常积分(☆概念,★计算)
第五节反常积分的审敛法г函数(●)
总习题五
第六章定积分的应用
第一节定积分的元素法(★)
第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)
下册
Z8全部
Z9第90页第六节;
第101页第七节;
Z10第157页第三节;
165页第四节;
Z11全部
Z12第261页定理6;
第278页第四节;
第285页第五节;
第302页第七节;
第316第八节
线性代数不用看的部分:
第102页第五节
概率论与数理统计要考的部分
第一二三四五章;
第六章第135页抽样分布;
第七章第7章第一节点估计和第二节最大似然估计
注意:数学课本和习题中标注星号的为不考内容
《高等数学》
标记及内容要求:
★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,
对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题。要大量做题。
第八节多元函数的极值及其求法(☆概念。★计算、必要条件)
第九节二元函数的泰勒公式(●)
第十节最小二乘法(●)
总习题九
第十章重积分
第一节二重积分的概念与性质(☆)
第二节二重积分的计算法(★)
第三节三重积分(▲)
第四节重积分的应用(★二重积分部分)
第五节含参变量的积分(●)
总习题十
第十一章曲线积分与曲面积分(▲)
第八节常系数非齐次线性微分方程(★二阶的)
第九节欧拉方程(●)
第十节常系数线性微分方程组解法举例(●)
总习题七
附录I二阶和三阶行列ቤተ መጻሕፍቲ ባይዱ简介附录II几种常用的曲线附录、积分表
第八章空间解析几何与向量代数(▲)
第一节向量及其线性运算
第二节数量积向量积混合积
第三节曲面及其方程
第四节空间曲线及其方程
第五节平面及其方程
第六节空间直线及其方程
总习题八
第九章多元函数微分法及其应用
第一节多元函数的基本概念(☆)
第二节偏导数(☆概念。★计算)
第三节全微分(☆概念。★计算)
第四节多元复合函数的求导法则(☆概念。★计算)
第五节隐函数的求导公式(☆)(★掌握求导方法)
第六节多元函数微分学的几何应用(☆)
第七节方向导数与梯度(●)
第四章随机变量的数字特征(★)
1数学期望
2方差
3协方差及相关系数
4矩、协方差矩阵
第五章大数定律及中心极限定理
1大数定律(☆)
2中心极限定理(☆定理,★近似计算)
第六章样本及抽样分布
1随机样本(☆)
2直方图和箱线图(☆)
3抽样分布(★)
第七章参数估计
1点估计(★)
2基于截尾样本的最大似然估计(●)
3估计量的评选标准(●)
第九节连续函数的运算与初等函数的连续性(★)
第十节闭区间上连续函数的性质(★)
总习题
第二章导数与微分
第一节导数概念(★)
第二节函数的求导法则(★)
第三节高阶导数(★)
第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)
第五节函数的微分(★)
总习题二
第三章微分中值定理与导数的应用
第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)
第二节洛必达法则(★)
第三节泰勒公式(☆)
第四节函数的单调性与曲线的凹凸性(★)
第五节函数的极值与最大值最小值(★)
第六节函数图形的描绘(★)
第七节曲率(●)
第八节方程的近似解(●)
总习题三(★注意渐近线)
第四章不定积分
第一节不定积分的概念与性质(★)
第二节换元积分法(★)
第三节分部积分法(★)
第四节有理函数的积分(★)
●─大纲中没有明确要求,但对做题和以后的学习有帮助。要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限
第一节映射与函数(☆集合、影射,★其余)
第二节数列的极限(☆)
第三节函数的极限(☆)
第四节无穷小与无穷大(★)
第五节极限运算法则(★)
第六节极限存在准则(★)
第七节无穷小的比较(★)
第八节函数的连续性与间断点(★)
第169页第七节;
第178页第八节;
Z4第213页第四节;
Z5第218页第五节;
Z6第280页平行截面面积为已知的立体体积;
第282页平面曲线的弧长;
第287页第三节;
Z7第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;
高等数学不用看的部分:
上册
Z1第5页映射;
第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;
Z2第107页由参数方程所确定的函数的导数;
第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;
Z3第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;
第三节定积分在物理学上的应用(★求函数平均值)
总习题六、
第七章微分方程
第一节微分方程的基本概念(☆)
第二节可分离变量的微分方程(☆)(★掌握求解方法)
第三节齐次方程(☆)(★掌握求解方法)
第四节一阶线性微分方程(☆)(★掌握求解方法)
第五节可降阶的高阶微分方程(☆)
第六节高阶线性微分方程(☆)
第七节常系数齐次线性微分方程(★二阶的)
5正态总体均值与方差的区间估计(●)
6(0-1)分布参数的区间估计(●)
7单侧置信区间(●)
3频率与概率
4等可能概型(古典概型)
5条件概率
6独立性
第二章随机变量及其分布(★)
1随机变量
2离散型随机变量及其分布律
3随机变量的分布函数
4连续型随机变量及其概率密度
5随机变量的函数的分布
第三章多维随机变量及其分布(★)
1二维随机变量
2边缘分布
3条件分布
4相互独立的随机变量
5两个随机变量的函数的分布
第一节对弧长的曲线积分
第二节对坐标的曲线积分
第三节格林公式及其应用
第四节对面积的曲面积分
第五节对坐标的曲面积分
第六节高斯公式通量与散度
第七节斯托克斯公式环流量与旋度
总习题十一
第十二章无穷级数
第一节常数项级数的概念和性质(☆)(●其中柯西审敛)
第二节常数项级数的审敛法(★定理1、2及推论、3、4。☆定理6.、7、8。
●定理5、9、10)
第三节幂级数(☆)
第四节函数展开成幂级数(☆)
第五节函数的幂级数展开式的应用(☆一、二。●三)
第六节函数项级数的一致收敛性及一致收敛级数的基本性质(▲)
第七节傅里叶级数(▲)
第八节一般周期函数的傅里叶级数(▲)
《概率论与数理统计》
第一章概率论的基本概念(★)
1随机试验
2样本空间、随机事件
第五节积分表的使用(★)
总习题四
第五章定积分
第一节定积分的概念与性质(☆)
第二节微积分基本公式(★)
第三节定积分的换元法和分部积分法(★)
第四节反常积分(☆概念,★计算)
第五节反常积分的审敛法г函数(●)
总习题五
第六章定积分的应用
第一节定积分的元素法(★)
第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)
下册
Z8全部
Z9第90页第六节;
第101页第七节;
Z10第157页第三节;
165页第四节;
Z11全部
Z12第261页定理6;
第278页第四节;
第285页第五节;
第302页第七节;
第316第八节
线性代数不用看的部分:
第102页第五节
概率论与数理统计要考的部分
第一二三四五章;
第六章第135页抽样分布;
第七章第7章第一节点估计和第二节最大似然估计
注意:数学课本和习题中标注星号的为不考内容
《高等数学》
标记及内容要求:
★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,
对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题。要大量做题。
第八节多元函数的极值及其求法(☆概念。★计算、必要条件)
第九节二元函数的泰勒公式(●)
第十节最小二乘法(●)
总习题九
第十章重积分
第一节二重积分的概念与性质(☆)
第二节二重积分的计算法(★)
第三节三重积分(▲)
第四节重积分的应用(★二重积分部分)
第五节含参变量的积分(●)
总习题十
第十一章曲线积分与曲面积分(▲)
第八节常系数非齐次线性微分方程(★二阶的)
第九节欧拉方程(●)
第十节常系数线性微分方程组解法举例(●)
总习题七
附录I二阶和三阶行列ቤተ መጻሕፍቲ ባይዱ简介附录II几种常用的曲线附录、积分表
第八章空间解析几何与向量代数(▲)
第一节向量及其线性运算
第二节数量积向量积混合积
第三节曲面及其方程
第四节空间曲线及其方程
第五节平面及其方程
第六节空间直线及其方程
总习题八
第九章多元函数微分法及其应用
第一节多元函数的基本概念(☆)
第二节偏导数(☆概念。★计算)
第三节全微分(☆概念。★计算)
第四节多元复合函数的求导法则(☆概念。★计算)
第五节隐函数的求导公式(☆)(★掌握求导方法)
第六节多元函数微分学的几何应用(☆)
第七节方向导数与梯度(●)
第四章随机变量的数字特征(★)
1数学期望
2方差
3协方差及相关系数
4矩、协方差矩阵
第五章大数定律及中心极限定理
1大数定律(☆)
2中心极限定理(☆定理,★近似计算)
第六章样本及抽样分布
1随机样本(☆)
2直方图和箱线图(☆)
3抽样分布(★)
第七章参数估计
1点估计(★)
2基于截尾样本的最大似然估计(●)
3估计量的评选标准(●)
第九节连续函数的运算与初等函数的连续性(★)
第十节闭区间上连续函数的性质(★)
总习题
第二章导数与微分
第一节导数概念(★)
第二节函数的求导法则(★)
第三节高阶导数(★)
第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)
第五节函数的微分(★)
总习题二
第三章微分中值定理与导数的应用
第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)
第二节洛必达法则(★)
第三节泰勒公式(☆)
第四节函数的单调性与曲线的凹凸性(★)
第五节函数的极值与最大值最小值(★)
第六节函数图形的描绘(★)
第七节曲率(●)
第八节方程的近似解(●)
总习题三(★注意渐近线)
第四章不定积分
第一节不定积分的概念与性质(★)
第二节换元积分法(★)
第三节分部积分法(★)
第四节有理函数的积分(★)
●─大纲中没有明确要求,但对做题和以后的学习有帮助。要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限
第一节映射与函数(☆集合、影射,★其余)
第二节数列的极限(☆)
第三节函数的极限(☆)
第四节无穷小与无穷大(★)
第五节极限运算法则(★)
第六节极限存在准则(★)
第七节无穷小的比较(★)
第八节函数的连续性与间断点(★)
第169页第七节;
第178页第八节;
Z4第213页第四节;
Z5第218页第五节;
Z6第280页平行截面面积为已知的立体体积;
第282页平面曲线的弧长;
第287页第三节;
Z7第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;
高等数学不用看的部分:
上册
Z1第5页映射;
第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;
Z2第107页由参数方程所确定的函数的导数;
第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;
Z3第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;
第三节定积分在物理学上的应用(★求函数平均值)
总习题六、
第七章微分方程
第一节微分方程的基本概念(☆)
第二节可分离变量的微分方程(☆)(★掌握求解方法)
第三节齐次方程(☆)(★掌握求解方法)
第四节一阶线性微分方程(☆)(★掌握求解方法)
第五节可降阶的高阶微分方程(☆)
第六节高阶线性微分方程(☆)
第七节常系数齐次线性微分方程(★二阶的)