SPSS信度分析和效度分析
SPSS信度分析和效度分析
SPSS信度分析和效度分析SPSS是一种常用的统计分析软件,被广泛用于统计学和社会科学领域的数据分析。
在进行数据分析之前,需要对数据进行信度分析和效度分析,以确保数据的可靠性和有效性。
1. 信度分析(Reliability Analysis)信度分析是指通过测量工具或问卷的内部一致性来评估测量工具或问卷的信度。
信度分析的目的是确定测量工具或问卷的测量结果的一致性和稳定性。
SPSS提供了多种方法来进行信度分析,包括Cronbach's alpha系数、Kuder-Richardson系数、Split-Half法等。
最常用的信度分析方法是Cronbach's alpha系数,该系数用于评估内部一致性。
Cronbach's alpha系数的取值范围为0到1,越接近1表示测量工具或问卷的信度越高。
通常认为,Cronbach's alpha系数大于0.7即表示测量工具或问卷具有较好的信度。
在SPSS中进行Cronbach'salpha系数的计算非常简单,只需要选择“Analyze”菜单下的“Scale”选项。
使用SPSS进行信度分析的步骤如下:1)打开SPSS软件并导入数据。
2)选择“Analyze”菜单下的“Scale”选项。
3)将要分析的变量添加到右侧的“Variables”列表中。
4)点击“Statistics”按钮,选择“Scale if item deleted”选项,以获得分别删除每个项目后的信度系数。
5)点击“Continue”按钮。
6)点击“OK”按钮,即可得到Cronbach's alpha系数的结果。
根据Cronbach's alpha系数的值,可以确定测量工具或问卷的内部一致性。
2. 效度分析(Validity Analysis)效度分析是指通过比较测量工具或问卷的的测量结果与其所要测量的概念之间的关系来评估测量工具或问卷的效度。
SPSS信效度难度区分度分析举例
SPSS信效度难度区分度分析举例假设我们正在开展一个关于健康生活方式的调查研究,为了评估参与者的健康行为,我们设计了一个由20个问题组成的问卷。
这些问题涉及到饮食、运动、睡眠以及其他与健康相关的行为。
首先,我们需要将这些问题输入SPSS软件进行分析。
假设我们将这些问题编号为Q1至Q20,以便进行数据输入和分析。
第一步是计算每个问题的信度。
信度是指问卷测量的稳定性和一致性,也就是说,当我们重复使用问卷时,是否能够获得相似的结果。
可以使用内部一致性系数,例如Cronbach's α,来评估信度。
在SPSS中,可以通过如下步骤计算:1.打开SPSS软件,点击"变量视图"选项卡,输入各个问题的名称和数据类型。
2.回到"数据视图"选项卡,输入参与者的数据。
3.点击"分析"菜单,选择"可靠性分析"。
4.在弹出的"可靠性分析"对话框中,将所有的问题添加到"题目"一栏中。
5. 在"统计量"一栏中,选择"Cronbach's α"。
6.点击"确定"进行分析。
SPSS将计算每个问题的Cronbach's α系数,并将结果显示在分析结果窗口中。
如果Cronbach's α系数大于0.7,则说明这些问题具有良好的内部一致性,信度较高。
接下来,我们需要计算每个问题的难度和区分度。
难度是指被试者平均得分的水平,也就是说,大多数被试者的回答是什么。
区分度是指问题能够区分出不同被试者之间的差异程度,也就是说,得分高的被试者在这个问题上与得分低的被试者之间是否有明显的差异。
可以使用点双列相关和韦勒系数来评估难度和区分度。
在SPSS中,可以通过如下步骤计算:1.打开SPSS软件,点击"变量视图"选项卡,输入各个问题的名称和数据类型(如果还没有输入)。
SPSS信度、效度分析
· 一般将全部题项按奇偶或前后分为尽可能相等的两半 · 适合于态度、意见等问卷
· 4、 α信度系数
·克朗巴哈α系数(Cronbach α):1951年Cronbach提出 α系数,克服部分折半法的缺点,为目前社会科学研究最
常使用的信度。
·量测一组同义或平行测验总和的信度,如果尺度中的所有 项目都在反映相同的特质,则各项目之间应具有真实的相 关存在。若某一项目和尺度中其它项目之间并无相关存在 ,就表示该项目不属于该尺度,而应将之剔除。
• 第九章 信度、效度分析
· 第一节 信度分析
·作好问卷调查后,接下来为了进一步考验问卷的可靠性与有 效性,即要做信度分析(Reliability Analsis),它的功用 在于检验测量本身是否稳定。
·信度是可靠性,是指采用同样的方法对同一对象重复测量时 所得结果的一致性程度。信度包括稳定性以及一致性;学者 Kerlinger认为信度可以衡量出工具(问卷)的可靠度、一 致性与稳定性。
·复本相关法是测验信度的一种很好方法,但是要编制复 本测验相当困难。而且复本相关法并不受记忆效用的影 响,对测量误差的相关性也比再测法低。
· 3、折半信度法(内在一致性系数跨项目的一致性) · 与复本相关法很类似,折半法是在同一时间施测。 ·是指将调查项目分为两半,计算两半得分的相关系数,进
而估计整个调查项目的信度。 ·最好能对两半问题的内容性质、难易度加以考虑,使两半
· 特别适用于事实性问卷
· 2、复本信度法(等值系数跨形式的一致性)
·复本是内容相似,难易度相当的两份测验,对同一群受 测者,第一次用甲份测试,第二次使用乙份,两份分数 的相关系数为复本系数(Coefficient of Forms)或等 值系数(Coefficient of Equivalence)。若两份测验 不是同时实施,亦可相距一段时间再施测,这样算出的 相关系数为稳定和等值系数。
SPSS与测验信度效度及项目分析
SPSS与测验信度效度及项目分析SPSS是一种常用的统计分析软件,它可以帮助研究人员和分析师对数据进行处理、分析和报告。
在心理学和教育领域的研究中,SPSS经常用于评估测验的信度、效度和进行项目分析。
测验的信度指的是测验在重复测量下所得分数的稳定性和一致性。
测验的信度可以衡量出测验的可靠性,即测验对被测对象的测量是准确、稳定和可重复的。
SPSS提供了多种方法来计算测验的信度,如Cronbach's alpha、Spearman-Brown公式和Kuder-Richardson公式(KR20和KR21)。
其中最常用的是Cronbach's alpha,它通常用来衡量测验内部一致性,即测验各项目之间的关联程度,一般认为alpha系数在0.7以上表示信度较好。
测验的效度指的是测验是否能够准确地度量所要测量的概念或变量。
SPSS可以通过相关分析、因子分析和回归分析等方式来评估测验的效度。
相关分析可以用来检验测验与其他测验、变量或标准的相关性,从而评估测验的相关效度。
因子分析可以揭示测验中的隐含因素结构,从而评估测验的结构效度。
回归分析可以通过测验分数对其他变量进行预测,从而评估测验的预测效度。
项目分析是对一个测验的各个项目进行研究和分析,以评估测验项目的质量和有效性。
SPSS可以通过描述性统计、频数分析和交叉分析等方法进行项目分析。
描述性统计可以计算各个项目的均值、标准差和偏态等指标,从而衡量测验项目的集中趋势、离散度和对称性。
频数分析可以计算各个项目的频数和百分比,从而了解测验项目的分布情况。
交叉分析可以研究不同项目之间的关系,从而评估测验项目的相关性和一致性。
综上所述,SPSS是进行测验信度、效度和项目分析的强大工具。
它不仅可以计算各种信度系数,还可以进行相关分析、因子分析、回归分析和描述性统计等多种分析方法,以帮助研究人员深入理解测验的质量和有效性。
对于心理学和教育研究人员来说,熟练运用SPSS进行测验分析是非常重要和必要的。
spss数据分析教程之SPSS信度分析和效度分析
信度分析和效度分析数据计分方法说明类别小分类对应题项每题计分方法维度计分方法题项职业倦怠情感枯竭1-3题正向计分全部题项直接加总3 去个性化4-6题正向计分全部题项直接加总3 个人成就感7-10题逆向计分全部题项取倒数后加总4心理资本11-18题正向计分全部题项直接加总8组织气氛19-26题21题为逆向计分,其余题项正向计分21题取倒数后与其余题项加总8总体幸福感27-31题27题和31题为逆向计分,其余题项为正向计分27和31题取到术后与其余题项加总5整体问卷以上各个维度的总分直接加总31 讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一显示,整体问卷和问卷中的各个维度的Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2 效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
2.1 因子模型适应性分析效度分析使用的是因子分析模型,在运用因子模型分析之前,首先要对问卷数据进行因子模型适应性分析,分析结果如下表所示:表二 KMO 和 Bartlett 的检验0.05的巴特利球型检验,说明问卷调查的数据非常适合做因子分析。
SPSS信度效度分析讲述
SPSS信度效度分析讲述SPSS是一款广泛应用于社会科学研究的统计分析软件,它可以进行信度和效度分析,以确保研究工具的稳定性和有效性。
下面将详细介绍SPSS中的信度和效度分析。
一、信度分析:信度是指研究工具(问卷、测验、量表等)在不同场景下的一致性和稳定性。
信度分析用于评估研究工具的测量误差,即工具所测量的内容与实际内容的一致程度。
常用的信度分析方法有内部一致性信度分析、平行性信度分析和稳定性信度分析。
1.内部一致性信度分析:内部一致性信度是指同一个测量工具中各项之间的相关程度。
一般使用Cronbach's Alpha系数来进行内部一致性信度分析,该系数的取值范围为0到1,数值越大表示工具的内部一致性越好。
SPSS软件可以计算Cronbach's Alpha系数,使用“Analyze- Scale- Reliability Analysis”菜单进入信度分析界面。
2.平行性信度分析:平行性信度是指两个工具(或两组题目)测量相同或类似内容时的一致性。
主要通过确定两个工具的相关系数来评估平行性信度。
在SPSS中,可以使用Pearson相关系数或Spearman相关系数来分析工具之间的平行性。
3.稳定性信度分析:稳定性信度是指同一个测量工具在不同时间或条件下的一致性。
一般使用重测法或分半法来进行稳定性信度分析。
重测法是在不同时间对同一样本进行两次测量,然后计算测量结果之间的相关系数。
分半法是将同一份问卷随机分成两部分,计算两部分得分之间的相关性。
在SPSS中,可以使用相关系数来计算稳定性信度。
二、效度分析:效度是指所使用的测量工具是否能真实、准确地反映研究对象的特征、状态或情况。
效度分析用于评估工具的有效性和准确性,常用的效度分析方法有内容效度分析、构效效度分析、判别效度分析和相关效度分析。
1.内容效度分析:内容效度是指测量工具能否涵盖所要评估的特征或特性。
通过专家评估来确定测量工具的内容效度,专家根据其领域知识和经验,对测量工具的题目进行评价和修改。
用spss软件分析进行效度和信度分析具体的操作步骤
用spss软件分析进行效度和信度分析具体的操作步骤在SPSS中,专门用来进行测验信度分析的模块为Scale下的Reliability Analysis;使用Data Reduction之下的Factor模块,可以利用因素分析的方法来进行测验的建构效度检验;至于项目分析则没有专门的模块可以之间进行计算分析,但是却可以利用Summarize下的Frequencies、Correlate下的Bivariate 和Compare Mean下的Independent-Samples T Test来计算几个常用的项目分析指标。
3 m6 ]$ l8 a6 j w% K0 ^一、信度分析' M, k! n+ y# CReliability Analysis模块主要功能是检验测验的信度,主要用来检验折半信度、库李及a系数以及Hoyt信度系数值。
至于重测信度和复本信度,只需将样本在二次(份)测验的分数的数据合并到同一数据文件之后,利用Correlate之下的Bivariate求其相关系数,即为重测或复本信度;而评分者信度则就就是使用的Spearman等级相关及Kendall和谐系数。
表1 Reliability Analysis模块的Model选项的参数及对应中文术语3 V O/ m5 i% P; N6 l' a: `. P- I/ c: J9 X/ ~关键字功能; R% v( ?! T8 L) q* L$ ~Alpha Cronbach a系数Split-half 折半信度,n是第二分量表的题数( e3 N, N6 w4 l% N( d8 A3 c4 ]Guttman Guttman最低下限真实信度法0 o+ n; n/ ^2 d& BParallel 各题目变异数同质时的最大概率(maximum-likelihood)信度3 Q( _- Z9 }( aStrict parallel 各题目平均数与变异数均同质时的最大概率信度7 p, x- S9 ?; J: p! k5 H5 i7 h/ l7 Q) Q表2 Reliability Analysis模块的Statistics部分选项的参数及对应中文术语- X9 d% L( ~; ^5 L关键字功能F test Hoyt信度系数4 D3 A9 Y. c, u4 `Friedman Chi Friedman等级变异数分析及Kendall和谐系数; [ H" S. [- z eCochran Chi Cochran’s Q检验,适用于答案为二分(如是非题)的量表+ _" z+ v3 I& C2 e& cHotelling’s T Hotelling’s T2 检验& g" S5 S' K& t- fTukey’s Tukey的可加性检验3 o6 O8 T* B4 `! ^; b1 S- c* oIntraclass 量表内各题目平均数相关系数+ \$ Z9 m! B8 m7 u% k6 E$ f$ R/ j8 j5 N# V: m二、效度分析4 d4 ^5 T& @ n6 d' a0 G, b' T. u9 T7 n" d2 [即因素分析的方法。
如何使用spss进行问卷效度和信度分析
如何使用spss进行问卷效度和信度分析哎呀,这可是个大问题啊!让我们一起来看看如何使用SPSS进行问卷效度和信度分析吧!我们需要了解一下什么是效度和信度。
效度是指问卷能否准确地测量我们想要研究的概念,而信度则是指问卷的稳定性和一致性,即同一人在不同时间或环境下回答相同的问题时,答案是否一致。
那么,我们该如何使用SPSS来进行这些分析呢?我们需要导入数据。
这里啊,数据就像是我们的钱财,需要妥善保管。
在SPSS中,我们可以通过“文件”->“打开”来导入我们的数据。
记得把数据放在一个合适的文件夹里,这样我们才能轻松找到它哦!接下来,我们需要对数据进行预处理。
这个过程就像是给我们的数据洗个澡,让它变得更加整洁。
在SPSS中,我们可以通过“数据”->“清洗”来进行预处理。
这里有一些常见的数据清洗任务,比如缺失值处理、异常值处理等。
通过这些任务,我们可以让数据变得更加规范,便于后续的分析。
好了,现在我们的数据已经准备好了。
接下来,我们就可以开始进行效度和信度分析了。
在SPSS中,我们可以通过“分析”->“可靠性”来进行这些分析。
在这里,我们可以选择不同的分析方法,比如Cronbach's alpha系数、KMO和Bartlett's球形检验等。
这些方法可以帮助我们了解问卷的效度和信度情况。
在进行效度和信度分析时,我们需要注意以下几点:1. 我们需要确保我们的问卷设计是合理的。
一个好的问卷设计应该能够准确地反映我们想要研究的概念,同时避免引导受访者给出特定答案的问题。
2. 我们需要选择合适的分析方法。
不同的问卷可能适用于不同的分析方法,所以我们需要根据具体情况来选择。
3. 我们需要关注分析结果。
如果分析结果显示我们的问卷效度和信度较低,那么我们就需要重新审视我们的问卷设计,看看是否有需要改进的地方。
使用SPSS进行问卷效度和信度分析是一个相当有趣的过程。
通过这个过程,我们可以更好地了解我们的问卷质量,从而提高研究的质量。
使用SPSS进行问卷调查数据分析
使用SPSS进行问卷调查数据分析一、数据收集和预处理1.1 问卷设计与发放在进行问卷调查之前,首先需要设计好问卷内容和结构。
问卷设计应该具有明确的目的和清晰的问题表达,以便获取有效的数据。
设计好的问卷可以通过线上平台或者线下发放的方式进行分发。
1.2 数据收集在问卷发放完成后,需要对收集到的数据进行整理和归档。
将收集到的问卷数据进行编码和录入,确保数据的准确性和一致性。
1.3 数据清洗在进行数据分析之前,需要对收集到的数据进行清洗。
这一步包括检查和处理异常值、缺失值和重复值。
通过SPSS软件可以方便地进行数据清洗和处理。
二、描述性统计分析2.1 频数分析频数分析可以帮助我们了解样本中各变量的分布情况。
通过SPSS的频数分析功能,可以计算出每个选项的选择人数和所占比例,并生成频数表和频数图。
2.2 中心趋势测量中心趋势测量主要包括均值、中位数和众数的计算。
通过SPSS的描述性统计功能,可以得到各个变量的均值、标准差、最小值和最大值等统计指标。
同时,还可以绘制盒须图以描述数据的分布情况。
2.3 分类变量分析对于分类变量,可以通过计算各类别的百分比和绘制饼图或条形图来展示数据。
SPSS的交叉表功能可以帮助我们对分类变量进行交叉分析,比较不同类别之间的差异。
三、相关性分析相关性分析可以帮助我们了解变量之间的相关关系。
通过SPSS的相关分析功能,可以计算出两个变量之间的相关系数,并进行显著性检验。
相关系数的取值范围为-1到1,接近1表示正向相关,接近-1表示负向相关,接近0表示无相关。
四、多变量分析4.1 回归分析回归分析可以用来探究自变量与因变量之间的关系,并预测因变量的取值。
SPSS的回归分析功能可以通过计算回归方程和检验回归系数的显著性来评估自变量对因变量的解释程度。
4.2 方差分析方差分析用于比较多个样本的均值是否存在差异。
SPSS的方差分析功能可以通过计算组间平方和、组内平方和和总平方和来判断差异的显著性。
SPSS信度效度分析
SPSS信度效度分析SPSS是一款广泛使用的统计分析软件,可以用于对数据进行信度和效度分析。
信度是指测量工具或测量方法的稳定性和一致性,而效度是指测量工具或测量方法是否能够准确地衡量所要测量的概念或变量。
在SPSS中进行信度分析的其中一个方法是计算Cronbach's alpha系数。
Cronbach's alpha是一种常用的信度检验方法,用于评估测量工具的内部一致性。
通常,Cronbach's alpha系数的值应该在0.7至0.9之间,越接近1表示信度越高。
为了在SPSS中计算Cronbach's alpha系数,首先需要确保数据集中的变量是属于同一概念或构念。
然后,选择“Analyze”菜单中的“Scale”选项,再选择“Reliability Analysis”。
在Reliability Analysis对话框中,将需要分析的变量添加到“Items”框中,并选择要计算的信度系数,如Cronbach's alpha。
点击“OK”即可得到计算结果。
除了Cronbach's alpha系数,SPSS还提供了其他一些信度检验方法,如Kuder-Richardson系数。
这些方法适用于不同类型的测量工具,如问卷、观察量表等。
在进行信度分析时,根据具体的研究目的和测量工具的特点选择合适的方法进行分析。
除了信度分析,SPSS还可以用于效度分析。
效度分析可以分为内部效度和外部效度。
内部效度是指测量工具内部各个项目之间的相关程度,通常可以通过因素分析或主成分分析来进行分析。
SPSS提供了多种因素分析方法,如主成分分析、最大似然法等。
通过这些方法,可以确定测量工具的内部结构和各个项目之间的相关性。
外部效度是指测量工具与其他相关变量之间的关系,通常可以通过相关分析和回归分析来进行分析。
相关分析可以用来衡量测量工具与其他变量之间的相关性,而回归分析可以用来预测或解释测量工具的变异情况。
SPSS信度、效度分析
目录
• 信度分析 • 效度分析 • SPSS在信度、效度分析中的应用 • 信度、效度分析的注意事项
01 信度分析
信度分析的定义
信度分析是指对测量工具或问卷的一致性、稳定性进行评估的过程,用以 检验测量结果的可靠性。
信度分析的目的是确定测量工具是否能够稳定、一致地反映被测对象的特 征或属性。
总结评估结果
根据各项效度分析的结果,总结评估 测量工具的准确性和有效性,并提出 改进意见和建议。
03 SPSS在信度、效度分析 中的应用
SPSS在信度分析中的应用
信度分析:信度分析用于评估问卷的一致性,常用的 方法有Cronbach's Alpha系数和重测信度法等。
输标02入题
Cronbach's Alpha系数:Cronbach's Alpha系数是 一种常用的信度分析方法,通过计算问卷内部一致性 系数来评估问卷的一致性。
信度分析的方法有多种,常用的有Cronbach's Alpha系数和重测信度法 等。
信度分析的方法
Cronbach's Alpha系数
01
通过计算问卷内部一致性系数来评估信度,该系数值介于0-1之
间,值越高表示信度越好。
重测信度法
02
通过比较同一被试在不同时间点的测量结果来评估信度,这种
方法适用于时间间隔较短的情境。
根据所选的信度分析方法计算 信度系数,如Cronbach's Alph结果对问卷进行 修正和完善,提高测量工具的 可靠性和稳定性。
02 效度分析
效度分析的定义
效度分析是对测量工具或手段准确性和有效性的评估,即衡 量测量结果是否真实、准确地反映了所要研究的内容和概念 。
SPSS信度效度教程课件
第二节 效度分析
一、效度分析的基本概念 效度是指测量的有效性程度,是测量工具能测
出所要测量特质的程度,即准确性、有用性。
以英文出统计学考题 英文作文题目让考生看不懂
是内容效度(表面效度、逻辑效度)
内容效度是指所设计的题项能否代表所要测量的内容或主题
(二)准则效度
也称为效标效度。
是根据已经确定的某种理论,选择一种指标或者测量工具作 为准则(校标),分析问卷题项与准则的联系,来分析有效 性。
(三)建构效度
是指测量结果体现出来的某种结构与测值之间的对应程度。 效度分析最理想的方法是利用因子分析测量量表或整个问卷的 结构效度。
因子分析的主要功能是从量表全部变量(题项)中提取一 些公因子,各公因子分别与某一群特定变量高度关联,这些公 因子即代表了量表的基本结构。
二、信度分析的方法
检视信度的方法有很多种,其中,最常用的是第四种 Cronbach α系数,简介以下四种:
1、重测信度法(稳定系数即跨时间的一致性) 使用同一份问卷,对同一群受测者,在不同的时间,前
后测试两次,求出者两次分数的相关系数,此系数又称 为稳定系数(Coefficient of Stability)。 需注意:相关系数高,表示此测验的信度高,前后两 次测验间隔的时间要适当。若两次测验间隔太短,受测 者记忆犹新通常分数会提高,不过如果题数够多则可避 免这种影响;但若两次测验间隔太长,受测者心智成长 影响,稳定系数也可能会降低。 特别适用于事实性问卷
量测一组同义或平行测验总和的信度,如果尺度中的所 有项目都在反映相同的特质,则各项目之间应具有真实的 相关存在。若某一项目和尺度中其它项目之间并无相关存 在,就表示该项目不属于该尺度,而应将之剔除。
如何使用spss进行问卷效度和信度分析
如何使用spss进行问卷效度和信度分析如何使用 SPSS 进行问卷效度和信度分析在社会科学研究中,问卷是一种常用的数据收集工具。
然而,为了确保问卷所收集的数据具有可靠性和有效性,我们需要进行效度和信度分析。
SPSS 是一款功能强大的统计分析软件,能够帮助我们轻松完成这些分析任务。
接下来,让我们详细了解如何使用 SPSS 进行问卷的效度和信度分析。
一、效度分析效度,简单来说,就是测量工具是否准确地测量了我们想要测量的东西。
常见的效度类型包括内容效度、结构效度和准则效度。
1、内容效度内容效度通常是通过专家评估来确定的。
在使用SPSS 进行分析时,它不是主要的关注点。
2、结构效度结构效度的分析通常借助因子分析来实现。
以下是在 SPSS 中进行因子分析的步骤:(1)打开 SPSS 软件,将问卷数据导入。
(2)选择“分析” “降维” “因子分析”。
(3)将需要分析的变量选入“变量”框。
(4)在“描述”选项中,勾选“KMO 和巴特利特球形度检验”。
KMO 值用于衡量变量间的偏相关性,取值在 0 到 1 之间。
一般认为,KMO 值大于 06 时,数据适合进行因子分析。
巴特利特球形度检验的原假设是变量间不相关,如果检验结果显著(p 值小于 005),则拒绝原假设,说明变量间存在相关性,适合进行因子分析。
(5)在“抽取”选项中,可以选择主成分分析或主轴因子法等提取因子的方法,并根据实际情况确定提取因子的个数。
(6)在“旋转”选项中,选择合适的旋转方法,如正交旋转或斜交旋转,以使得因子结构更清晰。
(7)查看输出结果,主要关注“成分矩阵”或“旋转成分矩阵”,根据因子载荷来判断变量在各个因子上的归属,从而评估问卷的结构效度。
3、准则效度如果有一个有效的外部标准可以用来比较问卷测量的结果,就可以进行准则效度的分析。
但在 SPSS 中的操作相对复杂,需要根据具体情况选择合适的统计方法,如相关分析、回归分析等。
二、信度分析信度指的是测量结果的一致性、稳定性和可靠性。
SPSS课件信度及效度
图例问卷调查问卷调查法也称问卷法,它是调查者以书面提出问题的方式搜集资料的一种研究方法。
即调查者就调查内容提出问题或编制成表格;分发或邮寄给有关人员,请他们填写答案,然后回收整理、统计和研究。
标题z你好!请配合填写此次调查问卷!谢谢!z1.你喜欢音乐吗?zA 喜欢B 不喜欢z导语2.你经常听音乐吗?zA 经常B 有时C 偶尔D 极少E 从不z3.你喜欢听欢快的音乐还是忧伤的音乐?zA 欢快的B 忧伤的一般是一段短语。
内容是向被调查z4. 你喜欢的音乐方面的明星是哪个地区的?zA 大陆B 港台C 日韩D 欧美z5.你认为中学生听音乐的利弊关系是怎样的?正文—调查者的合作再次表示感谢,以及关于不zA 利大于弊B 弊大于利C 没关系z6.你认为音乐与人的情绪有关系吗?zA 关系密切B 有点关系C 毫无关系D 不清楚问卷的主体要漏填与复核的请求,有的问卷也可以省略。
z7.请你准确地说出音乐的分类z8.你喜欢听什么类型的音乐?zz9.你认为什么样的音乐对人的心情有什么样的影响?z z 10.请你对本次问卷调查做以评价。
结束语再次感谢你对我们工作的支持与配合【封面信】——给被调查者的短信,为其介绍和说明调查者的身份、调查的目的、意义、内容。
篇幅宜短小,通常300字以内。
一般包括:身份;调查目的、内容;对象选取和结果保密措施;致谢等。
【标题】——问卷的标题要与课题的研究目的相符合,直接点明调查的主题。
使被调查者对所要回答的问题有一个大致的了解。
问卷标题要简明扼要,但又必须点明调查对象或调查主题。
【导语】也称前言或问卷说明。
一般包括对——被调查者的称谓、自我介绍、调查的目的、填写要求等的说明。
【正文】——调查问卷的主要部分,也就是问题与答案部分。
【结束语】——一般是一段短语。
内容是向被调查者的合作再次表示感谢,以及关于不要漏填与复核的请求。
结束语要简短明了,有的问卷也可以省略。
调查问卷的导语注意的问题简要说明调查的内容和意义,突出本次调查的主要问题和现象。
spss如何对调查问卷进行效度分析
spss如何对调查问卷进行效度分析调查问卷是社会科学研究中常用的数据收集工具之一,而问卷的效度分析则是评估问卷测量工具是否能够准确地反映研究对象的相关变量。
在SPSS软件中,我们可以利用一系列的统计方法来进行问卷的效度分析。
首先,我们需要明确问卷的测量维度和变量。
一份问卷可能涉及多个测量维度,比如心理健康、社会支持等。
在SPSS中,我们需要将这些测量维度转化为相应的变量,并为每个变量进行编号。
接下来,我们可以使用SPSS的描述性统计功能来分析各个变量的均值、标准差和偏度等指标。
这些指标可以帮助我们了解变量的分布情况,以及是否存在明显的偏倚。
如果某个变量的均值明显偏离正常范围,可能需要进一步检查该变量的测量方法和问卷设计是否存在问题。
除了描述性统计,我们还可以利用SPSS的相关分析功能来探索变量之间的相关关系。
相关分析可以帮助我们判断问卷中各个问题是否和测量维度有着显著的相关性。
如果某个问题与测量维度的相关系数较低,可能需要考虑对这个问题进行修改或删除。
在进行效度分析时,我们还可以使用SPSS的因素分析功能。
因素分析可以帮助我们确定问卷中的潜在因素或维度结构。
通过因素分析,我们可以了解问卷中各个问题是否聚集在某些潜在维度下,以及这些维度是否能够准确地反映测量的概念。
最后,我们可以使用SPSS的信度分析功能来评估问卷的信度。
信度分析可以帮助我们判断问卷中的问题是否稳定可靠,即在不同时间和不同样本中是否能够得到一致的结果。
常用的信度分析方法包括Cronbach's alpha系数和测试-重新测试法。
综上所述,SPSS软件提供了丰富的统计方法和功能,可以帮助我们对调查问卷进行效度分析。
通过合理利用SPSS的描述性统计、相关分析、因素分析和信度分析等功能,我们能够全面地评估问卷的测量效度,提高研究结果的可信度和可靠性。
spss数据分析教程之SPSS信度分析和效度分析
信度分析和效度分析数据计分方法说明类别小分类对应题项每题计分方法维度计分方法题项职业倦怠情感枯竭1-3题正向计分全部题项直接加总3去个性化4-6题正向计分全部题项直接加总3个人成就感7-10题逆向计分全部题项取倒数后加总4心理资本11-18题正向计分全部题项直接加总8组织气氛19-26题21题为逆向计分,其余题项正向计分21题取倒数后与其余题项加总8总体幸福感27-31题27题和31题为逆向计分,其余27和31题取到术后与其余题项加5页脚内容1讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一信度分析表页脚内容2表一显示,整体问卷和问卷中的各个维度的Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2 效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
2.1 因子模型适应性分析效度分析使用的是因子分析模型,在运用因子模型分析之前,首先要对问卷数据进行因子模型适应性分析,分析结果如下表所示:Bartlett 的检验表二KMO 和页脚内容3由上表的数据可知,问卷数据的KMO值为0.657,并且通过了显著性水平为0.05的巴特利球型检验,说明问卷调查的数据非常适合做因子分析。
如何使用spss进行问卷效度和信度分析
如何使用spss软件进行效度和信度分析如果一个问卷设计出来无法有效地考察问卷中所涉及的各个因素,那么我们为调查问卷所作的抽样、调查、分析、结论等一系列的工作也就白做了。
那么,我们如何来检验设计好的调查问卷是否有效呢?信度分析是评价调查问卷是否具有稳定性和可靠性的有效的分析方法。
二、信度分析的提出及分析方法信度,又叫可靠性,是指问卷的可信程度。
它主要表现检验结果的一贯性、一致性、再现性和稳定性。
一个好的测量工具,对同一事物反复多次测量,其结果应该始终保持不变才可信[1]。
例如,我们用一把尺子测量一张桌子的高度,今天测量得高度与明天测量的高度不同,那么我们就会对这把尺子产生怀疑。
因此,一张设计合理的调查问卷应该具有它的可靠性和稳定性。
调查问卷的评价体系是以量表形式来体现的,编制的合理性决定着评价结果的可用性和可信性。
问卷的信度分析包括内在信度分析和外在信度分析。
内在信度重在考察一组评价项目是否测量同一个概念,这些项目之间是否具有较高的内在一致性。
一致性程度越高,评价项目就越有意义,其评价结果的可信度就越强。
外在信度是指在不同时间对同批被调查者实施重复调查时,评价结果是否具有一致性。
如果两次评价结果相关性较强,说明项目的概念和内容是清晰的,因而评价的结果是可信的。
信度分析的方法有多种,有Alpha信度和分半信度等,都是通过不同的方法来计算信度系数,再对信度系数进行分析[2]。
目前最常用的是Alpha信度系数法,一般情况下我们主要考虑量表的内在信度——项目之间是否具有较高的内在一致性。
通常认为,信度系数应该在0~1之间,如果量表的信度系数在0.9以上,表示量表的信度很好;如果量表的信度系数在0.8~0.9之间,表示量表的信度可以接受;如果量表的信度系数在0.7~0.8之间,表示量表有些项目需要修订;如果量表的信度系数在0.7以下,表示量表有些项目需要抛弃。
我们可以通过目前比较流行的SPSS软件对调查问卷进行信度分析,这样我们就可以判断一个调查问卷是否具有稳定性和可靠性。
信度与效度分析步骤
如何用spss做问卷的结构效度分析?问:因子分析里面Descriotives里面KMO和巴特利检验就可以了吗?除此之外,还要做什么啊?请高手赐教点简单易懂又能说明效度问题的,谢谢啦!问题补充:提取因子的个数怎么确定?是选特征值大于1的吗?还有,因子载荷怎么算?是在输出结果中直接可以看到吗?本人刚接触spss,请多多指教!答:首先必须要做KMO和Bartlett球形检验,这个你应该会了吧,如果这两个检验合格的话说明数据是适合做因子分析的。
然后提取因子后,看主因子解释总变异的百分比和个因子的因子载荷,主因子解释总变异一般若大于60%的和因子载荷大于的话说明结构效度很好。
pS: ,如果题目没有规定就是选特征值大于1的,如果题目事先要提取几个因子,那么在操作的时候,用SPSS那个因子分析的选项里面有一个地方可以著名,因子载荷在输出的结果直接可以看到(rotated compoment matrpx),一定要是旋转后的因子载荷用spss进行效度分析?我要对我的问卷调查数据做一个信度和效度分析。
信度分析我会了,就是看Cronbach’s Alpha 系数。
效度分表面效度、准则效度和构建效度,前面两项只要说明一下,但是构建效度要用SPSS分析,我想是在因子分析里面吧?就是不知道哪个值代表效度。
答:因子分析的效度分析主要的指标可以看,因子提取的方差累积贡献率,如果因子提取的越少且方差累积率又不低的话(一般如果2个因子达到40%以上的贡献率就算可以的了),就可以认为因子分析的效度还可以。
除此之外,你可以用因子分析里面Descriotives里面KMO和巴特利检验(battele,不知道是不是这样写的),KMO的值如果>,则说明因子分析的效度还行,可以进行因子分析;另外,如果巴特利检验的P<,说明因子的相关系数矩阵非单位矩阵,能够提取最少的因子同时又能解释大部分的方差,即效度可以。
问:问卷效度测验如何应用于SPSS问卷效度测验如何应用于SPSS,然后因为做效度检验貌似要用皮尔逊相关还是因子分析,所以不懂如何把这些应用于SPSS,不想要变量,想要整体,一个整体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信度分析和效度分析本问卷分析的方法全部参考谦瑞数据分析服务有限公司提供的问卷分析,如果对下面文章中涉及到的统计方法不太明白的可以到中详细学习。
数据计分方法说明1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一显示,整体问卷和问卷中的各个维度的Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2 效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
2.1 因子模型适应性分析效度分析使用的是因子分析模型,在运用因子模型分析之前,首先要对问卷数据进行因子模型适应性分析,分析结果如下表所示:表二 KMO 和 Bartlett 的检验由上表的数据可知,问卷数据的KMO值为0.657,并且通过了显著性水平为0.05的巴特利球型检验,说明问卷调查的数据非常适合做因子分析。
2.2 因子分析结果在进行了适应性检验之后,接下来就进行因子分析,其结果如下:表三方差贡献率解释的总方差成份初始特征值提取平方和载入旋转平方和载入合计方差的% 累积% 合计方差的% 累积% 合计方差的% 累积%1 8.752 28.231 28.231 8.752 28.231 28.231 4.937 15.926 15.9262 3.259 10.514 38.745 3.259 10.514 38.745 3.766 12.148 28.0743 2.715 8.758 47.503 2.715 8.758 47.503 2.996 9.666 37.7404 2.286 7.374 54.877 2.286 7.374 54.877 2.714 8.756 46.4965 1.516 4.891 59.768 1.516 4.891 59.768 2.584 8.335 54.8316 1.342 4.328 64.096 1.342 4.328 64.096 2.076 6.697 61.5287 1.252 4.038 68.134 1.252 4.038 68.134 1.709 5.511 67.0408 1.053 3.398 71.532 1.053 3.398 71.532 1.393 4.492 71.5329 .958 3.089 74.62010 .880 2.840 77.46111 .762 2.459 79.92012 .714 2.302 82.22213 .684 2.207 84.42914 .623 2.011 86.44015 .580 1.870 88.30916 .509 1.642 89.95117 .449 1.449 91.40018 .394 1.272 92.67219 .342 1.104 93.77720 .289 .934 94.71021 .276 .892 95.60222 .258 .833 96.43523 .204 .659 97.09424 .184 .592 97.68625 .171 .552 98.23926 .148 .478 98.71727 .121 .391 99.10828 .101 .325 99.43329 .079 .254 99.68730 .058 .186 99.87331 .039 .127 100.000提取方法:主成份分析。
根据表三方差贡献率分析表可以知道,具备信度的31个问题一共可以提取8个主成分,这8个主因子解释的方差占到了将近71.532%,由此我们可以认为,这次提取的8个公因子在充分提取和解释原变量的信息方面比较理想。
表四旋转后的因子载荷矩阵旋转成份矩阵a成份1 2 3 4 5 6 7 8职业倦怠10.812 0.024 0.046 0.006 0.012 -0.172 -0.206 -0.085 职业倦怠20.788 -0.043 0.051 -0.141 0.176 -0.211 0.094 -0.086 职业倦怠30.651 -0.112 -0.056 -0.155 -0.172 -0.217 -0.053 -0.299 职业倦怠40.743 -0.085 0.067 -0.19 -0.172 -0.275 0.017 -0.073 职业倦怠50.741 -0.186 -0.01 0.077 -0.455 -0.01 -0.12 0.008 职业倦怠60.744 -0.204 0.053 -0.109 -0.084 0.115 -0.063 0.078 职业倦怠70.297 -0.113 0.67 -0.189 -0.173 0.025 0.223 0.246职业倦怠8-0.099 0.024 0.902 -0.1 -0.056 -0.073 -0.087 -0.002 职业倦怠90.048 0.008 0.856 -0.027 -0.141 -0.079 -0.143 -0.103 职业倦怠100.01 0.093 0.88 -0.007 0.075 0.014 -0.097 -0.075 心理资本1-0.17 0.022 0.011 0.759 0.284 0.063 0.037 0.064 心理资本2-0.138 0.173 -0.08 0.674 0.148 -0.11 0.37 -0.179 心理资本3-0.09 0.099 -0.194 0.664 0.465 0.091 0.008 -0.191 心理资本4-0.185 -0.029 -0.11 0.616 0.086 -0.08 0.141 0.27 心理资本5-0.072 0.009 -0.095 0.801-0.074 0.133 -0.116 0.195 心理资本6-0.524 0.309 -0.026 0.205 0601 0.23 0.147 -0.279 心理资本7-0.185 0.097 -0.138 0.221 0.802 0.071 0.014 -0.014 心理资本8-0.09 0.651 0.066 0.067 -0.599 0.015 -0.082 -0.101 组织氛围10.045 0.444 -0.009 0.161 0.405 0.326 0.124 0.567 组织氛围20.106 0.076 -0.123 0.172 0.245 0.238 0.101 0.611 组织氛围3-0.405 0.273-0.077 0.012 0.102 0.125 -0.034 0.609 组织氛围4-0.16 0.634 0.004 0.037 0.364 0.166 0.094 0.28组织氛围50.148 0.679 -0.006 0.102 -0.306 0.194 0.397 -0.044 组织氛围6-0.425 0.753 0.051 -0.004 0.228 0.066 -0.093 -0.017 组织氛围7-0.147 0.675 0.001 -0.085 0.056 -0.041 0.291 0.127 组织氛围8-0.447 0.569 0.001 0.144 0.097 -0.115 0.181 0.408 总体幸福感1-0.173 0.145 -0.006 0.259 0.148 0.043 0.538 0.076 总体幸福感2-0.347 0.435 -0.024 0.149 0.194 0.0670.613 -0.15 总体幸福感3-0.254 0.103 -0.177 -0.005 -0.14 0.797 -0.085 0.08 总体幸福感4-0.445 -0.026 0.11 0.066 0.261 0.586 0.223 0.141 总体幸福感5-0.161 0.205 -0.232 -0.018 0.069 0.819 0.009 0.004提取方法:主成份。
旋转法:具有Kaiser 标准化的正交旋转法。
a. 旋转在14 次迭代后收敛。
根据以上旋转后的因子载荷表可以知道:主成分一:包含职业倦怠1、职业倦怠2、职业倦怠3、职业倦怠4、职业倦怠5、职业倦怠6这6个题项,说明主成分一是反映情感枯竭和去个性化的维度。
其方差贡献率是15.926%,是8个主成分中贡献最大的一个,说明这一主成分对整体问卷的的影响最大。
主成分二:包含组织氛围4、组织氛围5、组织氛围6、组织氛围7、组织氛围8这5个题项,说明主成分二是反映组织氛围维度中学校氛围的主因素。
其方差贡献率是12.148%,是8个主成分中贡献第二大的,说明这一主成分对整体问卷的的影响第二大。
主成分三:包含职业倦怠7、职业倦怠8、职业倦怠9、职业倦怠10这4个题项,说明主成分三是反映个人成就感的主因素。
其方差贡献率是9.666%,是8个主成分中贡献第三大的,说明这一主成分对整体问卷的的影响第三大。
主成分四:包含心理资本1、心理资本2、心理资本3、心理资本4、心理资本5这5个题项,说明主成分四是反映心理资本维度中工作情绪方面的主因素。
其方差贡献率是8.756%,是8个主成分中贡献第四大的,说明这一主成分对整体问卷的的影响第四大。
主成分五:包含心理资本6、心理资本7、心理资本8这3个题项,说明主成分五是反映心理资本维度中工作状态方面的主因素。
其方差贡献率是8.335%,是8个主成分中贡献第五大的,说明这一主成分对整体问卷的的影响第五大。
主成分六:包含总体幸福感3、总体幸福感4、总体幸福感5这5个题项,说明主成分六是总体幸福感维度中生活压力方面的主因素。
其方差贡献率是6.697%,是8个主成分中贡献第六大的,说明这一主成分对整体问卷的的影响第六大。
主成分七:包含总体幸福感1、总体幸福感2这2个题项,说明主成分七是总体幸福感维度中生活信心面的的主因素。
其方差贡献率是5.511%,是8个主成分中贡献第七大的,说明这一主成分对整体问卷的的影响第六大。