图形的平移,对称与旋转的经典测试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.正三角形B.正方形C.正五边形D.正六边形
【答案】D
【解析】
【分析】
对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
【详解】
由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.
故选D.
【点睛】
本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.
本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
19.下列图形中,不是轴对称图形的是()
A.有两个内角相等的三角形B.有一个内角为45°的直角三角形
C.有两个内角分别为50°和80°的三角形D.有两个内角分别为55°和65°的三角形
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
A.线段 的长度B.线段 的长度
C.线段 的长度D. 两点之向的距离
【答案】B
【解析】
【分析】
平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定
∴ ,
∴ ,
故选:A.
【点睛】
此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB
16.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
A.1.6B.1.8C.2D.2.6
【答案】A
【解析】
【分析】
由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.
【详解】
由旋转的性质可知, ,
∵ , ,
∴ 为等边三角形,
【详解】
∵△DEF是△ABC平移得到
∴A和D、B和E、C和F分别是对应点
∴平移距离为:线段AD、BE、CF的长
故选:B
【点睛】
本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.
10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
17.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
图形的平移,对称与旋转的经典测试题
一、选择题
1.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为( )
A.26B.20C.15D.13
【答案】D
【解析】
【分析】
直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.
∴AH=BH=2 .
故选:D.
【点睛】
考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
6.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()
A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)
7.下列说法正确的是()
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分
C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2
D.在平移和旋转图形中,对应角相等,对应线段相等且平行
【答案】B
【解析】
【分析】
分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.
【详解】
解:如图
∵四边形ABCD是菱形,对角线AC=6,BD=8,
∴AB= =5,
作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,
∵F是BC的中点,
∴E′F=AB=5.
故选C.
A. B. C. D.
【答案】C
【解析】
【分析】
试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;
选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;
选项C既是轴对称图形,也是中心对称图形,故该选项正确;
选项D是轴对称图形,但不是中心对称图形,故该选项错误.
故选C.
【详解】
A.66°B.104°C.114°D.124°
【答案】C
【解析】
【分析】
根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC= ∠1,再根据三角形内角和定理可得.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC= ∠1=22°
A.1B. C. D.2
【答案】A
【解析】
【分析】
连接AD,构造△ADB,由同弧所对应的圆周角相等和旋转的性质,证△ADB和△DBE全等,从而得到AD=BE=BC=1.
【详解】
如图,连接AD,AO,DO
∵ 绕圆心 按逆时针方向旋转 得到 ,
∴AB=DE, ,
∴ (同弧所对应的圆周角等于圆心角的一半),
【答案】D
【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;
B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;
D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.
∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
故选C.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
故选B.
8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.
【详解】
A、不能通过平移得到,故不符合题意;
B、不能通过平移得到,故不符合题意;
C、不能通过平移得到,故不符合题意;
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
故选:D.
12.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是
A.4B.5C.6D.7
【答案】B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′= = =5.故选B.
【详解】
A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;
B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;
C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;
D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.
请在此输入详解!
4.下列图形中,是轴对称图形但不是中心对称图形的是()
A.等边三角形B.干行四边形C.正六边形D.圆
【答案】A
【解析】
【分析】
【详解】
解:A、是轴对称图形,不是中心对称图形,符合题意;
B、不是轴对称图形,是中心对称图形,不合题意;
C、是轴对称图形,也是中心对称图形,不合题意;
D、是轴对称图形,也是中心对称图形,不合题意.
即 ,
又∵DB=BD,∴ (同弧所对应的圆周角相等),
在△ADB和△DBE中
∴△ADB≌△EBD(ASA),
∴AD=EB=BC=1.
故答案为A.
【点睛】
本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.
3.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )
故选A.
【点睛】
本题考查中心对称图形;轴对称图形.
5.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q分别是BD,AB上的动点,则AP+PQ的最小值为()
A.4B.4 C.2D.2
【答案】D
【解析】
【分析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
18.下列图形中,是轴对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念逐一判断即可.
【详解】
A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;
D、是轴对称图形,符合题意.
【点睛】
【答案】C
【解析】
【分析】
根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.
【详解】
解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,
故选:C.
【点睛】
此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.
14.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为 ,则点 的坐标为()
A. B. C. D.
【答案】D
【解析】
试题分析:根据题意,点A、A′关于点C对称,设点A的坐标是(x,y),则 ,解得 ,∴点A的坐标是 .故选D.
考点:坐标与图形变化-旋转.
15.如图,在 中, , , ,将 绕点 顺时针旋转度得到 ,当点 的对应点 恰好落在 边上时,则 的长为( )
13.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )
A.3B.4C.5D.6
【答案】C
【解析】
【分析】
先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.
【详解】
解:∵将线段BD沿着BC的方向平移得到线段EF,
∴EF=DB=5,BE=6,
∵AB=AC,BC=9,Leabharlann Baidu
∴∠B=∠C,EC=3,
∴∠B=∠FEC,
∴CF=EF=5,
∴△EBF的周长为:5+5+3=13.
故选D.
【点睛】
本题考查了平移的性质,根据题意得出CF的长是解题关键.
2.如图, 是 的内接三角形, , ,把 绕圆心 按逆时针方向旋转 得到 ,点 的对应点为点 ,则点 , 之间的距离是()
【详解】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
P′Q′=P′H,
∴AP′+P′Q′=AP′+P′H=AH,
根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
∵AB=4,∠AHB=90°,∠ABH=45°,
【答案】D
【解析】
【分析】
对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
【详解】
由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.
故选D.
【点睛】
本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.
本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
19.下列图形中,不是轴对称图形的是()
A.有两个内角相等的三角形B.有一个内角为45°的直角三角形
C.有两个内角分别为50°和80°的三角形D.有两个内角分别为55°和65°的三角形
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
A.线段 的长度B.线段 的长度
C.线段 的长度D. 两点之向的距离
【答案】B
【解析】
【分析】
平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定
∴ ,
∴ ,
故选:A.
【点睛】
此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB
16.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
A.1.6B.1.8C.2D.2.6
【答案】A
【解析】
【分析】
由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.
【详解】
由旋转的性质可知, ,
∵ , ,
∴ 为等边三角形,
【详解】
∵△DEF是△ABC平移得到
∴A和D、B和E、C和F分别是对应点
∴平移距离为:线段AD、BE、CF的长
故选:B
【点睛】
本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.
10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
17.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
图形的平移,对称与旋转的经典测试题
一、选择题
1.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为( )
A.26B.20C.15D.13
【答案】D
【解析】
【分析】
直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.
∴AH=BH=2 .
故选:D.
【点睛】
考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
6.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()
A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)
7.下列说法正确的是()
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分
C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2
D.在平移和旋转图形中,对应角相等,对应线段相等且平行
【答案】B
【解析】
【分析】
分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.
【详解】
解:如图
∵四边形ABCD是菱形,对角线AC=6,BD=8,
∴AB= =5,
作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,
∵F是BC的中点,
∴E′F=AB=5.
故选C.
A. B. C. D.
【答案】C
【解析】
【分析】
试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;
选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;
选项C既是轴对称图形,也是中心对称图形,故该选项正确;
选项D是轴对称图形,但不是中心对称图形,故该选项错误.
故选C.
【详解】
A.66°B.104°C.114°D.124°
【答案】C
【解析】
【分析】
根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC= ∠1,再根据三角形内角和定理可得.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC= ∠1=22°
A.1B. C. D.2
【答案】A
【解析】
【分析】
连接AD,构造△ADB,由同弧所对应的圆周角相等和旋转的性质,证△ADB和△DBE全等,从而得到AD=BE=BC=1.
【详解】
如图,连接AD,AO,DO
∵ 绕圆心 按逆时针方向旋转 得到 ,
∴AB=DE, ,
∴ (同弧所对应的圆周角等于圆心角的一半),
【答案】D
【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;
B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;
D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.
∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
故选C.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
故选B.
8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.
【详解】
A、不能通过平移得到,故不符合题意;
B、不能通过平移得到,故不符合题意;
C、不能通过平移得到,故不符合题意;
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
故选:D.
12.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是
A.4B.5C.6D.7
【答案】B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′= = =5.故选B.
【详解】
A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;
B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;
C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;
D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.
请在此输入详解!
4.下列图形中,是轴对称图形但不是中心对称图形的是()
A.等边三角形B.干行四边形C.正六边形D.圆
【答案】A
【解析】
【分析】
【详解】
解:A、是轴对称图形,不是中心对称图形,符合题意;
B、不是轴对称图形,是中心对称图形,不合题意;
C、是轴对称图形,也是中心对称图形,不合题意;
D、是轴对称图形,也是中心对称图形,不合题意.
即 ,
又∵DB=BD,∴ (同弧所对应的圆周角相等),
在△ADB和△DBE中
∴△ADB≌△EBD(ASA),
∴AD=EB=BC=1.
故答案为A.
【点睛】
本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.
3.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )
故选A.
【点睛】
本题考查中心对称图形;轴对称图形.
5.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q分别是BD,AB上的动点,则AP+PQ的最小值为()
A.4B.4 C.2D.2
【答案】D
【解析】
【分析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
18.下列图形中,是轴对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念逐一判断即可.
【详解】
A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;
D、是轴对称图形,符合题意.
【点睛】
【答案】C
【解析】
【分析】
根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.
【详解】
解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,
故选:C.
【点睛】
此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.
14.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为 ,则点 的坐标为()
A. B. C. D.
【答案】D
【解析】
试题分析:根据题意,点A、A′关于点C对称,设点A的坐标是(x,y),则 ,解得 ,∴点A的坐标是 .故选D.
考点:坐标与图形变化-旋转.
15.如图,在 中, , , ,将 绕点 顺时针旋转度得到 ,当点 的对应点 恰好落在 边上时,则 的长为( )
13.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )
A.3B.4C.5D.6
【答案】C
【解析】
【分析】
先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.
【详解】
解:∵将线段BD沿着BC的方向平移得到线段EF,
∴EF=DB=5,BE=6,
∵AB=AC,BC=9,Leabharlann Baidu
∴∠B=∠C,EC=3,
∴∠B=∠FEC,
∴CF=EF=5,
∴△EBF的周长为:5+5+3=13.
故选D.
【点睛】
本题考查了平移的性质,根据题意得出CF的长是解题关键.
2.如图, 是 的内接三角形, , ,把 绕圆心 按逆时针方向旋转 得到 ,点 的对应点为点 ,则点 , 之间的距离是()
【详解】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
P′Q′=P′H,
∴AP′+P′Q′=AP′+P′H=AH,
根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
∵AB=4,∠AHB=90°,∠ABH=45°,