自动控制系统实验指导书电气08

合集下载

自动控制原理实验指导书

自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。

2、通过实验熟悉各种典型环节的传递函数和动态特性。

⼆、实验设备及器材配置1、⾃动控制理论实验系统。

2、数字存储⽰波器。

3、数字万⽤表。

4、各种长度联接导线。

三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。

1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

自动控制原理(实验指导书)

自动控制原理(实验指导书)

⾃动控制原理(实验指导书)⽬录实验⼀典型环节的模拟研究(验证型)(2)实验⼆典型系统的瞬态响应和稳定性(设计型)(9)实验三动态系统的数值模拟(验证型)(15)实验三动态系统的频率特性研究(综合型)(16)实验四动态系统的校正研究(设计型)(18)附录XMN—2学习机使⽤⽅法简介(20)实验⼀典型环节的模拟研究⼀、实验⽬的:1、了解并掌握XMN-2型《⾃动控制原理》学习机的使⽤⽅法,掌握典型环节模拟电路的构成⽅法,培养学⽣实验技能。

2、熟悉各种典型线性环节的阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响。

⼆、实验设备Uo(S)=(K+TS 1)S1?)1()()(21210210CS R R RR R R R S U S U i +++≈(1-19)⽐较式(1-17)和(1-19)得K=21R R R +T=C R R R R ?+2121 (1-20)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。

则由式(1-17)得到111)()(23111022100210++?+++=S C R S C R C R C R S C R R R R S U S U i (1-24) 考虑到R 1》R 2》R 3,则式(1-24)可近似为S C R R R S C R R R S U S U i 2021100101)()(++≈(1-25)⽐较式(1-23)和(1-25)得K P =1R R , T 1=R 0C 1T D =2021C R R R ? (1-26)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。

则由式(1-23)得到U o (S)=(K P +ST 11+T D S )S 1?五、实验报告要求:1、实验前计算确定典型环节模拟电路的元件参数各⼀组,并推导环节传递函数参数与模拟电路电阻、电容值的关系以及画出理想阶跃响应曲线。

2、实验观测记录。

自动控制原理实验指导书

自动控制原理实验指导书

软件安装及使用一、软件安装1.将实验仪器自带的光盘放入计算机光驱,进入软件安装目录[光盘驱动器:\自动控制\winat。

2.启动软件安装程序setup.exe,如下图1:图1 进入安装界面图2 选择安装路径3.按照软件提示,一步一步完成安装,如图:图3 显示安装进程图4 安装完毕界面4.软件安装完毕后,会在桌面和“开始-程序”中自动生成“自动控制实验系统”快捷方式。

二、软件启动与使用说明1.软件启动在Windows桌面上或“开始-程序”中双击“自动控制实验原理”快捷方式,便可启动软件如图5。

图5 软件启动界面2.实验前计算机与实验箱的通讯设置和测试用实验箱自带的串口线将实验箱后面的串口与计算机的串口连接,启动“自动控制实验原理”软件。

1)实验前通讯口的设置设置方法:点击[系统设置-串口设置]如图6,在对话框内填入与计算机相连的串口值。

图6 串口设置对话框2)实验前通讯口的测试测试方法:接通电源点击[系统设置-通信串口测试]如图7,点击通信串口测试按钮,控制测试区内将出现0-255个数据,如图8,如果数据没有或不全,则说明通讯有故障,应检查计算机串口与实验箱的连接。

3.软件使用说明图7 串口测试窗口 图8 控制测试区本套软件界面共分为四个区域如图9:A. 菜单工具栏区域;B. 实验课题区域;C. 采集结果显示区域;D. 数据测量区域;图9 软件界面分配下面介绍软件的各个区域功能:A.菜单工具栏1)实验课题(ALT+T)在该菜单下选择所做的实验课题项目。

鼠标单击实验课题名称即可进入相应的实验。

2)系统设置(ALT+M)串口设置:设置实验中所使用的串口。

所设定的串口标号应与计算机实际所使用的一致。

通信串口测试:测试实验系统与计算机的通信是否正常。

在实验之前必须进行串口通信测试,在确认串口通信正常后才可以进行实验。

测试方法是鼠标单击对话框中的通信串口测试按钮,如果通信正常所示的空白区内将有信息返回,如果通信不正常则无返回信息。

自动控制理论实验指导书

自动控制理论实验指导书

自动控制理论实验指导书第一章硬件资源EL-AT-II型实验系统主要由计算机、AD/DA采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。

显示器打印机计算机 AD/DA卡实验箱电路图1 实验系统构成实验箱面板如图2所示:图2 实验箱面板下面主要介绍实验箱的构成:一、系统电源EL-AT-II系统采用本公司生产的高性能开关电源作为系统的工作电源主要技术性能指标为:1.输入电压:AC 220V2.输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A 3.输出功率:22W4.工作环境:-5℃~+40℃。

二、 AD/DA采集卡AD/DA采集卡如图3采用ADUC812芯片做为采集芯片,负责采样数据- 1 -自动控制理论实验指导书 .及与上位机的通信,其采样位数为12位,采样率为10KHz。

在卡上有一块32KBit的RAM62256,用来存储采集后的数据。

AD/DA采集卡有两路输出(DA1、DA2)和四路输入(AD1、AD2、AD3、AD4),其输入和输出电压均为-5V~+5V。

图3 AD/DA采集卡另外在AD/DA卡上有一个9针RS232串口插座用来连接AD/DA卡和计算机,20针的插座用来和控制对象进行通讯。

三、实验箱面板实验箱面板布局如图4所示。

AD/DA卡输入输出模块实验模块1 实验模块2 二极管区 EL-CAT-II 电阻、电容、二极管区实验模块3 变阻箱、变容箱模块实验模块5 实验模块6 实验模块7 图4 实验箱面板布局实验箱面板主要由以下几部分构成: 1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。

每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。

这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。

自动控制原理实验指导书(终稿)

自动控制原理实验指导书(终稿)

自动控制原理实验指导书施金鸿编孙炳达审核广东技术师范学院自动化系前言本书是根据高等学校电气工程及其自动化、测控技术等专业“自动控制原理”教学大纲要求,并结合我院具体情况而编写的。

自动控制原理实验是自动控制原理课程的重要组成部分,是该门课程的辅助教材。

由于理论教材中各电路原理已阐述详尽,故在实验教材中主要侧重介绍实验方法,通过实验使学生能运用所学理论知识来分析研究实验中所出现的问题,得出相应的结论,从而培养学生具备分析问题和解决问题的能力。

通过实验这个重要的实践环节来验证所学理论,使学生掌握实验的基本技能和方法,培养学生严肃认真和实事求是的科学作风。

本书由广东技术师范学院自动化系施金鸿编孙炳达审核。

限于编者的水平和经验,疏漏及错误之处在所难免,欢迎读者批评指正。

编者2006年6月目录前言实验一控制系统典型环节的模拟实验 (3)实验二线性定常系统的瞬态响应和稳定性分析 (10)实验三自动控制系统的校正 (17)实验四控制系统的频率特性 (21)实验五典型非线性环节静特性的测试 (25)实验六非线性系统的描述函数分析法 (30)实验七采样控制系统的分析 (34)实验八采样控制系统的动态校正 (39)实验九控制系统极点的任意配置 (42)附录:TKKL-4型控制理论/计算机控制技术实验箱使用说明 (46)实验一控制系统典型环节的模拟实验一、实验目的1、掌握控制系统中各典型环节的电路模拟及其参数的测定方法。

2、测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。

二、实验原理1、对表1-1所示各典型环节的传递函数设计相应的模拟电路(参见表1-2)表1-1:典型环节的方块图及传递函数表1-2:典型环节的模拟电路图2、测试各典型环节在单位阶跃信号作用下的输出响应。

3、改变各典型环节的相关参数,观测对输出响应的影响。

三、实验设备1、TKKL-4型控制理论实验箱 1台2、双踪示波器 1台3、数字万用表 1块四、实验内容及步骤1、观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。

自动控制原理实验指导书(学生版)

自动控制原理实验指导书(学生版)

编著 李蔓华 陈昌虎 李晓高自动控制理论实验指导书目录实验装置简介·························································(3-4·)实验一控制系统典型环节的模拟·················(5-6)实验二一阶系统的时域响应及参数测定·····(6-7)实验三二阶系统的瞬态响应分析·················(8-9)实验四频率特性的测试·······························(9-13)实验五PID控制器的动态特性······················(13-15)实验六典型非线性环节·································(15-18)实验七控制系统的动态校正(设计性实验)··(19)备注:本实验指导书适用于自动化、电子、机设专业,各专业可以根据实验大纲选做实验。

《自动控制原理》实验指导书

《自动控制原理》实验指导书

《自动控制原理》实验指导书31000字实验一、开关量控制与监测实验目的:掌握开关量控制与监测的基本原理及方法。

实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、继电器、开关。

实验内容:1. 使用PLC编程软件进行PLC的程序编写。

2. 使用直流电源作为控制电源,将继电器与开关连接,利用PLC实现开关量控制和监测。

实验步骤:1. 利用PLC编程软件进行PLC的程序编写。

2. 将直流电源的正极与继电器的常闭端相连,继电器的常开端与开关相连。

3. 将开关的另一端与PLC的输入端相连,PLC的输出端与继电器的控制端相连。

4. 将直流电源的负极与PLC实验箱的接地端相连。

5. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。

6. 按下开关,观察继电器的输出,检查程序的正确性。

实验结果:1. 开关按下,PLC输出信号,继电器吸合。

2. 开关松开,PLC输出信号,继电器断开。

实验二、模拟量采集和控制实验目的:掌握模拟量采集和控制的基本原理及方法。

实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、电位器、LED灯。

实验内容:1. 使用PLC编程软件进行PLC的程序编写。

2. 使用电位器作为模拟量输入信号源,利用PLC采集电位器的模拟量信号,并控制LED灯的亮度。

实验步骤:1. 利用PLC编程软件进行PLC的程序编写。

2. 将电位器的信号通过模拟量转换模块输入到PLC的模拟量输入端。

3. 利用PLC的模拟量比较指令,将电位器的模拟量信号转换成数字量信号。

4. 根据数字量输出信号的状态,控制LED灯的亮度。

5. 将直流电源的负极与PLC实验箱的接地端相连。

6. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。

7. 调节电位器,观察LED灯的亮度变化。

实验结果:1. 电位器调整时,模拟量输入信号发生变化。

2. 根据模拟量输入信号的大小,PLC输出数字量信号,控制LED灯的亮度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林化工学院实验指导教材《电力拖动控制系统》实验指导书李艳目录实验一开环直流调速系统仿真 (2)实验二单闭环直流调速系统MATLAB仿真 (4)实验三双闭环直流调速系统MATLAB仿真 (6)实验四PWM调速系统的MATLAB仿真 (9)实验五双闭环控制的直流脉宽调速系统(H桥) (11)实验六三相正弦波脉宽度调制(SPWM)变频原理实验 (16)实验七三相空间电压矢量变频原理实验 (17)实验八位置随动系统综合实验 (18)附注 (21)1数字随动系统实验程序说明 (21)2数字随动调试报告 (22)实验一Matlab仿真认识实验一、实验目的1.熟悉MATLAB中的sinulink仿真的Powersystem库的元器件;2.掌握直流电动机的模型;3.掌握开环直流调速系统的原理及仿真。

4.掌握基本电力电子器件的应用二、实验原理1. 直流电动机的数字模型及模块SimPowersystem/machine/DC machine2. 开环直流调速系统三、实验内容基本数据如下:电动机:150kW,1000r/min, 700A,0.05Ω;Ld=2mH, Rd=0.08; Ce=0.185,Cm=0.18; Tm=0.8s;Tl=0.025s三相全控桥整流:Ks=23;Ts=0.0017;Ce=0.185,Cm=0.18; Tm=0.8s;Tl=0.025s四、实验步骤1.根据原理和内容搭建电路模型;2.设置各元器件的参数;3.设置仿真参数:仿真时间设为0——1s;计算方法为ode15或ode23tb。

4.仿真实现。

元器件清单:2.分析开环调速系统的特性,负载变化时速度如何变化;实验二 单闭环直流调速系统MATLAB 仿真一、实验目的1.掌握单闭环直流调速系统的原理及组成;2.掌握单闭环直流调速系统的仿真。

二、 实验原理三、实验内容基本数据如下:直流电动机:220V ,55A ,1000r/min.Ce=0.192Vmin/r.允许过载倍数为1.5; 晶闸管装置放大系数:Ks=44;Ts=0.00167s ;电枢回路总电阻:Ω=0.1R ;时间常数:s Tm s T l 075.0,017.0==;转速反馈系数:A V /01.0=α;给定电压为10V四、实验步骤1.根据原理和内容搭建电路模型;2.设置各元器件的参数;Step: step time=’0’final valve=’10’Intergrator 的限幅值为正负10Kpi=0.25,1/τ=3; Kpi=0.56,1/τ=11.43; Kpi=0.8,1/τ=15;3.设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。

4.仿真实现。

五、实验报告1.绘制负载电流为零时电流及转速输出波形;2.绘制负载电流为额定电流时电流及转速输出波形;3.并讨论P及PI调节器参数对系统的影响。

实验三双闭环直流调速系统MATLAB仿真一、实验目的1.掌握双闭环直流调速系统的原理及组成;2.掌握双闭环直流调速系统的仿真。

二、实验原理三、实验内容基本数据如下:直流电动机:220V,136A,1460r/min.Ce=0.132Vmin/r.允许过载倍数为1.5;晶闸管装置放大系数:Ks=40;Ts=0.0017s;电枢回路总电阻:Ω=5.0R ;时间常数:s Tm s T l 18.0,03.0==;电流反馈系数:A V /05.0=β;电流反馈滤波时间常数:s T oi 002.0=;电流反馈系数:A V /05.0=β;转速反馈系数α=0.007vmin/r转速反馈滤波时间常数:s Ton 01.0=设计要求:设计电流调节器,要求电流无静差,电流超调量%5≤i σ。

转速无静差,空载起动到额定负载转速时转速超调量%10≤n σ。

并绘制双闭环调速系统的动态结构图。

四、实验步骤1.根据原理和内容搭建电路模型;2.设置各元器件的参数;3.设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。

4.仿真实现。

五、实验报告1.Idl=0和Idl=136A时电流和转速的输出波形2.讨论PI调节器参数对系统的影响.讨论:计算电流环设计成典型一型系统选用PI调节器τi =TL,si i K RT KT Kp βτ∙∑=…………………………取KT=0.5 转速环设计成典型二型系统h =5, T 087.0)2(=+==∑∑on i n n T T h hT τ Kn=7.112)1(=∑+=nRT h CeTmh Kn αβ取11.7 ,11.7/0.087实验四 PWM 调速系统的MATLAB 仿真一、实验目的1.掌握PWM 直流调速系统的原理及组成;2.掌握PWM 直流调速系统的仿真。

二、实验原理三、实验内容四、实验步骤1.根据原理和内容搭建电路模型;2.设置各元器件的参数;3.设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。

4.仿真实现。

五、实验报告输出波形并讨论PWM调节器参数对系统的影响实验五双闭环控制的直流脉宽调速系统(H桥)一、实验目的(1)了解PWM全桥直流调速系统的工作原理。

(2)分析电流环与速度环在直流调速系统中的作用。

二、实验所需挂件及附件三、实验线路及原理本实验系统的主电路采用受限单极性PWM控制方式,其中主电路由四个IGBT管构成H桥,通过控制IGBT的栅极电压,用以控制IGBT管的通断。

受限单极性的控制方式是这样进行控制的:在图5-12中,电机正转时,在VT1的栅极施加脉冲,VT4的栅极施加高电平,VT2VT3的栅极为低电平;反转时,VT2栅极施加脉冲,VT3的栅极施加高电平,VT1VT4的栅极为低电平。

四个快恢复二极管VD1~VD4用于续流。

电流调节器的电流反馈量是由主回路中的电流传感器取得的。

速度反馈量取自转速表输出的电压值。

本实验系统可设定不同的给定量、速度反馈量及电流反馈量,以完成开环、速度单闭环、电流单闭环及双闭环的调速实验。

由于给定量Ug恒为正,因此速度反馈量必须为负值,在需用到速度闭环时必须检测测速发电机提供的输出电压的极性,在做双闭环实验时,必须将正端连接到面板T2端,负值端连接到面板的T1端,面板上的转向选择开关改变,速度信号与T1、T2端的连线也相应改变。

本实验系统原理框图如图5-12所示:图5-12 双闭环H桥DC/DC变换直流调速系统原理框图四、实验内容(1)控制单元调试(2)观测并记录在电机正、反转时,H桥四个桥臂开关器件的控制逻辑。

(3)观测并记录电枢回路电流I d随给定电压U g、负载电阻R g改变的波形。

(4)电机的正、反转机械特性n=f(I d)的测定。

(5)电机的正、反转控制特性n=f(U g)的测定。

(6)系统动态特性观察(7)系统静态特性观察五、预习题(1)在驱动脉冲形成过程中,为什么要加逻辑延时(死区),延时过长会影响那些指标?(2)H桥变换器的受限单极式工作模式与单极性以及双极式工作模式相比有哪些特点?(3)加大转速反馈深度会对调速系统哪些指标产生影响?(4)了解电流环、速度环的作用(5)熟悉双闭环调速的特点六、思考题为什么要调节偏移电压,如果不调节或者调节的不好对闭环调速有什么影响七、实验方法(1)系统单元调试①偏移电压调节:把系统接至开环,给定为0,调节面板上的调节偏移电压的电位器,使电机处于刚好不转的状态。

②电流调节器的调节:在电流调节器的4、6之间接50KΩ电阻,把调节器的1、2、3接地,用万用表测量电流调节器的输出7(Uct)和地之间的电压,调节电位器RP3,使输出尽可能接近0V。

③电流调节器正负限幅值的整定:在电流调节器的4和5之间接50KΩ电阻,5和6之间接1UF的电容,输入端2(Ui*)加一负的给定,用万用表测量电流调节器的输出7和地之间电压,调节正的限幅值电位器RP1,使输出为4V左右,加一正给定,调节负限幅电位器RP2,使输出为-4V。

④速度调节器负限幅值的整定同电流调节器相同。

⑤电流反馈输出的整定:一般电机限流在额定电流的1.2倍,本实验所使用电机应调节限流值为1.2A左右。

把给定直接接至PWM发生器2(Un*/Uct)(即开环实验),改变负载,使电机的电枢电流达到1.2A,调节电流反馈输出电位器RP1使电压值等于速度调节器的限幅值即可,本实验设定电流在1.2A的时候反馈值为4V。

⑥速度反馈输出的整定:把给定直接接至PWM发生器,调节给定,使转速为1400r/min,调节转速调节器电位器RP1使输出3(Un)为4V。

(2)双闭环调速系统的调试原则①先单元、后系统,即先将单元的参数调好,然后才能组成系统。

②先开环、后闭环,即先使系统运行在开环状态,然后再确定电流和转速均为负反馈后才可组成闭环系统。

③先单环、后双环,即先使系统在电流单闭环和转速单闭环下稳定运行,然后再做电流速度双闭环。

(3)系统调试①开环系统测定:把给定接至面板上的Un*/Uct,把220V直流电源和直流电机接入主电路,直流发电机接负载电阻R,负载电阻放在最大值,给定调至零。

接好线后,先打开控制电源的开关,接通电机励磁电源,然后接通220V直流电源。

逐渐增大给定电压Un*,使电机启动升速,使转速达到1200rpm。

逐渐减小负载电阻R的阻值(即增大负载),使电动机的电枢电流达到额定电流1A,可测出该系统的开环特性n=f(Id),记录与下表中:把负载减小至最小,给定减小至零,切断直流电,断开励磁,关断电源,结束实验。

②电流速度双闭环系统测定:根据图5-12接线,可组成电流转速双闭环。

给定电压为正电压,转速反馈电压为负电压,直流发电机接负载R,负载电阻调至最大值,给定调节至零。

将速度调节器、电流调节器都接成PI调节器,接入系统,形成双闭环调速系统。

(速度调节器、电流调节器的电阻值可调为50KΩ,电容值可调节为1uf)。

接好线后,先打开控制电源的开关,接通电机励磁电源,然后接通220V直流电源。

逐渐增大给定电压Un*,使电机启动升速,使转速达到1200rpm。

③机械特性n=f(Id)测定:A、先把负载电阻调至最大,从零开始增大给定电压,使电动机转速达到n=1200rpm,调节负载电阻逐渐减小至零(增大负载)。

测出n,Id值,记录于下表:B、降低Ug,测试n=800rpm的n,Id值,记录于下表:④系统动态特性观察:用慢扫描示波器或数字示波器观察动态波形。

在不同的系统参数下(速度调节器和电流调节器的PI值),记录下列动态波形:突加给定,电机启动时的电枢电流Id(电流反馈调节器的2端)波形和转速n(转速反馈调节器的3端)波形。

突加负载(20%Ied=>100%Ied)时电机电枢电流波形和转速波形。

突降负载(100%Ied=>20%Ied)时电机电枢电流波形和转速波形。

相关文档
最新文档