与三角函数有关的零点问题
数学上册三角函数的零点与像练习题
数学上册三角函数的零点与像练习题一、简答题1. 什么是三角函数的零点?三角函数的零点是指使得三角函数取值为0的实数点。
对于正弦函数(sin)、余弦函数(cos)、正切函数(tan)等三角函数,零点的集合分别是[2kπ, (2k+1)π]、[(2k-1)π/2, (2k+1)π/2]和[kπ, (k+1)π],其中k为整数。
2. 什么是三角函数的像?三角函数的像是指三角函数在定义域中取得的所有实数值的集合。
对于正弦函数(sin)、余弦函数(cos)、正切函数(tan)等三角函数,它们的像分别是[-1, 1]、[-1, 1]和实数集。
二、计算题1. 计算sin(π/3)的值。
根据正弦函数的定义,sin(π/3) = √3/2。
2. 计算cos(π/4)的值。
根据余弦函数的定义,cos(π/4) = √2/2。
3. 计算tan(π/6)的值。
根据正切函数的定义,tan(π/6) = sin(π/6) / cos(π/6) = (√3/2) /(√3/2) = 1。
4. 求解sin(x) = 0的解。
根据正弦函数的性质,sin(x) = 0的解为x = kπ,其中k为整数。
5. 求解cos(x) = 1的解。
根据余弦函数的性质,cos(x) = 1的解为x = 2kπ,其中k为整数。
6. 求解tan(x) = √3的解。
根据正切函数的性质,tan(x) = √3的解为x = π/3 + kπ,其中k为整数。
三、证明题证明sin(π/6) = 1/2。
根据角度的减法公式sin(a-b) = sin(a)cos(b) - cos(a)sin(b),可以得到sin(π/3 - π/6) = sin(π/3)cos(π/6) - cos(π/3)sin(π/6)。
化简得到sin(π/6) = 1/2。
四、解答题1. 证明sin^2(x) + cos^2(x) = 1。
根据三角函数的基本关系sin^2(x) + cos^2(x) = 1证明如下:由正弦函数的定义sin(x) = o/h,其中o为对边,h为斜边。
重难点专题18 三角函数中w取值范围问题八大题型汇总(原卷版) 备战2024年高考数学重难点突破
题型8新定义 (9)已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2-x 1≤12T =πω,求得0<ω≤πx 2-x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[―π2+2kπ,π2+2kπ],解得ω的范围;第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围.结合图象平移求ω的取值范围1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数=平移后的函数.2、平移后与新图象重合:平移后的函数=新的函数.3、平移后的函数与原图象关于轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于轴对称:平移前的函数=平移后的函数-;5、平移后过定点:将定点坐标代入平移后的函数中。
()f x ()g x ()f x ()g x y x ()f x ()g x三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T,相邻的对称轴和对2,也就是说,我们可以根据三角函数的对称性来研究其周期称中心之间的“水平间隔”为T4性,进而可以研究ω的取值。
三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.已知三角函数的零点个数问题求ω的取值范围对于区间长度为定值的动区间,若区间上至少含有k个零点,需要确定含有k个零点的区间长度,一般和周期相关,若在在区间至多含有k个零点,需要确定包含k+1个零点的区间长度的最小值.三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.ππ。
高考数学热点难点突破技巧 三角函数的零点问题的处理
第09讲三角函数零点问题的处理【知识要点】三角函数的零点问题,是考试经常考察的重点、热点和难点.三角函数的零点问题的处理一般有以下三种方法:1、单调性+数形结合 .2、分离参数+数形结合. 3、方程+数形结合. 三种方法也不是绝对的,要注意灵活使用.【方法讲评】方法一单调性+数形结合解题步骤一般先研究三角函数的单调性,再数形结合分析.【例1】已知向量,,设函数.(1)若函数的图象关于直线对称,且时,求函数的单调增区间;(2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.(1)∵函数图象关于直线对称,∴,解得:,∵,∴,∴,由,解得:,所以函数的单调增区间为.∴当或时函数有且只有一个零点.即或,所以满足条件的.【点评】(1)本题第2小问是在第1问的前提下进行的,第1问求出了函数的单调增区间,所以第2小问对零点问题的研究,可以利用单调性+数形结合方法分析解答.第2问首先求复合函数在上的单调性,再数形结合分析函数零点的个数. (2)在解答数学问题时,只要写不等式,一定要注意取等问题,本题第2问,左边可以取等,右边不能取等.【反馈检测1】设P是⊙O:上的一点,以轴的非负半轴为始边、OP为终边的角记为,又向量。
且.(1)求的单调减区间;(2)若关于的方程在内有两个不同的解,求的取值范围.方法二分离参数+数形结合解题步骤先分离参数,再画出方程两边的函数的图像,数形结合分析解答.【例2】已知函数的最大值为.(1)求函数的单调递增区间;(2)将的图象向左平移个单位,得到函数的图象,若方程-=0在∈上有解,求实数的取值范围.【解析】(1),由,解得,所以函数的单调递增区间当时,,取最小值-3.方程在∈上有解,即 -3≤≤【点评】(1)本题就是先分离参数,再分别画方程左右两边的函数的图像数形结合分析.(2)本题也可以单调性+数形结合的方法分析解答.它们之间不是绝对的,要注意灵活使用. 【反馈检测2】已知函数的周期为.(1)若,求它的振幅、初相;(2)在给定的平面直角坐标系中作出该函数在的图像;(3)当时,根据实数的不同取值,讨论函数的零点个数.方法三方程+数形结合解题步骤先解方程,再数形结合分析解答.【例3】已知函数.(Ⅰ)当时,求值;(Ⅱ)若存在区间(且),使得在上至少含有6个零点,在满足上述条件的中,求的最小值.【点评】(1)本题就是先解方程,再数形结合分析解答.本题如果用前面的两种方法,也可以解答,不过比较复杂. (2)如果,所以它不是最小值.【反馈检测3】已知函数,其中常数;(1)若在上单调递增,求的取值范围;(2)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,区间(且)满足:在上至少含有30个零点,在所有满足上述条件的中,求的最小值.高中数学热点难点突破技巧第09讲:三角函数零点问题的处理参考答案【反馈检测1答案】(1)的单调减区间是:、;(2),且.【反馈检测1详细解析】(2)因,则.设,所以有两个不同的解,由题得. 借助函数图象可知:,即所以得:,且【反馈检测2答案】(1),;(2)详见解析;(3)当或时,函数无零点;当时,函数仅有一个零点;当或时,函数有两个零点;当时,函数有三个零点.【反馈检测2详细解析】(1)化为,由得,即.(1)函数的振幅是,初相为(2)列表2 0 0【反馈检测3答案】(1)(2)【反馈检测3详细解析】(1)因为,根据题意有(2) ,或,即的零点相离间隔依次为和,故若在上至少含有30个零点,则的最小值为.。
5.4.1正弦函数余弦函数的图象(五大题型)(原卷版)
5.4.1 正弦函数、余弦函数的图象【题型归纳目录】题型一:五点作图法作正弦函数、余弦函数的简图题型二:含绝对值的三角函数题型三:解三角不等式问题题型四:与三角函数有关的零点问题题型五:识图问题【知识点梳理】知识点一:正弦函数图象的画法1、描点法:按照列表、描点、连线三步法作出正弦函数图象的方法.2、几何法利用三角函数线作出正弦函数在[0,2]π内的图象,再通过平移得到sin y x =的图象.3、五点法先描出正弦曲线的波峰、波谷和三个平衡位置这五个点,再利用光滑曲线把这五点连接起来,就得到正弦曲线在一个周期内的图象.在确定正弦函数sin y x =在[0,2]π上的图象形状时,起关键作用的五个点是3(0,0),(,1),(,0),(,1),(2,0)22ππππ- 知识点诠释:(1)熟记正弦函数图象起关键作用的五点.(2)若x R ∈,可先作出正弦函数在[0,2]π上的图象,然后通过左、右平移可得到sin y x =的图象. 知识点二:正弦曲线(1)定义:正弦函数sin ()y x x R =∈的图象叫做正弦曲线.(2)图象知识点诠释:(1)由正弦曲线可以研究正弦函数的性质.(2)运用数形结合的思想研究与正弦函数有关的问题,如[]0,2x π∈,方程lg sin x x =根的个数. 知识点三:用三角函数图象解三角不等式的方法1、作出相应正弦函数或余弦函数在[]0,2π上的图象;2、写出适合不等式在区间[]0,2π上的解集;3、根据公式一写出不等式的解集.【典型例题】题型一:五点作图法作正弦函数、余弦函数的简图例1.画出下列函数在区间[]0,2π上的图象:(1)2sin y x =+;(2)sin 2y x =-;(3)3sin y x =.例2.已知函数()ππ2sin 36f x x ⎛⎫=+ ⎪⎝⎭,用“五点作图法”在给定坐标系中画出函数()f x 在[]0,6上的图像. 例3.已知函数()π2sin 24f x x ⎛⎫=- ⎪⎝⎭,x ∈R .在用“五点法”作函数()f x 的图象时,列表如下:完成上述表格,并在坐标系中画出函数()y f x =在区间[]0,π上的图象;变式1.用“五点法”画出下列函数的简图:(1)1sin y x =+,[]0,2πx ∈;(2)2cos y x =,[]0,2x π∈.变式2.已知函数()2cos 3f x x =-+.完成下面表格,并用“五点法”作函数()f x 在[0]2π,上的简图:变式3.已知函数2cos 1f x x =-.(1)完成下列表格,并用五点法在下面直角坐标系中画出()f x 在[]0,2π上的简图;.【方法技巧与总结】1、五点作图法:作正弦曲线、余弦曲线要理解几何法作图,掌握五点法作图.“五点”即sin y x =或cos y x =的图象在[]0,2π内的最高点、最低点和与x 轴的交点.2、图象变换:平移变换、对称变换、翻折变换.题型二:含绝对值的三角函数例4.当[]2π,2πx ∈-时,作出下列函数的图象,把这些图象与sin y x =的图象进行比较,你能发现图象变换的什么规律? (1)sin y x =; (2)sin y x =.例5.画出函数11sin sin 22y x x =+的简图. 例6.作出函数2sin sin y x x =+,[],x ππ∈-的大致图像.变式4.作函数3sin 2y x π⎛⎫=+ ⎪⎝⎭的图象. 【方法技巧与总结】分类讨论解决绝对值问题题型三:解三角不等式问题例7.不等式1sin ,2x <-[0,2]x π的解集是( ) A .711,66ππ() B .45,33ππ⎡⎤⎢⎥⎣⎦ C .57,66ππ() D .25,33ππ() 例8.不等式12cos 0x +>的解集为( )A .(2,2)()33k k k Z ππππ-++∈ B .22(2,2)()33k k k Z ππππ-++∈ C .(2,2)()66k k k Z ππππ-++∈ D .2(2,2)()63k k k Z ππππ++∈ 【方法技巧与总结】用三角函数的图象解sin x a >(或cos x a >)的方法(1)作出直线y a =,作出sin y x =(或cos y x =)的图象.(2)确定sin x a =(或cos x a =)的x 值.(3)确定sin x a >(或cos x a >)的解集.题型四:与三角函数有关的零点问题例9.函数()sin f x x =,()cos g x x =的图象在区间[]2π,π-的交点个数为( )A .3B .4C .5D .6例10.函数sin 2|sin |,[0,2π]y x x x =+∈的图象与直线12y =的交点共有 个. 例11.若函数()4sin 2,[0,]6f x x x ππ⎛⎫=-+∈ ⎪⎝⎭的图象与直线y m =恰有两个不同交点,则m 的取值范围是 .变式5.已知函数[]cos 2cos ,0,2y x x x π=+∈与函数y k =的图象有四个交点,则k ∈ .变式6.已知函数()12sin f x x =-.(1)用“五点法”做出函数()f x 在[]0,2x π∈上的简图;(2)若方程()f x a =在25,36x ππ⎡⎤∈-⎢⎥⎣⎦上有两个实根,求a 的取值范围. 变式7.方程sin 32m x π⎛⎫+= ⎪⎝⎭在[0,]π上有两实根,求实数m 的取值范围及两个实根之和. 变式8.方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 【方法技巧与总结】方程的根(或函数零点)问题:三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.题型五:识图问题例12.函数()()sin e e x x f x -=+的图象大致为( ) A . B .C .D .例13.如图为函数()f x 的大致图象,其解析式可能为( )A .()()11cos f x x x x =++-B .()()11sin f x x x x =-++-C .()()11cos 2f x x x x =++--D .()()()11e e x x f x x x -=++-- 例14.函数()1sin e x x xf x -=的图象大致为( )A .B .C .D .变式9.函数()e e 3πsin 232x x f x x -+⎛⎫=⋅- ⎪⎝⎭在4,4⎡⎤-⎣⎦上的图象大致是( ) A . B .C .D .变式10.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,常用函数的图象来研究函数性质,也常用函数解析式来琢磨函数的图象特征,函数cos ()2sin ||x x f x x =+的部分图象大致为( ) A . B .C .D .变式11.函数π()412sin 2x x f x x -⎛⎫=-⋅⋅+ ⎪⎝⎭的大致图象为( )A .B .C .D .变式12.函数()33cos 22x xf x x --=⋅的部分图象大致为( )A .B .C .D .【方法技巧与总结】利用排除法,从定义域、奇偶性、代数三个方面进行排除.【过关测试】一、单选题1.用“五点法”作y =2sin x 的图象时,首先描出的五个点的横坐标是( )A .π30,,π,π,2π22B .ππ30,,,π,π424C .0,π,2π,3π,4πD .πππ3π0,,,,63222.如图所示,函数cos tan y x x =(3π02x <≤且π2x ≠)的图像是( ). A . B .C .D .3.方程sin x x =的实数解的个数为( )A .1B .3C .5D .74.方程sin lg x x =,[]2π,2πx ∈-实根的个数为( )A .6B .5C .4D .35.华罗庚说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”所以研究函数时往往要作图,那么函数()sin cos2f x x x =+的部分图像可能是( )A .B .C .D .6 )A .sin10cos10︒+︒B .sin10cos10︒-︒C .cos10sin10︒-︒D .sin10cos10-︒-︒7.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)a ⎡∈⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为( ).A .7π3π,124⎛⎤ ⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤ ⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭8.函数11y x =-的图像与函数()2sin π24y x x =-≤≤的图像所有交点的横坐标之和等于( ) A .8 B .10 C .12 D .14二、多选题9.(多选)函数]sin 1,[0,2πy x x -∈=与y a =有一个交点,则a 的值为( ) A .1-B .0C .1D .2- 10.若函数()14sin f x x t =+-在区间π,2π6⎛⎫ ⎪⎝⎭上有2个零点,则t 的可能取值为( ) A .2- B .0 C .3 D .411.函数cos y x =,π4π,33x ⎛⎫∈ ⎪⎝⎭的图像与直线y t =(t 为常数,R t ∈)的交点可能有( ) A .0个 B .1个 C .2个 D .3个 12.(多选)若函数()2cos f x x =,[]0,2x π∈的图象和直线y =2围成一个封闭的平面图形,则( )A .当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x < B .()01f = C .302f π⎛⎫= ⎪⎝⎭ D .所围图形的面积为2π三、填空题13.若函数πsin 3y x ⎛⎫=+ ⎪⎝⎭的图像在[0,]m 上恰好有一个点的纵坐标为1,则实数m 的值可以是 . 14.函数22cos sin y x x =+的最小值是 .15.如果方程sin x a =在π,π6x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解,则实数a 的取值范围是 . 16.若()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭在区间()0,m 上有且只有一个零点,则实数m 的取值范围是 ; 四、解答题17.函数()sin 2sin f x x x =+,用五点作图法画出函数()f x 在[]0,2π上的图象;(先列表,再画图)18.用“五点法”在给定的坐标系中,画出函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭在[]0,π上的大致图像. 19.已知函数()2sin 33f x x π⎛⎫=- ⎪⎝⎭. (1)请用五点作图法画出函数()f x 在20,3π⎡⎤⎢⎥⎣⎦上的图象;(先列表,后画图)(2)设()()23,0,3m F x f x x π⎡⎤=-∈⎢⎥⎣⎦,当0m >时,试讨论函数()F x 零点情况. 20.在同一平面直角坐标系内画出正弦函数sin y x =和余弦函数cos y x =在区间[]0,2π上的图象,并回答下列问题.(1)写出满足sin cos x x =的x 的值;(2)写出满足sin cos x x >的x 的取值范围;(3)写出满足sin cos x x <的x 的取值范围;(4)当x ∈R 时,分别写出满足sin cos x x =,sin cos x x >,sin cos x x <的x 值的集合.214x k π⎛⎫+= ⎪⎝⎭在0x π≤≤上有两个实数根12,x x ,求实数k 的取值范围,并求12x x +的值. 22.已知函数()[]1πsin 2,0,π26f x x x ⎛⎫=+∈ ⎪⎝⎭(1)填写下表,并用“五点法”画出()f x 的图象.(2)若函数()f x 满足不等式()34f x ≤,求x 的范围.。
专题二 微重点6 三角函数中ω,φ的范围问题
P0,12,现将 y=f(x)的图象向左平移π3个单位长度得到的函数图象也过
点 P,则
√A.ω 的最小值为 2
B.ω 的最小值为 6
C.ω 的最大值为 2
D.ω 的最大值为 6
12345678
依题意 f(0)=sin φ=12,0<φ<π2,φ=π6, f(x)=sinωx+π6的图象向左平移π3个单位长度得到 g(x)=sinωx+π3+π6=sinωx+π3ω+π6,g(0)=sinπ3ω+π6=12, 所以π3ω+π6=2k1π+π6或π3ω+π6=2k2π+56π, 即ω=6k1或ω=6k2+2,其中k1,k2∈Z, 由于ω>0,所以ω的最小值为2.
跟踪演练3 (2022·湛江模拟)已知函数 f(x)=sin(ωx+φ)ω>0,|φ|≤π2,f π3+x
=f π3-x,f -π3=0,且 f(x)在区间1π0,π2上有且只有一个极大值点,
33 则 ω 的最大值为__4___.
由题意知,-π3ω+φ=k1π, π3ω+φ=k2π+π2,
k1,k2∈Z,
12345678
若 x∈(0,2π),则 ωx+π6∈π6,2ωπ+π6. 设 t=ωx+π6,则 t∈π6,2ωπ+π6, 因为 2ωπ+π6∈π6,176π, 所以函数 y=sin t 在π6,2ωπ+π6上的零点最多有 2 个. 所以f(x)在(0,2π)上的零点最多有2个.
12345678
4.(2022·萍乡模拟)设函数 f(x)=sin2x+π4在区间a,a+π3上的最大值为
M,最小值为 m,则 M-m 的最小值为
A.
2 2
√B.12
C.1-
2 2
2-1 D. 2
初中数学 如何求解三角函数的零点性变换问题
初中数学如何求解三角函数的零点性变换问题在初中数学中,我们经常会遇到求解三角函数的零点性变换问题。
这类问题要求我们根据已知函数的零点性质,求解相应的变换函数的零点性质。
在本文中,我们将讨论如何求解三角函数的零点性变换问题,并通过具体的例子来说明。
一、正弦函数和余弦函数的零点性变换1. 正弦函数的零点性变换正弦函数sin(x)的零点是在周期内满足sin(x) = 0的x值。
现在我们来求解正弦函数的零点性变换问题,即求解sin(-x)、-sin(x)的零点性。
对于sin(-x),我们可以将其写为-sin(x),即sin(-x) = -sin(x)。
这意味着sin(-x)的零点与-sin(x)的零点相同,即与sin(x)的零点相同。
对于-sin(x),我们可以使用以下公式来求解零点性:-sin(x) = 0这意味着-sin(x)的零点是在周期内满足sin(x) = 0的x值,即与sin(x)的零点相同。
2. 余弦函数的零点性变换余弦函数cos(x)的零点是在周期内满足cos(x) = 0的x值。
现在我们来求解余弦函数的零点性变换问题,即求解cos(-x)、-cos(x)的零点性。
对于cos(-x),我们可以将其写为cos(x),即cos(-x) = cos(x)。
这意味着cos(-x)的零点与cos(x)的零点相同。
对于-cos(x),我们可以使用以下公式来求解零点性:-cos(x) = 0这意味着-cos(x)的零点是在周期内满足cos(x) = 0的x值,即与cos(x)的零点相同。
二、例题解析现在我们通过具体的例子来求解三角函数的零点性变换问题。
例题1:求解sin(-x)的零点性。
根据前面的讨论,我们知道sin(-x)的零点与sin(x)的零点相同。
例题2:求解-cos(x)的零点性。
根据前面的讨论,我们知道-cos(x)的零点与cos(x)的零点相同。
通过这两个例子,我们可以看到,根据三角函数的零点性规律,我们可以很轻松地求解三角函数的零点性变换问题。
三角函数零点问题求w范围
三角函数零点问题求w范围
三角函数零点问题求w的范围,其实原理上说,根据w的定义可
以直接得到w的值,因为w是把周期性信号旋转成直流电压的比例系数,所以一般来说,三角函数零点处的w可以使用正弦、余弦函数公
式求出,如:sin(w)+cos(w)=0,求w范围可以推出w∈(0,π/2)和
w∈(3π/2,2π),这两个区间就是w的范围。
但是,实际上,根据w的定义,在不同的应用场景中,w的范围会
有所不同,因为有时候求出的w不一定能够满足实际的强度要求,所
以要通过一定的方法得到满足规定要求的w。
如果要求w能够产生指定
的直流信号,那么w就要在和实际信号范围匹配的范围;如果要求w
能够在一定的强度下产生指定的信号,则需要考虑其他因素,比如幅度、相位对应关系的影响等,得到合适的w范围。
总而言之,三角函数零点处的w的范围,原则上应该介于0到2π
之间,但是实际应用中,根据具体情况,可以定义更加合适的w范围。
三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。
三角函数零点个数解题技巧
三角函数零点个数解题技巧三角函数零点个数解题技巧一、引言在学习高中数学时,我们会接触到三角函数的概念和相关的应用。
而在解题过程中,求出三角函数的零点是非常重要的一步。
本文将介绍三角函数零点个数解题技巧,帮助大家更好地掌握这一知识点。
二、三角函数的定义及性质1. 三角函数的定义正弦函数:$y = \sin x$余弦函数:$y = \cos x$正切函数:$y = \tan x$余切函数:$y = \cot x$正割函数:$y = \sec x$余割函数:$y = \csc x$2. 三角函数的周期性对于任意实数 $x$,有以下周期性:$\sin (x + 2k\pi) = \sin x, k\in Z$ $\cos (x + 2k\pi) = \cos x, k\in Z$ $\tan (x + k\pi) = \tan x, k\in Z$ $\cot (x + k\pi) = \cot x, k\in Z$ $\sec (x + 2k\pi) = \sec x, k\in Z$ $\csc (x + 2k\pi) = \csc x, k\in Z$ 3. 三角函数的奇偶性对于任意实数 $x$,有以下奇偶性:$\sin (-x) = -\sin x$$\cos (-x) = \cos x$$\tan (-x) = -\tan x$$\cot (-x) = -\cot x$$\sec (-x) = \sec x$$\csc (-x) = -\csc x$4. 三角函数的单调性对于 $0<x<\pi$,有以下单调性:正弦函数:增函数余弦函数:减函数正切函数:增函数余切函数:减函数正割函数:减函数余割函数:增函数三、三角函数零点个数的判定方法1. 正弦和余弦的零点个数判定方法当 $f(x)=a\sin x+b\cos x$ 时,可以使用以下方法求解:令 $t=\arctan(\frac{b}{a})$,则 $f(x)=\sqrt{a^2+b^2}\sin(x+t)$。
【高考数学】三角函数零点问题
函数零点是近年来高考既是热点,又是重点,更是高频考点内容,在全国各个省的高考题,及各市各套模拟试卷都屡见不鲜,尤其是三角函数的零点问题,常考常新,但解答题都是通过分类讨论研究零点,分离参数划归为曲线的交点,分离函数等研究零点问题,下面就解答题加以分析: 一.理论基础,解题原理对函数y=f(x), 使f(x)=0的实数x 叫做函数y=f(x)的零点。
1.函数零点定义:2. 等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x 轴有交点⇔曲线y=g(x)与y=h(x)的交点⇔函数y=f(x)有零点; 3.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。
二 例题枚举例1.(19课标1)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数. 证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭ ()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,1111,7n n a a +-=在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减,又()0sin 0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++,00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '= 三角函数零点问题∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点,即()f x '在1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =, 0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭,10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+<,即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<,即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.例2(17山东)已知函数()22cos f x x x =+,()()cos sin 22xg x e x x x =-+-其中 2.71828e =L 是自然对数的底数. (Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.解:(Ⅰ)易求:222y x ππ=--(Ⅱ)由题意得 2()(c o ss i n 22)(2c o s )xh x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x xh x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-,则()1cos 0m x x '=-≥,所以()m x 在R 上单调递增. 因为(0)0,m =所以 当0x >时,()0,m x > 当0x <时,()0m x < (1)当0a ≤时,x e a -0>当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增, 所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--;极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--; ②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值; ③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增; 当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减; 当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增; 所以 当0x =时()h x 取得极大值,极大值是()021h a =--; 当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上递增,在()ln ,0a 上递减,函数()h x 有极大值,也有极小值,【点睛】 1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道较难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.例3(19天津)设函数()e cos ,()x f x x g x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明:()()02f x g x x π⎛⎫+- ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++ ⎪⎝⎭内的零点,其中n N ∈,证明:20022sin cos n n n x x e x πππ-+-<-.解:(Ⅰ)由已知,有()()'e cos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 递减; 当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 递增. 所以()f x 的递增区间为()32,244k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, ()f x 的递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.(Ⅱ)记()()()2h x f x g x x π⎛⎫-= ⎝+⎪⎭.依题意及(Ⅰ)有:()()cos sin xg x e x x =-,从而'()2sin xg x e x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,故'()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭.(Ⅲ)依题意,()()10n n u x f x =-=,即e cos 1n xn x =.记2n n y x n π=-,则,42n y ππ⎛⎫∈ ⎪⎝⎭.且()e cos n y n n f y y ==()()22e cos 2e nx n n n x n n N πππ---∈=. 由()()20e1n n f y f y π-==及(Ⅰ)得0n y y . 由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭.又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+- ⎪⎝⎭,故: ()()()2e 2n n nn n f y y g y g y ππ---=-()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--. 所以200e 22sin cos n n n x x x πππ-+--<.【点睛】本题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.。
三角函数零点问题解题技巧
三角函数零点问题解题技巧三角函数是初中数学中最重要的知识点之一。
在学习三角函数的过程中,我们经常会遇到求三角函数的零点问题。
所谓零点,指的是函数取零值的时候所对应的自变量值。
下面介绍几种常见的求三角函数零点的解题技巧。
技巧一:观察正弦函数、余弦函数的周期正弦函数和余弦函数都是周期函数,其周期均为360度或2π弧度。
因此,我们可以通过观察正弦函数或余弦函数的周期来推断它的零点。
例如,对于sinx=0的问题,我们可以先看作sin(x+360k)=0,其中k为整数。
如果我们找到一个x值,使得x+360k使得sin(x+360k)=0,则x+360k就是这个函数的一个零点。
同理,对于cosx=0的问题,我们可以先看作cos(x+360k)=0,其中k为整数。
如果我们找到一个x值,使得x+360k使得cos(x+360k)=0,则x+360k就是这个函数的一个零点。
技巧二:观察正切函数、余切函数的周期与奇偶性正切函数和余切函数都是周期为180度或π弧度的函数。
但是,正切函数是奇函数,余切函数是偶函数。
因此,我们在解决tanx=0或cotx=0的问题时,需要分别考虑它们的奇偶性。
对于tanx=0的问题,我们可以先看作tan(x+180k)=0,其中k为整数。
但是由于tanx是奇函数,因此x=0+180k或x=180+180k为它的零点。
对于cotx=0的问题,我们可以先看作cot(x+180k)=0,其中k为整数。
但是由于cotx是偶函数,因此x=90+180k为它的零点。
技巧三:使用三角函数的求根公式在一些特殊情况下,我们可以使用三角函数的求根公式来求解三角函数的零点。
例如,对于sinx=a的问题,我们可以先将其转化为sinx=0.5a的形式,然后利用求根公式得到x=2kπ±arcsin(0.5a),其中k为整数。
同理,对于cosx=a的问题,我们可以先将其转化为cosx=0.5a的形式,然后利用求根公式得到x=2kπ±arccos(0.5a),其中k为整数。
初中数学 如何求解三角函数的零点性变换问题
初中数学如何求解三角函数的零点性变换问题三角函数的零点性变换问题是指通过变换函数的操作,改变三角函数的零点性质。
在本文中,我们以正弦函数为例,介绍如何求解三角函数的零点性变换问题。
1. 正弦函数的零点性特点:正弦函数sin(x)在定义域上是一个周期函数,其零点是函数图像与x轴相交的点。
在正弦函数的周期内,它有无数个零点,且这些零点是等间距分布的。
2. 求解正弦函数的零点性变换问题:要求解正弦函数sin(x)的零点性变换,我们需要找到一个变换函数,使正弦函数的零点性质发生改变。
-零点性的定义:对于任意实数x,如果函数的值为0,则x是函数的零点。
-零点性的变换规律:在零点性变换中,函数的零点性质发生改变。
-零点性变换的关键点:要求解零点性变换问题,我们需要找到一个变换函数,使函数的零点性质发生改变。
3. 具体求解零点性变换问题的方法:对于正弦函数sin(x),我们可以通过以下步骤求解零点性变换问题:-步骤1:确定变换函数。
变换函数是对函数的零点性质进行改变的函数。
对于sin(x),我们可以使用变换函数f(x-a),其中a为实数。
-步骤2:确定零点性变换的定义域。
由于正弦函数的定义域为实数集合R,零点性变换后的函数的定义域仍然是实数集合R。
-步骤3:确定零点性变换的值域。
正弦函数的值域为[-1, 1],经过零点性变换后,变换函数的值域也是[-1, 1]。
-步骤4:确定零点性变换的图像。
可以通过绘制正弦函数和变换函数的图像,来观察零点性变换的效果。
通过上述步骤,我们可以求解正弦函数的零点性变换问题。
同样的方法也可以应用于其他三角函数的零点性变换问题。
初中数学 如何求解三角函数的零点性变换问题
初中数学如何求解三角函数的零点性变换问题要求解三角函数的零点性变换问题,我们需要了解三角函数的图像特点和零点的变化规律。
下面以正弦函数为例,介绍如何求解三角函数的零点性变换问题。
1. 正弦函数的图像特点:正弦函数sin(x)的图像是一条周期性的曲线,它在区间[0, 2π]上是周期性的,即sin(x + 2π) = sin(x)。
正弦函数在x = 0和x = π时取得最小值0,在x = π/2和x = 3π/2时取得最大值1和-1。
在其他区间上,正弦函数的图像在0和1之间波动。
2. 求解正弦函数的零点性变换问题:现在我们要求解sin(x)的零点性变换,即要找到一组x的取值,使得sin(x)的零点发生变化。
-正弦函数的零点:正弦函数的零点是使得sin(x) = 0的x值。
根据正弦函数的图像特点,我们知道正弦函数的零点是在x = 0,π,2π,3π,...,即kπ的位置上,其中k是整数。
-零点性变换的规律:我们可以通过正弦函数的零点性变换规律来求解正弦函数的零点性变换问题。
根据正弦函数的图像特点,我们知道sin(x)的零点是周期性的,即在每个周期内的零点位置是相同的。
-零点性变换的周期性:由于正弦函数是周期性的,所以零点性的变化也是周期性的。
在每个周期内,正弦函数的零点位置是相同的,即在x = 0,π,2π,3π,...的位置上。
在其他周期内,零点性的变化也是相同的。
3. 其他三角函数的零点性变换问题:类似地,我们可以根据三角函数的图像特点和零点的变化规律来求解其他三角函数的零点性变换问题。
以余弦函数为例,余弦函数cos(x)的图像也是一条周期性的曲线,它在区间[0, 2π]上是周期性的,即cos(x + 2π) = cos(x)。
余弦函数在x = π/2和x = 3π/2时取得最小值0,在x = 0和x = π时取得最大值1和-1。
在其他区间上,余弦函数的图像在-1和1之间波动。
类似地,我们可以通过余弦函数的零点性变换规律来求解余弦函数的零点性变换问题。
三角函数中有关ω的范围问题-高考数学复习
因为原方程在区间(0,2π)上恰有5个实根, 所以176π<2ωπ+π6≤196π, 解得43<ω≤32,即 ω 的取值范围是43,32.
1 2 3 4 5 6 7 8 9 10
6.(2023·青岛质检)已知函数 f(x)=sin(ωx+φ),其中 ω>0,|φ|≤π2,x=-π4为
√A.14
√B.12
√C.34
D.1
1 2 3 4 5 6 7 8 9 10
f(x)=sin ωx(ω>0)在-π4,23π上单调递增, 则 ω·23π≤π2,ω·-π4≥-π2, ∴0<ω≤34, ∴选项ABC符合题意.
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
当 15x-π4=-π2,即 x=-6π0时,f(x)取得最小值,无最大值,满足 题意. 故ω的最大值是15.
1 2 3 4 5 6 7 8 9 10
二、多项选择题 7.(2024·海淀区模拟)已知函数 f(x)=sin ωx(ω>0)在-π4,23π上单调递增, 那么常数 ω 的一个取值可以为
函数 f(x)=cos ωx- 3sin ωx
=212cos ωx- 23sin ωx=2cosωx+π3, 因为x∈(0,2π),ω>0, 所以 ωx+π3∈π3,2πω+π3, 由于函数f(x)在区间(0,2π)上有且仅有2个极值点,所以f(x)在(0,2π)上 有且仅有2条对称轴,
则 2π<2πω+π3≤3π, 解得 ω∈56,34.
0,π6上仅有一条对称轴及一个对称中心,则 ω 的取值范围为
A.(5,8)
√B.(5,8]
以导数知识为工具,解答三角函数问题
探索探索与与研研究究例2.=90°,∠则x -y 解:而 所以图形,例3.C :x 2a 2+y 2b2点A 是x 的2倍,PQ A.12233图3解:当点A 与B 重合时,B (a ,0),将x a 2代入椭圆C :x 2a 2+y 2b 2=1,可得y 则P 33所以则k 所以与B 于B 速求出A k PQ 、k PB 的关系式,使动点与动表面积的最值问题.需先根据题意确定动点曲线,哪个将动点移至特殊位无限远处、几何体的顶点处或某体积公式、表面积公式来解1,高为2,上底绕着底_______.图5图6下底面的圆心分别为O ,O ′,CM ⊥AB 于点M (如图4),则AB 为定值,所以S △ABC 随着线重合时(如图5),|CM |=|OC |=ABC 取最大值12×2×5=5;或点A )重合(如图6)时,|CM |取12×2×2=2;[2,5].S △ABC 随着线段CM 的CM 的长度的最值即可.于是将即可运用极限思想,求得三角关键是要从“一般,化“动”为“静”,通过“特从而优化解题的过程.江苏省靖江市教育局)54备考指南一、模型;小关系,例1.(1)若(2)当解:(令h(∴h(∴h(令k(∴k′∴k(∴k(∴当(2)sin xx令F因为由(1a sin2x-x2cos x>0,x2cos x<ax2-x2cos xöøπ2上单调递增,>0,)=0,x2()a-cos x<0,不x≥sin2x-x2cos x,æèöø0,π2,x+x2sin x>2sin x cos xsin x=4éëêùûúæèöøx22-sin2x2⋅F()x>0.)⋃[)1,+∞.分别构x-x cos x;然后分别上的单调性,进而根sin x>x cos x.对于第变形;再构造函数)xmin>0即可;然后对求得函数的最值,即最值问求函数的最零点的存在性问由零点求参数的取若无法得到其具体值,则需55。
三角函数专题三角函数中ω的取值范围问题(6大题型)(原卷版)
三角函数专题:三角函数中ω的取值范围问题一、求ω取值范围的常用解题思路 1、依托于三角函数的周期性因为f(x)=Asin(ωx +φ)的最小正周期是T =2π|ω|,所以ω=2πT,也就是说只要确定了周期T ,就可以确定ω的取值. 2、利用三角函数的对称性(1)三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T2,相邻的对称轴和对称中心之间的“水平间隔”为T4,也就是说,我们可以根据三角函数的对称性来研究其周期性,进而可以研究ω的取值。
(2)三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x 轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.3、结合三角函数的单调性函数f (x )=Asin(ωx +φ)的每一“完整”单调区间的长度(即两相邻对称轴的间距)恰好等于T 2,据此可用来求ω的值或范围。
反之,从函数变换的角度来看ω的大小变化决定了函数图象的横向伸缩,要使函数f (x )=Asin(ωx +φ)在指定区间上具有单调性,我们忘完可以通过调整周期长度来实现,犹如通过弹簧的伸缩来抬举三角函数在区间上的单调性和最值等。
二、已知函数y =Asin(ωx +φ)在给定区间上的单调性,求ω的取值范围已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围 第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2−x 1≤12T =πω,求得0<ω≤πx2−x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[−π2+2kπ,π2+2kπ],解得ω的范围; 第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围. 三、结合图象平移求ω的取值范围 1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数()f x =平移后的函数()g x .2、平移后与新图象重合:平移后的函数()f x =新的函数()g x .3、平移后的函数与原图象关于y 轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于x 轴对称:平移前的函数()f x =平移后的函数()g x ;5、平移后过定点:将定点坐标代入平移后的函数中。
三角函数零点问题
三角函数零点问题三角函数是数学中的一个重要概念,它在各个领域有着广泛的应用。
在解三角函数的问题中,我们常常需要找到三角函数的零点,即函数取0的点。
本文将介绍三角函数零点的概念和求解方法。
1. 三角函数的定义和性质常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
它们的定义如下:•正弦函数(sin):在直角三角形中,将一条直边的长度除以斜边的长度得到的比值。
•余弦函数(cos):在直角三角形中,将另一条直边的长度除以斜边的长度得到的比值。
•正切函数(tan):在直角三角形中,将一条直边的长度除以另一条直边的长度得到的比值。
这些函数都具有周期性,即有一定的重复性。
例如,正弦函数的周期是2π,即在0到2π之间反复出现相同的数值。
三角函数具有许多重要的性质,其中一条性质是:正弦函数和余弦函数在对应角度上的数值互为相反数。
例如,sin(π/6) = 1/2,cos(π/6) = √3/2,它们互为相反数。
2. 三角函数零点的概念一个函数的零点是指函数取0的点。
在三角函数中,我们需要找到满足函数取0条件的角度,即满足sin(x) = 0或cos(x) = 0的角度。
这些角度被称为三角函数的零点。
根据三角函数的周期性,我们可以知道三角函数的零点有无穷多个,且形式为x = kπ,其中k为整数。
以正弦函数为例,我们可以得到其他的三角函数的零点。
当sin(x) = 0时,我们有以下关系:cos(x) = ±1。
因此,当sin(x) = 0时,同时也有cos(x) = ±1。
这就意味着三角函数的零点和极值点可能是相同的。
3. 求解三角函数零点的方法要求解三角函数的零点,我们可以利用函数的周期性和性质来得到解析解。
以正弦函数为例,当sin(x) = 0时,我们有以下关系:x = kπ,其中k为整数。
这是因为正弦函数的周期是2π,即在0到2π之间正弦函数的值反复为0,因此在整个实数轴上都满足sin(x) = 0。
第09讲 三角函数的零点的处理-高考数学热点难点突破技巧 含解析
高中数学热点难点突破技巧第09讲:三角函数零点问题的处理【知识要点】三角函数的零点问题,是考试经常考察的重点、热点和难点.三角函数的零点问题的处理一般有以下三种方法:1、单调性+数形结合.2、分离参数+数形结合。
3、方程+数形结合. 三种方法也不是绝对的,要注意灵活使用。
【方法讲评】方法一单调性+数形结合一般先研究三角函数的单调性,再数形结合分析。
解题步骤【例1】已知向量,,设函数.(1)若函数的图象关于直线对称,且时,求函数的单调增区间;(2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.(1)∵函数图象关于直线对称,∴,解得:,∵,∴,∴,由,解得:,所以函数的单调增区间为.∴当或时函数有且只有一个零点.即或,所以满足条件的.【点评】(1)本题第2小问是在第1问的前提下进行的,第1问求出了函数的单调增区间,所以第2小问对零点问题的研究,可以利用单调性+数形结合方法分析解答.第2问首先求复合函数在上的单调性,再数形结合分析函数零点的个数。
(2)在解答数学问题时,只要写不等式,一定要注意取等问题,本题第2问,左边可以取等,右边不能取等.【反馈检测1】设P是⊙O :上的一点,以轴的非负半轴为始边、OP 为终边的角记为,又向量。
且。
(1)求的单调减区间;(2)若关于的方程在内有两个不同的解,求的取值范围.方法二分离参数+数形结合解题步骤先分离参数,再画出方程两边的函数的图像,数形结合分析解答。
【例2】已知函数的最大值为.(1)求函数的单调递增区间;(2)将的图象向左平移个单位,得到函数的图象,若方程—=0在∈上有解,求实数的取值范围.【解析】(1),由,解得,所以函数的单调递增区间当时,,取最小值-3.方程在∈上有解,即-3≤≤【点评】(1)本题就是先分离参数,再分别画方程左右两边的函数的图像数形结合分析.(2)本题也可以单调性+数形结合的方法分析解答。
它们之间不是绝对的,要注意灵活使用。
三角函数的图象与性质6大题型
三角函数的图象与性质6大题型三角函数的图象与性质是高考的热点,函数sin()y A x ωϕ=+的图象变换以及三角函数的周期性、对称性、单调性之间逻辑关系则是重心。
随着新高考改革的推进,更加注重对以周期性为核心的三大性质之间的逻辑关系的考查,要求考生能用几何直观和代数运算来研究三角函数。
高考中的相关试题多以选择题、填空题的形式考查,难度中等或偏下。
一、三角函数性质问题相关方法1、周期的计算公式:函数)0()cos(),sin(>+=+=ωϕωϕωx A y x A y 的周期为ωπ2=T ,函数)0()tan(>+=ωϕωx A y 的周期为ωπ=T 求解.2、奇偶性的判断方法:三角函数中奇函数一般可化为x A y ωsin =或x A y ωtan =的形式,而偶函数一般可化为b x A y +=ωcos 的形式.3、解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.方法:整体处理法、代入验证法对于函数)0()cos(),sin(>+=+=ωϕωϕωx A y x A y ,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线0x x =或点)0,(0x 是否是函数的对称轴或对称中心时,可通过检验)(0x f 的值进行判断.4、确定函数)0,0()sin(>>+=ωϕωA x A y 单调区间的方法采用“换元”法整体代换,将‘ϕω+x ’看作一个整体,可令“ϕω+=x z ”,即通过求z A y sin =的单调区间而求出函数的单调区间.若0<ω,则可利用诱导公式先将x 的系数转变为正数,再求单调区间.二、三角函数图形变换问题解决三角函数图像变换问题的两种方法分别为先平移后伸缩和先伸缩后平移.破解此类题的关键如下:1、定函数:一定要看准是将哪个函数的图像变换得到另一个函数的图像.2、变同名:函数的名称要一样.3、选方法:即选择变换方法.要注意:对于函数)0(sin >=ωωx y 的图像,向左平移ϕ个单位长度得到的是函数)(sin ϕω+=x y 的图象,而不是函数)sin(ϕω+=x y 的图像.【题型1【例1】(2023·湖南湘潭·统考二模)函数2cos2()sin xf x x+=的部分图象大致为()A .B .C .D .【变式1-1】(2023秋·云南·高三云南师大附中校考阶段练习)函数()21sin 2f x x x x =-的图象大致为()A .B .C .D .【变式1-2】(2022秋·河南·高三校联考阶段练习)函数()cos e =xf x 的部分图象大致为()A .B .C .D .【变式1-3】(2022秋·云南·高三校联考阶段练习)函数()cos ln xf x x xππ+=⋅-在(),ππ-上的图象大致为()A .B .C .D .【变式1-4】(2022秋·四川遂宁·高三遂宁中学校考阶段练习)函数()(tan sin 2)22x x y x x -=--的部分图象大致为()A .B .C .D .【题型2根据图象求三角函数解析式】【例2】(2023秋·湖南怀化·高三统考期末)已知函数()2cos()(0)f x x ωϕω=+>的部分图象如图所示,则()0f =()A .1B .1-CD .【变式2-1】(2022秋·贵州铜仁·高三校考阶段练习)已知A ,B ,C ,D ,E 是函数sin()y x ωϕ=+0,02πωϕ⎛⎫><< ⎪⎝⎭一个周期内的图像上的五个点,如图,A ,06π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为12π,则ωφ,的值为()A .2ω=,3πϕ=B .2ω=,6πϕ=C .12ω=,3πϕ=D .12ω=,6πϕ=【变式2-2】(2023秋·山西太原·高三山西大附中校考阶段练习)函数()sin()(0,0)f x x ωϕωϕπ=+><<的部分图象如图,BC x ∥轴,当π0,4x ⎡⎤∈⎢⎥⎣⎦时,若不等式()sin 2f x m x ≥-恒成立,则m 的取值范围是()A.⎛-∞ ⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(-∞D .(],1-∞【变式2-3】(2023秋·北京朝阳·高三统考期末)已知函数π()sin()0,||2ωϕωϕ⎛⎫=+>< ⎪⎝⎭f x x ,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于()A .π3-B .π6-C .π6D .π3【变式2-4】(2023·全国·模拟预测)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 的图象向右平移()0m m >个单位长度后得到函数()()sin 2g x A x ωϕ=-的图象,则m 的值可以是()A .π4B .π3C .4π3D .9π4【题型3三角函数图象变换问题】【例3】(2023秋·江西赣州·高三统考期末)函数()()sin f x x ωϕ=+(其中0ω>,π2ϕ<)的图象如图所示,为了得到cos y x ω=的图象,只需把()y f x =的图象上所有点()A .向左平移π6个单位长度B .向右平移π12个单位长度C .向左平移π12个单位长度D .向右平移π6个单位长度【变式3-1】(2022·四川·高三统考对口高考)为了得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象上所有的点()A .向左平移4π个单位B .向右平移4π个单位C .向左平移2π个单位D .向右平移2π个单位【变式3-2】(2022·陕西汉中·统考一模)为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将sin2y x =的图象()A .向左平移512π个单位长度B .向右平移512π个单位长度C .向左平移23π个单位长度D .向右平移23π个单位长度【变式3-3】(2023秋·江苏南通·高三统考期末)已知函数π()3sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭的图象向左平移()0ϕϕ>个单位长度后与其导函数()y f x '=的图象重合,则()f ϕ的值为()A .0B .32C .62D .32【变式3-4】(2022·全国·模拟预测)已知函数()3sin cos f x x x =-的图象向左平移ϕ(0ϕ>)个单位长度后得到()f x 的导函数()f x '的图象,则()f ϕ=()A .3-B .3C .1D .1-【变式3-5】(2023·河南信阳·河南省信阳市第二高级中学校联考一模)将函数()sin 2c 2πos π63f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭图象上的所有点的横坐标缩短为原来的12(纵坐标不变),然后再将其图象向左平移()0θθ>单位得到图象()g x ,若函数()g x 图象关于y 轴对称,则θ的最小值为()A .π3B .π6C .π12D .π24【题型4三角函数的四种性质】【例4】(2023秋·河南南阳·高三统考期末)已知函数()()()sin cos f x x x ϕϕ=+++是偶函数,则3sin 2cos 2sin 3cos ϕϕϕϕ-=+______.【变式4-1】(2023秋·河北邢台·高三邢台市第二中学校考期末)函数9cos 24y x π⎛⎫=- ⎪⎝⎭的单调递减区间为______.【变式4-2】(2022秋·辽宁沈阳·高三沈阳市第一二〇中学校考期中)已知函数()tan tan f x x x =+,则下列结论中正确的是()A .()f x 的最小正周期为π2B .点π,02⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心C .()f x 的值域为[)0,∞+D .不等式()2f x >的解集为()ππ2,2πZ 42k k k π⎛⎫++∈ ⎪⎝⎭【变式4-3】(2023·四川内江·统考一模)已知函数()()1sin cos sin (0)2f x x x x ωωωω=-+>,若函数()f x 在π,π2⎛⎫⎪⎝⎭上单调递减,则ω不能取()A .23B .13C .58D .14【变式4-4】(2023秋·江苏南通·高三统考期末)(多选)设函数()()sin f x x ωϕ=+,x ∈R ,其中0ω>,3πϕ<.若1409f π⎛⎫-= ⎪⎝⎭,419f π⎛⎫=⎪⎝⎭,且()f x 的最小正周期大于52π,则()A .14ω=B .6πϕ=C .()f x 在()2,3ππ上单调递增D .()f x 在()0,3π上存在唯一的极值点【变式4-5】(2023·安徽淮南·统考一模)(多选)已知函数()()πsin ,12,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭图像过点10,2⎛⎫- ⎪⎝⎭,且存在12,x x ,当122πx x -=时,()()120f x f x ==,则()A .()f x 的周期为4π3B .()f x 图像的一条对称轴方程为5π9x =-C .()f x 在区间4π10π,99⎡⎤⎢⎣⎦上单调递减D .()f x 在区间()0,5π上有且仅有4个极大值点【变式4-6】(2023秋·湖北·高三统考期末)(多选)已知函数()2sin sin 2f x x x =,则下列说法正确的是()A .π是()f x 的一个周期B .()f x 的图象关于点π,02⎛⎫⎪⎝⎭中心对称C .()f x 在区间[]0,2π上的零点个数为4D .()f x 的最大值为8【变式4-7】(2023春·浙江·高三校联考开学考试)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则()A .()0f =B .()f x 的最小正周期为π2C .()f x 在π0,6⎛⎫⎪⎝⎭上单调递减D .()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增【题型5三角函数的最值问题】【例5】(2022秋·北京·高三北京市八一中学校考阶段练习)定义运算,,,.a a b a b b a b ≤⎧=⎨>⎩※例如,121=※,则函数()sin cos f x x x =※的值域为()A .1,2⎡⎤-⎢⎥⎣⎦B .22⎡⎤⎢⎥⎣⎦C .2,12⎡⎤⎢⎥⎣⎦D .22⎡-⎢⎣⎦【变式5-1】(2023秋·湖南株洲·已知定义域为R 的函数(),()f x g x 满足()()πf x f x +=-,且()()cos π,g x x f x =++()()sin πf x x g x =-+,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()()y f x g x =的最小值为()A .0B .2CD .38【变式5-2】(2022秋·安徽·高三石室中学校联考阶段练习)如图是函数()cos()(0)f x x ωϕω=+>的部分图象,则()f x 在,9045⎡⎤-⎢⎥⎣⎦π22π上的值域为()A .[]1,1-B .1322⎡⎢⎣⎦C .11,2⎡⎤-⎢⎥⎣⎦D .32⎡-⎢⎣⎦【变式5-3】(2023·河北衡水·河北衡水中学校考模拟预测)函数()25cos 4sin 53cos f x x x x -+的最大值为().A .22B .23C .5D .3【变式5-4】(2023秋·北京丰台·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫=+>⎪⎝⎭,若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫⎪⎝⎭上有最小值无最大值,则ω=___________.【变式5-4】(2020秋·吉林白城·高三校考阶段练习)已知向量1(cos ,)2a x = ,(3,cos 2),Rb x x x =∈,设函数()f x a b =⋅ .(1)求()f x 的最小正周期;(2)求()f x 在π[0,]2上的最大值和最小值.【题型6三角函数的零点问题】【例6】(2022·四川宜宾·统考模拟预测)若函数()π2sin 213f x x ⎛⎫=+- ⎪⎝⎭,则()f x 在区间[]0,2π上零点的个数是_______.【变式6-1】(2023·全国·高三对口高考)已知0ω>,函数()πsin 16f x x ω⎛⎫=+- ⎪⎝⎭在区间[]0,π上有且仅有两个零点,则ω的取值范围是________.【变式6-2】(2022秋·河南濮阳·高三统考阶段练习)已知函数5π()cos (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在π0,4⎛⎫⎪⎝⎭上有且仅有1个零点,则实数ω的取值范围为______.【变式6-3】(2023秋·福建宁德·高三校考阶段练习)若函数()1cos42f x x x m =-+-在π04⎡⎤⎢⎥⎣⎦,上存在两个零点,则实数m 的取值范围为()A .3522⎛⎤ ⎥⎝⎦,B .3522⎡⎫⎪⎢⎣⎭,C.1522⎛⎤+ ⎥⎝⎦,D.1522⎡⎫+⎪⎢⎪⎣⎭,【变式6-4】(2023秋·山西·高三校联考阶段练习)已知函数()()221sin 2π,,3213,,x a x a f x x a x a x a ⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩.若()f x 在()0,∞+上恰好有5个零点,则a 的取值范围是()A .411,36⎡⎫⎪⎢⎣⎭B .411717,,3636⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦C .1167,3⎡⎫⎪⎢⎣⎭D .43117,,3263⎛⎤⎛⎤⋃ ⎝⎦⎝⎦【变式6-5】(2022秋·广西桂林·高三校考阶段练习)已知定义在R 上的函数()y f x =是偶函数,当0x ≥时,()2sin ,01213,122x x x f x x π⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()()20,R f x af x b a b ++=∈⎡⎤⎣⎦,有且仅有6个不同实数根,则实数a 的取值范围是()A .34,2⎛⎫-- ⎪⎝⎭B .74,2⎛⎫-- ⎪⎝⎭C .7734,222⎛⎫⎛⎫--⋃-- ⎪⎝⎭⎝⎭D .324,1,27⎛⎫⎛⎫--⋃-- ⎪ ⎪⎝⎭⎝⎭【变式6-6】(2023秋·山东烟台·高三统考期末)已知定义在R 上的函数()f x 满足:2f x π⎛⎫- ⎪⎝⎭为偶函数,且()()8sin ,021,02x x f x f x x ππ⎧--≤≤⎪⎪=⎨⎪->⎪⎩;函数()lg 2g x x π=+,则当[]4,3x ππ∈-时,函数()()y f x g x =-的所有零点之和为()A .7π-B .6π-C .72π-D .3π-(建议用时:60分钟)1.(2022秋·河北唐山·高三开滦第二中学校考阶段练习)将函数()π3cos (0)6f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π6ω个单位长度,得到函数()g x 的图象,若函数()y g x =在π3π,24⎡⎤⎢⎥⎣⎦上单调递增,则ω的最大值为()A .2B .83C .103D .42.(2022秋·广西钦州·高三校考阶段练习)已知函数()()sin f x x ϕ=-且2cos πcos 3ϕϕ⎛⎫-= ⎪⎝⎭,则函数()f x 的图象的一条对称轴是()A .5π6x =B .7π12x =C .π3x =D .π6x =3.(2023·四川绵阳·统考模拟预测)函数()πcos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,且()302f =.则下列选项正确的是()A .π3ϕ=-B .π122f ⎛⎫=-⎪⎝⎭C .()f x 在区间2π,π3⎡⎤⎢⎥⎣⎦上为减函数D .()102f f ⎛⎫> ⎪⎝⎭4.(2023·全国·高三专题练习)已知函数π()2sin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在[]0,π上单调递增,且2π()3f x f ⎛⎫≥-⎪⎝⎭恒成立,则ω的值为()A .2B .32C .1D .125.(2022·四川成都·成都市第二十中学校校考一模)已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论不正确的是()A .π为函数()f x 的一个周期B .2π,03⎛⎫⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间[],a a -上单调递增,则实数a 的最大值为5π12D .将函数()f x 的图象向右平移π12个单位长度后,得到一个偶函数的图象6.(2022·河北衡水·衡水市第二中学校考一模)已知()()()π2tan 0,,02f x x f ωϕωϕ⎛⎫=+><= ⎪⎝,周期π3ππ,,446T ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭是()f x 的对称中心,则π3f ⎛⎫⎪⎝⎭的值为()A .BC D .3-7.(2023秋·山东东营·高三东营市第一中学校考期末)(多选)关于函数2()cos 4cos 1f x x x =++,下列说法正确的是()A .函数()f x 在π3π,42⎡⎤⎢⎥⎣⎦上的最大值为6B .函数()f x 在π3π,42⎡⎤⎢⎥⎣⎦上的最小值为-2C .函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递增D .函数()f x 在π0,2⎛⎫⎪⎝⎭上单调递减8.(2022秋·河北唐山·高三开滦第二中学校考阶段练习)(多选)设()sin 22cos f x x x =+,x ∈R ,则().A .()f x 在区间[]0,2π上有2个零点B .()f x 的单调递增区间为π7ππ,π26k k ⎛⎫++⎪⎝⎭,k ∈Z C .()f x 的图象关于直线ππ3x k =+对称D .()f x 的值域为0,2⎡⎢⎣⎦9.(2023·湖南长沙·统考一模)已知函数()()()2sin 0f x x ωϕω=+>,若函数()f x 的图象关于点π,06⎛⎫⎪⎝⎭中心对称,且关于直线π3x =轴对称,则ω的最小值为______.10.(2022秋·四川遂宁·高三校考阶段练习)已知函数()()7ππsin 12f x x x ⎛⎫=---+ ⎪⎝⎭则函数()f x 的对称中心_________11.(2021·上海浦东新·华师大二附中校考模拟预测)已知函数23()sin sin cos (,,0)2f x a x x x a b a b a =-+<,(1)若当π0,2x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域为[]5,1-,求实数,a b 的值;(2)在(1)条件下,求函数()f x 图像的对称中心和单调区间.12.(2023秋·江苏扬州·高三校联考期末)已知函数()()(0,0f x x ωϕωϕ=+><<sin π的最小正周期为π,且直线π2x =-是其图像的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图像向右平移π4个单位,再将所得的图像上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图像对应的函数记作()y g x =,已知常数R λ∈,*n ∈N ,且函数()()212sin F x x g x λ=-+在()0,πn 内恰有2021个零点,求常数λ与n 的值.参考答案【题型1三角函数的图象辨析】【例1】(2023·湖南湘潭·统考二模)函数2cos2()sin xf x x+=的部分图象大致为()A .B .C .D .【答案】A【解析】()f x 的定义域为{}π,Z x x k k ≠∈,关于原点对称,因为2cos(2)2cos2()()sin()sin x xf x f x x x+-+-==---,所以()f x 为奇函数,故排除C,D ,又π102f ⎛⎫=> ⎪⎝⎭,所以排除B,故选:A【变式1-1】(2023秋·云南·高三云南师大附中校考阶段练习)函数()21sin 2f x x x x =-的图象大致为()A .B .C .D .【答案】A【解析】()f x 的定义域为R ,2211()()()sin()sin ()22f x x x x x x x f x -=----=-=,所以()f x 为偶函数,图象关于y 轴对称,排除C ,D 选项;()21ππ02f =>,排除B 选项.所以A 选项正确.故选:A【变式1-2】(2022秋·河南·高三校联考阶段练习)函数()cos e =xf x 的部分图象大致为()A .B .C .D .【答案】C【解析】由题意得函数定义域为R ,且()()()cos cos ee --===x xf x f x ,∴()f x 为偶函数,故排除选项B ,∵()()cos e2πe xf x f k =≤=,Z k ∈,()0e f =为最大值,∴排除选项D ,∵()()()cos 2πcos 2πee x xf x f x ++===,∴()f x 是2π为周期的周期函数,∴排除选项A.故选:C【变式1-3】(2022秋·云南·高三校联考阶段练习)函数()cos ln xf x x xππ+=⋅-在(),ππ-上的图象大致为()A .B .C .D .【答案】B【解析】因为()()cos lnxf x x f x xππ--=⋅=-+,所以f (x )是奇函数,排除A ,D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,ln0xxπ+>π-,所以()0f x >,排除C ,故选:B .【变式1-4】(2022秋·四川遂宁·高三遂宁中学校考阶段练习)函数()(tan sin 2)22x x y x x -=--的部分图象大致为()A .B .C .D .【答案】A【解析】由题得函数的定义域为π{|π,}2x x k k Z ≠+∈,定义域关于原点对称.设()()(tan sin 2)22x xf x x x -=--,所以()()(tan sin 2)22x x f x x x --=-+-()(tan sin 2)22()x xx x f x -=--=,所以函数()f x 是偶函数,其图象关于y 轴对称,排除选项D.又(π)=0f ,所以排除选项B.当π2x →时,tan ,sin 20,x x →+∞→()220x x-->,所以此时()0f x >.故选:A【题型2根据图象求三角函数解析式】【例2】(2023秋·湖南怀化·高三统考期末)已知函数()2cos()(0)f x x ωϕω=+>的部分图象如图所示,则()0f =()A .1B .1-CD .【答案】C【解析】观察函数图象得,函数()f x 的周期413()3123T πππ=-=,则22Tπω==,而13212f π⎛⎫= ⎪⎝⎭,即13cos 16πϕ⎛⎫+= ⎪⎝⎭,则有132,Z 6k k πϕπ+=∈,因此132Z 6k k πϕπ=-∈,即有13()2cos(22)2cos(2)66f x x k x πππ=+-=-,所以()02cos()6f π=-故选:C【变式2-1】(2022秋·贵州铜仁高三校考阶段练习)已知A ,B ,C ,D ,E 是函数sin()y x ωϕ=+0,02πωϕ⎛⎫><< ⎪⎝⎭一个周期内的图像上的五个点,如图,A ,06π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD在x 轴上的投影为12π,则ωφ,的值为()A .2ω=,3πϕ=B .2ω=,6πϕ=C .12ω=,3πϕ=D .12ω=,6πϕ=【答案】A【解析】因B 与D 关于点E 对称,CD 在x 轴上的投影为12π,则B 与图像最高点(最靠近B 点)连线所对应向量在x 轴上的投影为12π,又A ,06π⎛⎫- ⎪⎝⎭,则A 与图像最高点(最靠近B 点)连线对应向量在x 轴上的投影为πππ6124+=,故函数最小正周期为24πππ=4ω⨯=,又0ω>,则2ω=.又因函数图像过点,06π⎛⎫- ⎪⎝⎭,则2ππ,Z 3φk k -+=∈,得2ππ,Z 3φk k =+∈,又02πϕ<<,则0k =,得π3ϕ=.综上,有2ω=,π3ϕ=.故选:A【变式2-2】(2023秋·山西太原·高三山西大附中校考阶段练习)函数()sin()(0,0)f x x ωϕωϕπ=+><<的部分图象如图,BC x ∥轴,当π0,4x ⎡⎤∈⎢⎥⎣⎦时,若不等式()sin 2f x m x ≥-恒成立,则的取值范围是()A .⎛-∞ ⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(-∞D .(],1-∞【答案】A【解析】因为//BC x 轴,所以()f x 图象的一条对称轴方程为1π2π7π()22312x =+=,所以7πππ41234T =-=,则πT =,所以2π2T ω==,又π2π2π3k ϕ⨯+=+,Z k ∈,且0πϕ<<,所以π3ϕ=,故π()sin(23f x x =+,因为当π[0,]4x ∈时,不等式()sin 2f x m x ≥-恒成立,所以π3π()sin 2sin(2)sin 2sin 2cos 2sin(2)3226m f x x x x x x x ≤+=++=++,令()π26g x x ⎛⎫=+ ⎪⎝⎭,因为π0,4x ⎡⎤∈⎢⎥⎣⎦,则ππ2π2,663x ⎡⎤+∈⎢⎥⎣⎦,所以π1sin 2,162x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以π())6g x x +的最小值为2,所以2m ≤,即m ⎛∈-∞ ⎝⎦.故选:A .【变式2-3】(2023秋·北京朝阳·高三统考期末)已知函数π()sin()0,||2ωϕωϕ⎛⎫=+>< ⎪⎝⎭f x x ,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于()A .π3-B .π6-C .π6D .π3【答案】B【解析】由图可知,函数()g x 过点π,13⎛⎫⎪⎝⎭和点5π,16⎛⎫- ⎪⎝⎭,即π135π16g g⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,又因为()()1g x f x ⋅=,所以π135π16f f ⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,结合正弦型函数的性质可知,5ππ263T =-,解得πT =,所以2ππω=,解得2ω=±,因为0ω>,所以2ω=所以()sin(2)f x x ϕ=+,所以πsin(2)13ϕ⨯+=,即2ππ2π32k ϕ+=+,Z k ∈解得π2π6k ϕ=-+,Zk ∈因为π||2ϕ<,所以π6ϕ=-,故选:B.【变式2-4】(2023·全国·模拟预测)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 的图象向右平移()0m m >个单位长度后得到函数()()sin 2g x A x ωϕ=-的图象,则m 的值可以是()A .π4B .π3C .4π3D .9π4【答案】AD【解析】由图象可知:2A =,最小正周期5ππ4π126T ⎛⎫=⨯-=⎪⎝⎭,2π2T ω∴==,ππ2sin 263f ϕ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭,()ππ2π32k k ϕ∴+=+∈Z ,解得:()π2π6k k ϕ=+∈Z ,又π2ϕ<,π6ϕ∴=,()π2sin 26f x x ⎛⎫∴=+ ⎪⎝⎭,()π2sin 23g x x ⎛⎫=- ⎪⎝⎭,()()π2sin 226f x m x m g x ⎛⎫-=-+= ⎪⎝⎭ ,()ππ22π63m k k ∴-+=-+∈Z ,解得:()ππ4m k k =-∈Z ,当0k =时,π4m =;当2k =-时,9π4m =.故选:AD.【题型3三角函数图象变换问题】【例3】(2023秋·江西赣州·高三统考期末)函数()()sin f x x ωϕ=+(其中0ω>,π2ϕ<)的图象如图所示,为了得到cos y x ω=的图象,只需把()y f x =的图象上所有点()A .向左平移π6个单位长度B .向右平移π12个单位长度C .向左平移π12个单位长度D .向右平移π6个单位长度【答案】C【解析】由图象可知,712344Tπππ-==,所以T π=,又因为2T πω=,所以2ω=,所以()()sin 2f x x ϕ=+,又因为771,sin 211212f ππϕ⎛⎫⎛⎫=-∴⨯+=-⎪ ⎪⎝⎭⎝⎭,又||2ϕπ<,所以,3πϕ=所以()sin 2cos 2cos 2cos 2332612f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭又因为()cos 2g x x =,所以只需把()y f x =的图象上所有点向左平移π12个单位长度可得()cos 2g x x=的图象.故选:C.【变式3-1】(2022·四川·高三统考对口高考)为了得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象上所有的点()A .向左平移4π个单位B .向右平移4π个单位C .向左平移2π个单位D .向右平移2π个单位【答案】A【解析】依题意,sin(2)sin(2)sin[2()]42444y x x x πππππ=+=+-=+-,所以把函数sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有的点向左平移4π个单位可以得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,A 正确.故选:A 【变式3-2】(2022·陕西汉中·统考一模)为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将sin2y x =的图象()A .向左平移512π个单位长度B .向右平移512π个单位长度C .向左平移23π个单位长度D .向右平移23π个单位长度【答案】A【解析】555cos 2cos 2sin 2sin 2362612y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故可由sin2y x =的图象向左平移512π个单位长度得到.故选:A.【变式3-3】(2023秋·江苏南通·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭的图象向左平移()0ϕϕ>个单位长度后与其导函数()y f x '=的图象重合,则()f ϕ的值为()A .0B .2C .2D .32【答案】D【解析】因为π()sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭,所以()ππcos sin (0)63f x x x ωωω⎛⎫⎛⎫=-=+> ⎪ ⎪⎝⎭⎝⎭',而函数()f x 的图象向左平移()0ϕϕ>个单位长度后得到()()ππsin (0)66f x x x ϕωϕωωϕω⎡⎤⎛⎫++-+-> ⎪⎢⎥⎣⎦⎝⎭,由题意得()()f x f x ϕ+=',所以ππ2π,Z 63k k ωϕ=⎨-=+∈⎪⎩,解得1π2π,Z 2k k ωϕ=⎧⎪⎨=+∈⎪⎩且0ϕ>,所以πππ3()2π2632f k ϕ⎛⎫=+-= ⎪⎝⎭,故选:D 【变式3-4】(2022·全国·模拟预测)已知函数()3sin cos f x x x =-的图象向左平移ϕ(0ϕ>)个单位长度后得到()f x 的导函数()f x '的图象,则()f ϕ=()A .3-B .3C .1D .1-【答案】B【解析】因为()3sin cos f x x x =-,所以()3cos sin f x x x =+',而()()()3sin cos 3sin cos 3cos sin cos cos sin sin f x x x x x x x ϕϕϕϕϕϕϕ+=+-+=+-+()()3cos sin sin 3sin cos cos x x ϕϕϕϕ=++-⋅,由题意得()()f x f x ϕ+=',所以3cos sin 13sin cos 3ϕϕϕϕ+=⎧⎨-=⎩,解得sin 1cos 0ϕϕ=⎧⎨=⎩,所以()3sin cos 3f ϕϕ=-=,故选:B.另解:因为()3sin cos f x x x =-,所以()3cos sin f x x x =+',由题意知()()f x f x ϕ+='对一切实数x 恒成立,所以令0x =,得()()03cos 0sin 03f f ϕ'==+=,故选:B.【变式3-5】(2023·河南信阳·河南省信阳市第二高级中学校联考一模)将函数()sin 2c 2πos π63f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭图象上的所有点的横坐标缩短为原来的12(纵坐标不变),然后再将其图象向左平移()0θθ>单位得到图象()g x ,若函数()g x 图象关于y 轴对称,则θ的最小值为()A .π3B .π6C .π12D .π24【答案】C 【解析】()πsin 2cos 2sin 2co i ππs 22s n26366πππ62f x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++-=+++-=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,由()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,横坐标缩短为原来的12(纵坐标不变)得到π2sin 46⎛⎫=+ ⎪⎝⎭y x ,将其图象向左平移()0θθ>单位得到图象()46π2sin 4g x x θ⎛⎫=++ ⎪⎝⎭,而()g x 图象关于y 轴对称,∴4π,Z 6π2πk k θ+=+∈,∵0θ>,∴当0k =时,θ取最小值π12.故选:C.【题型4三角函数的四种性质】【例4】(2023秋·河南南阳·高三统考期末)已知函数()()()sin cos f x x x ϕϕ=+++是偶函数,则3sin 2cos 2sin 3cos ϕϕϕϕ-=+______.【答案】15【解析】由题知数()()()sin cos f x x x ϕ=+++是R 上偶函数,所以()()ππ22f f =-,即()()()()ππππsin cos sin cos 2222ϕϕϕϕ+++=-++-+,即cos sin cos sin ϕϕϕϕ-=-+,即cos sin ϕϕ=,tan 1ϕ=,所以3sin 23sin 2cos 321cos 2sin 2sin 3cos 2353cos ϕϕϕϕϕϕϕϕ---===+++.故答案为:15【变式4-1】(2023秋·河北邢台·高三邢台市第二中学校考期末)函数9cos 24y x π⎛⎫=- ⎪⎝⎭的单调递减区间为______.【答案】()π5ππ,πZ 88k k k ⎡⎤++∈⎢⎥⎣⎦【解析】由9πcos 24y x ⎛⎫=-⎪⎝⎭=cos π24x ⎛⎫- ⎪⎝⎭=cos π24x ⎛⎫- ⎪⎝⎭,得2kπ≤2x -4π≤2k π+π(k ∈Z ),解得kπ+π8≤x ≤kπ+58π(k ∈Z ),所以函数的单调递减区间为π5ππ,π88k k ⎡⎤++⎢⎥⎣⎦(k ∈Z ).故答案为:()π5ππ,πZ 88k k k ⎡⎤++∈⎢⎥⎣⎦.【变式4-2】(2022秋·辽宁沈阳·高三沈阳市第一二〇中学校考期中)已知函数()tan tan f x x x =+,则下列结论中正确的是()A .()f x 的最小正周期为π2B .点π,02⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心C .()f x 的值域为[)0,∞+D .不等式()2f x >的解集为()ππ2,2πZ 42k k k π⎛⎫++∈ ⎪⎝⎭【答案】C【解析】()π2tan ,[π,π),Z 2tan tan π0,(π,π),Z 2x x k k k f x x x x k k k ⎧∈+∈⎪⎪=+=⎨⎪∈-+∈⎪⎩,作出()f x的图象,如图,观察图象,()f x 的最小正周期为π,A 错误;()f x 的图象没有对称中心,B 错误;()f x 的值域为[)0,∞+,C 正确;不等式()2f x >,即π[π,π)(Z)2x k k k ∈+∈时,2tan 2x >,得tan 1x >,解得ππππ,Z 42k x k k +<<+∈,所以()2f x >的解集为ππ(π,π)()42Z k k k +∈+,故D 错误.故选:C【变式4-3】(2023·四川内江·统考一模)已知函数()()1sin cos sin (0)2f x x x x ωωωω=-+>,若函数()f x 在π,π2⎛⎫⎪⎝⎭上单调递减,则ω不能取()A .23B .13C .58D .14【答案】A【解析】因为()()1sin cos sin 2f x x x x ωωω=-+21sin cos sin 2x x x ωωω=⋅-+11cos 21sin 2222x x ωω-=-+1(sin 2cos 2)2x x ωω=+(sin 2cos 2)222x x ωω=⋅⋅π)4x ω=+由ππ3π2π22π242k x k ω+≤+≤+,Z k ∈,得ππ5ππ88k k x ωωωω+≤≤+,Z k ∈,所以函数()f x 的单调递减区间为ππ5ππ,88k k ωωωω⎡⎤++⎢⎥⎣⎦()k ∈Z .又函数()f x 在π,π2⎛⎫ ⎪⎝⎭上单调递减,所以π,π2⎛⎫ ⎪⎝⎭⊆ππ5ππ,88k k ωωωω⎡⎤++⎢⎥⎣⎦()k ∈Z ,所以πππ825πππ8k k ωωωω⎧+≤⎪⎪⎨⎪+≥⎪⎩,Z k ∈,因为0ω>,所以15248k k ω+≤≤+,Z k ∈,当23ω=时,得1252438k k +≤≤+,得152424k ≤≤,不成立;所以23ω=不可取;当13ω=时,得1152438k k +≤≤+,得712412k -≤≤,因为Z k ∈,所以0k =时,13ω=可取到;当58ω=时,得1552488k k +≤≤+,得3016k ≤≤,因为Z k ∈,所以0k =时,58ω=可取到;当14ω=时,得1152448k k +≤≤+,得308k -≤≤,因为Z k ∈,所以0k =时,14ω=可取到.综上所述:ω不能取23.故选:A【变式4-4】(2023秋·江苏南通·高三统考期末)(多选)设函数()()sin f x x ωϕ=+,x ∈R ,其中0ω>,3πϕ<.若1409f π⎛⎫-= ⎪⎝⎭,419f π⎛⎫= ⎪⎝⎭,且()f x 的最小正周期大于52π,则()A .14ω=B .6πϕ=C .()f x 在()2,3ππ上单调递增D .()f x 在()0,3π上存在唯一的极值点【答案】BC【解析】函数()()sin f x x ωϕ=+的最小正周期为T ,由1409f π⎛⎫-= ⎪⎝⎭及419f π⎛⎫= ⎪⎝⎭得:414(21)()2,N 499T k k πππ*⋅-=--=∈,则8,N 21T k k π*=∈-,而52T π>,即有5822,N 1k k ππ*>∈-,解得21,N 10k k *<∈,即1k =或2k =,当1k =时,18,4T πω==,由419f π⎛⎫= ⎪⎝⎭得1114,Z 492k k ππϕπ⨯+=+∈,有117,Z 18k k πϕπ=+∈,而3πϕ<,显然不存在整数1k ,使得3πϕ<,当2k =时,83,34T πω==,由419f π⎛⎫= ⎪⎝⎭得2234,Z 492k k ππϕπ⨯+=+∈,有22,Z 6k k πϕπ=+∈,而3πϕ<,于是得20,6k πϕ==,符合题意,所以83,,346T ππωϕ===,A 不正确,B 正确;3()sin()46f x x π=+,当23x ππ<<时,532934612x πππ<+<,而函数sin y x =在529(,)312ππ上单调递增,所以函数()f x 在()2,3ππ上单调递增,C 正确;当03x π<<时,32964612x πππ<+<,而函数sin y x =在29(,)612ππ上两个极值点,一个极大值点,一个极小值点,所以函数()f x 在()0,3π上有两个极值点,一个极大值点,一个极小值点,D 不正确.故选:BC【变式4-5】(2023·安徽淮南·统考一模)(多选)已知函数()()πsin ,12,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭图像过点10,2⎛⎫- ⎪⎝⎭,且存在12,x x ,当122πx x -=时,()()120f x f x ==,则()A .()f x 的周期为4π3B .()f x 图像的一条对称轴方程为5π9x =-C .()f x 在区间4π10π,99⎡⎤⎢⎣⎦上单调递减D .()f x 在区间()0,5π上有且仅有4个极大值点【答案】ACD【解析】因为()f x 图像过点10,2⎛⎫- ⎪⎝⎭且π2ϕ<,所以1sin 2ϕ=-,解得π6ϕ=-,因为存在12,x x ,当122πx x -=时,()()120f x f x ==,所以π2π2T k k ω⋅==,即2k ω=,*N k ∈,又因为12ω<<,所以32ω=,所以()3πsin 26f x x ⎛⎫=-⎪⎝⎭,选项A :()f x 的周期2π4π332T ==,正确;选项B :()f x 图像的对称轴为3πππ262x k -=+,解得4π2π93kx =+,Z k ∈,令5π4π2π993k-=+,k 无整数解,B 错误;选项C :当4π10π,99x ⎡⎤∈⎢⎥⎣⎦时,3ππ3π,2622x ⎡⎤-∈⎢⎣⎦,所以由正弦函数的图像和性质可得()f x 在区间4π10π,99⎡⎤⎢⎥⎣⎦上单调递减,C正确;选项D :当()0,5πx ∈时,3ππ22π,2663x ⎛⎫-∈- ⎪⎝⎭,所以由正弦函数的图像和性质可得()f x 在区间()0,5π有4个极大值点,3个极小值点,D 正确;故选:ACD【变式4-6】(2023秋·湖北·高三统考期末)(多选)已知函数()2sin sin 2f x x x =,则下列说法正确的是()A .π是()f x 的一个周期B .()f x 的图象关于点π,02⎛⎫ ⎪⎝⎭中心对称C .()f x 在区间[]0,2π上的零点个数为4D .()f x 的最大值为8【答案】ABD 【解析】对于A ,因为()2(π)sin (π)sin 2(π)f x x x +=++()22sin sin 2sin sin 2()x x x x f x =-==,所以π是()f x 的一个周期,故A 正确;对于B ,()2π(2)(π)sin (π)sin 2(π)2f x f x x x ⨯-=-=--22sin sin(2)sin sin 2()x x x x f x =-=-=-,所以()f x 的图象关于点π,02⎛⎫⎪⎝⎭中心对称,故B 正确;对于C ,由()2sinsin 2f x x x =0=,得πx k =或2πx k =,Z k ∈,得πx k =或π2k x =,Z k ∈,由0π2πk ≤≤及Z k ∈得0k =或1k =或2k =,所以0x =或2πx =或πx =,由π02π2k ≤≤及Z k ∈得0k =或1k =或2k =或3k =或4k =,所以0x =或π2x =或πx =或3π2x =或2πx =,所以()f x 在区间[]0,2π的零点为0x =,π2x =,πx =,3π2x =,2πx =,共5个,故C 错误;对于D ,()2sinsin 2f x x x =2sin 2sin cos x x x =⋅32sin cos x x =,所以()262()4sin cos f x x x =624sin (1sin )x x =-,设2sin [0,1]t x =∈,34(1)y t t =-3444(01)t t t =-≤≤,则23212164(34)y t t t t '=-=-,令0'>y ,得304t <<,令0'<y ,得314t <≤,所以3444(01)y t t t =-≤≤在3[0,)4上为增函数,在3(,1]4上为减函数,所以当3t 4=时,y 取得最大值为333274(1)4464⎛⎫⨯-= ⎪⎝⎭,0=t 或1t =时,y 取得最小值为0,所以()2()f x y =27[0,64∈,所以()[f x ∈,所以()f x D 正确;故选:ABD 【变式4-7】(2023春·浙江·高三校联考开学考试)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则()A .()0f =B .()f x 的最小正周期为π2C .()f x 在π0,6⎛⎫ ⎪⎝⎭上单调递减D .()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增【答案】BD【解析】()ππ0tan tan 66f ⎛⎫=-=-= ⎪⎝⎭A 错误;函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭的最小正周期为π2T =,故B 正确;π0,6x ⎛⎫∈ ⎪⎝⎭时,2,πππ666x ⎛⎫-∈- ⎪⎝⎭,故()f x 在π0,6⎛⎫⎪⎝⎭上单调递增,故C 错误;π,06x ⎛⎫∈- ⎪⎝⎭时,2,π626ππx ⎛⎫-∈-- ⎪⎝⎭,故()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增,故D 正确.故选:BD .【题型5三角函数的最值问题】【例5】(2022秋·北京·高三北京市八一中学校考阶段练习)定义运算,,,.a a b a b b a b ≤⎧=⎨>⎩※例如,121=※,则函数()sin cos f x x x =※的值域为()A.1,2⎡⎤-⎢⎥⎣⎦B.22⎡⎤⎢⎥⎣⎦C.,12⎡⎤⎢⎥⎣⎦D.2⎡-⎢⎣⎦【答案】D【解析】根据题设中的新定义,得()sin ,sin cos cos ,sin cos x x x f x x x x≤⎧=⎨>⎩,由sin cos x x ≤可得sin cos 0x x -≤π04x ⎛⎫-≤ ⎪⎝⎭,所以π2ππ2π4k x k -≤-≤,Z k ∈,即3ππ2π2π+44k x k -≤≤,Z k ∈,由sin cos x x >可得sin cos 0x x ->π04x ⎛⎫-> ⎪⎝⎭,所以π2π2π+π4k x k <-<,Z k ∈,即π5π2π+2π+44k x k <<,Z k ∈,所以()3ππsin ,2π2π,Z 44π5πcos ,2π2π,Z44x k x k k f x x k x k k ⎧-≤≤+∈⎪⎪=⎨⎪+<<+∈⎪⎩,当3ππ2π2π+44x k x k ∈-≤≤,Z k ∈,()()()2πsin 2πsin f x x x f x +=+==,当π5π2π+2π+44x k x k ∈<<,Z k ∈时,()()()2πcos 2πcos f x x x f x +=+==,所以函数()f x 为周期函数,周期为2π,作出函数()f x 在一个周期内的图象(实线部分),观察图象,可知函数()f x 的值域为22⎡-⎢⎣⎦,故选:D.【变式5-1】(2023秋·湖南株洲·高三校联考期末)已知定义域为R 的函数(),()f xg x满足()()πf x f x +=-,且()()cos π,g x x f x =++()()sin πf x x g x =-+,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()()y f x g x =的最小值为()A .0B .2CD 【答案】A【解析】()cos ()=-g x x f x ,()()()()πcos ππcos +=+-+=-+g x x f x x f x ,所以()sin cos ()f x x x f x =+-,得sin cos ()2x x f x +=,cos sin ()2x xg x -=,所以22cos sin 1()()cos 244x x y f x g x x -===,π0,4x ⎡⎤∈⎢⎥⎣⎦,所以0cos 21x ≤≤,10()()4≤≤f x g x ,得()()y f x g x =的最小值为0.故选:A.【变式5-2】(2022秋·安徽·高三石室中学校联考阶段练习)如图是函数()cos()(0)f x x ωϕω=+>的部分图象,则()f x 在,9045⎡⎤-⎢⎥⎣⎦π22π上的值域为()A .[]1,1-B .122⎡⎢⎣⎦C .11,2⎡⎤-⎢⎥⎣⎦D .⎡-⎢⎣⎦【答案】D【解析】由图象知函数的周期13ππ2π230103T ⎛⎫=⨯-=⎪⎝⎭,即2π2π=3ω,即3ω=,由五点对应法得ππ32π+()102k k ϕ⨯+=∈Z ,得π2π+5k ϕ=,则π()cos 35f x x ⎛⎫=+ ⎪⎝⎭,因为π22π,9045x ⎡⎤∈-⎢⎥⎣⎦,所以ππ5π3,563x ⎡⎤+∈⎢⎣⎦,所以πcos 31,52x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦.故选:D【变式5-3】(2023·河北衡水·河北衡水中学校考模拟预测)函数()3cos f x x 的最大值为().A .B .C .D .3【答案】D 【解析】2225cos 4sin 59cos 4cos 4sin 5x x x x x -+=--+()()22229cos 4sin 4sin 13cos 2sin 1x x x x x =+-+=+-,所以()3cos f x x ==故()f x 的最大值转化为点()3cos ,2sin P x x 到()0,1A 与()0,2sin B x 的距离之差的最大值,因为1sin 1x -≤≤,22sin 2x -≤-≤,112sin 3x -≤-≤,所以12sin 3PA PB AB x -≤=-≤,当且仅当sin 1x =-时,等号成立,则3PA PB -≤,经检验,此时cos 0x =,()303f x =⨯=,所以()3f x ≤,即()f x 的最大值为3.故选:D.【变式5-4】(2023秋·北京丰台·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫=+>⎪⎝⎭,若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫ ⎪⎝⎭上有最小值无最大值,则ω=___________.【答案】4【解析】由于若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫ ⎪⎝⎭上有最小值无最大值,πππ6223+=,则πππsin 1336f ω⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,所以πππ2π,62,Z 362k k k ωω+=-=-∈,又ππππ,62366T ωω=≥-=≤,由于0ω>,所以ω的值为4.故答案为:4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与三角函数有关的零点问题
1、【2015湖北】函数2π
()4cos cos()2sin |ln(1)|22
x f x x x x =---+的零点个数为______.
【答案】2 【
解
析
】
因
为
2()4cos cos()2sin |ln(1)|
22
x f x x x x π
=---+|)1ln(|sin 2sin )cos 1(2+--+=x x x x =
sin 2|ln(1)|x x -+,所以函数)(x f 的零点个数为函数x y 2sin =与|)1ln(|+=x y 图象的交点的个数,
函数x y 2sin =与|)1ln(|+=x y 图象如图,由图知,两函数图象有2个交点,所以函数)(x f 有2个零点.
【方法技巧归纳】利用函数图象处理函数的零点(方程根)主要有两种策略:(1)确定函数零点的个数:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数定性判断;(2)已知函数有零点(方程有根)求参数取值范围:通常也转化为两个新函数的交点,即在同一坐标系中作出两个函数的图象,通过观察它们交点的位置特征建立关于参数的不等式来求解.
2、函数()2πcos 23f x x ⎛
⎫=- ⎪⎝
⎭+2
311π19π4cos 2,3π1212x x x ⎛⎫⎡⎤--∈- ⎪⎢⎥-⎣⎦⎝⎭
所有零点之和为( )
A .
2π3 B .4π3 C .2π D .8π
3
【答案】B
3.若函数sin
log 2
a y x x π
=-的图象至少有12个零点点,则a 的取值范围是( )
A .(]1,14
B .[)14,+∞
C .(]1,7
D .[
)7,+∞ 【答案】D 【解析】2
y sin
x π
=Q 与log x
a y = 都是偶函数,所以sin
log 2
a y x x π
=-是偶函
数,只需0x > 时,有至少6个零点,即可画出0x >时,函数sin
2
y x π
=的图象与
log a y x =的图象,如图,由图可知,7log 1,7a a ≤≥ ,即a 的取值范围是[)7,+∞,故
选D .
4.【黑龙江省大庆实验中学2017届高三考前得分训练(一)】设函数
()9sin 20,48f x x x ππ⎛⎫
⎛⎫⎡⎤=+∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭
,
若方程()f x a =恰好有三个根,分别为1x , 2x , 3x (123x x x <<),则3212x x x ++的值为( )
A .π
B .34π
C .32π
D .54
π
【答案】C
【解析】画出该函数的图象如图,当
2
12
a ≤<时方程()f x a =恰好有三个根,且点()1,0x 和()2,0x 关于直线8
x π
=
对称,点()2,0x 和()3,0x 关于直线58
x π
=
对称,所以124
x x π
+=
, 2354x x π+=
,从而123322
x x x π++=.故选C .
5.【湖南省衡阳市2017
届高三下学期第三次联考】函数
()()[]1
2sin ,2,41f x x x x
π=-
∈--的所有零点之和为( ) A .2 B .4 C .6 D .8 【答案】D
6.【2017届吉林省实验中学高三上学期二模】已知()y f x =的定义域为R 的偶函数,当
0x ≥时,5
sin ,02,44
()1()1,2,2x x x f x x π⎧≤≤⎪⎪=⎨
⎪+>⎪⎩若关于x 的方程[]2()()0f x af x b ++=(a ,b R ∈)有且仅有6个不同的实数根,在实数a 的取值范围是______.
【答案】5991244
--⋃--(,)(,)
【解析】如图所示,因为()f x 是定义域为R 的偶函数,则
1()1,2,25sin ,20,44()5sin ,02,441
()1,2,2
x
x x x x f x x x x ππ-⎧+<-⎪⎪
⎪--≤<⎪=⎨
⎪≤≤⎪⎪⎪+>⎩,依题意()f x 在2-∞-(,)和02(,)上递增,在20-(,)和2+∞(,)
上递减,当2x =±时,函数取得极大值5
4
;当0x =时,取得极小值0.要使关于x 的方程[]2
()()0f x af x b ++=(a ,b R ∈)有且仅有6个不同的实
数根.设t f x =(),则2
0t at b ++=必有两个根12t t 、,则有两种情况符合题意:(1)154t =
,且2514t ⎛⎫
∈ ⎪⎝⎭
,),此时12a t t -=+,则5924a ∈--(,);(2)1250114]t t ∈∈(,,(,),此时同理可得9
14
a ∈--(,),综上可得a 的范围是
599
1244
--⋃--(,)(,)
.。