高中数学专题练习-函数零点问题
2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)
2023届新高考数学复习:专项(分段函数零点问题)经典题提分练习一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0-B .[)1,-+∞C .(),0∞-D .(],1-∞2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .54.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x ax a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( )A .3B .4C .5D .67.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x a x ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( ) A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)7,2,28⎫⋃+∞⎪⎪⎝⎭D.7,228⎛⎫⎡⎤⋃ ⎪⎢⎥ ⎪⎣⎦⎝⎭ 8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( )A .4B .5C .6D .7二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( )A .1B .74C .2D .313.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( )A .0B .14-C .13-D .15-18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________.20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0x x x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________.25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________.29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0xx x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.参考答案一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0- B .[)1,-+∞ C .(),0∞- D .(],1-∞【答案】A【答案解析】()()0()g x f x m f x m =+=⇔=-Q()g x ∴存在两个零点,等价于y m =-与()f x 的图象有两个交点,在同一直角坐标系中绘制两个函数的图象:由图可知,保证两函数图象有两个交点,满足01m <-≤,解得:[)1,0m ∈- 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减;当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π, 作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( ) A .1B .3C .4D .5【答案】D【答案解析】当0x >时,0x -<,()3f x x -=当0x <时,0x ->,()e xf x --=()()()3e ,00,0e 3,0x x x x g x f x f x x x x -⎧->⎪∴=--==⎨⎪+<⎩,()()()()g x f x f x g x -=--=-,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =->,()3e 0x g x '=->,令()3e 0x g x '=->,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln 3)3ln 330g =->,而()226e 0g =-<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=-< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞-上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x a x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D【答案解析】当0a ≤时,对任意的0x ≥,()()22212f x x a x a =-+++在[)0,∞+上至多2个零点,不合乎题意,所以,0a >.函数()22212y x a x a =-+++的对称轴为直线12x a =+,()()22214247a a a ∆=+-+=-. 所以,函数()f x 在1,2a a ⎡⎫+⎪⎢⎣⎭上单调递减,在1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,且()2f a a =-.①当470a ∆=-<时,即当704a <<时,则函数()f x 在[),a +∞上无零点, 所以,函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有5个零点,当0x a ≤<时,111222a x a -≤-+<,则()11222a x a πππ⎛⎫-≤-+< ⎪⎝⎭,由题意可得()5124a πππ-<-≤-,解得532a ≤<,此时a 不存在;②当Δ0=时,即当74a =时,函数()f x 在7,4⎡⎫+∞⎪⎢⎣⎭上只有一个零点, 当70,4x ⎡⎫∈⎪⎢⎣⎭时,()2cos 2f x x π=-,则7022x ππ≤<,则函数()f x 在70,4⎡⎫⎪⎢⎣⎭上只有3个零点,此时,函数()f x 在[)0,∞+上的零点个数为4,不合乎题意;③当()20Δ470f a a a ⎧=-≥⎨=->⎩时,即当724a <≤时,函数()f x 在[),a +∞上有2个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有3个零点,则()3122a πππ-<-≤-,解得322a ≤<,此时724a <<; ④当()20Δ470f a a a ⎧=-<⎨=->⎩时,即当2a >时,函数()f x 在[),a +∞上有1个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有4个零点,则()4123a πππ-<-≤-,解得522a ≤<,此时,522a <<.综上所述,实数a 的取值范围是75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:D.5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭【答案】B【答案解析】()()11,111,1x x x f x x x ⎧--≤⎪-=⎨->⎪⎩,故()()1,11111,1x x x f x x x ⎧-≤⎪-+=⎨-+>⎪⎩,则函数()()11g x f x ax =--+恰有2个零点等价于()11f x ax -+=有两个不同的解, 故()11,y f x y ax =-+=的图象有两个不同的交点,设()()()()1,01111,011,1x x x g x f x x x x x x ⎧⎪-≤≤⎪=-+=--<⎨⎪⎪-+>⎩又(),y g x y ax ==的图象如图所示,由图象可得两个函数的图象均过原点,若0a =,此时两个函数的图象有两个不同的交点, 当0a ≠时,考虑直线y ax =与()()201g x x x x =-≤≤的图象相切,则由2ax x x =-可得()2100a ∆=--=即1a =, 考虑直线y ax =与()11(1)g x x x=-+≥的图象相切,由11ax x =-+可得210ax x -+=,则140a ∆=-=即14a =.考虑直线y ax =与()2(0)g x x x x =-≤的图象相切,由2ax x x =-可得()2100a ∆=+-=即1a =-, 结合图象可得当114a <<或1a <-时,两个函数的图象有两个不同的交点, 综上,114a <<或1a <-或0a =, 故选:B.6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( ) A .3B .4C .5D .6【答案】B【答案解析】令()2t f x =+,当1x <-时,1()(,2)f x x x =+∈-∞-且递增,此时(,0)t ∈-∞,当10x -<<时,1()(,2)f x x x=+∈-∞-且递减,此时(,0)t ∈-∞,当210e <<x 时,()ln (,2)f x x =∈-∞-且递增,此时(,0)t ∈-∞, 当21e x >时,()ln (2,)f x x =∈-+∞且递增,此时(0,)t ∈+∞, 所以,()g x 的零点等价于()f t 与=2y -交点横坐标t 对应的x 值,如下图示:由图知:()f t 与=2y -有两个交点,横坐标11t =-、201t <<: 当11t =-,即()3f x =-时,在(),1x ∈-∞-、(1,0)-、21(0,)e上各有一个解;当201t <<,即2()1f x -<<-时,在21,e x ∞⎛⎫∈+ ⎪⎝⎭有一个解.综上,()g x 的零点共有4个. 故选:B7.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x ax ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( )A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)72,8⎫⋃+∞⎪⎪⎝⎭D.7,28⎫⎡⎤⋃⎪⎢⎥⎪⎣⎦⎝⎭ 【答案】A【答案解析】①若2x =是一个零点,则需要2()43()f x x ax x a =-+> 只有一个零点, 即有2a ≥,且此时当x a >时,需要2430()x ax x a -+=>只 有一个实根, 而221612162120a ∆=-≥⨯-> ,解方程根得2x a =±,易得2a 2a <<<2a 即当2a ≥ 时, ()f x 恰有 2个零点,122,2x x a ==. ②若2x =不是函数的零点,则2x a =为函数的 2 个零点,于是22Δ161202a a a a ⎧<⎪=->⎨⎪<⎩ ,解得:1.2a << 综上:[)2,2a ∞⎛⎫∈⋃+ ⎪ ⎪⎝⎭.故选:A.8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<【答案】D【答案解析】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11e e f ⎛⎫=- ⎪⎝⎭,且10e x <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10ek -<<,故选:D .9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --【答案】B【答案解析】由题设,画出[0,)+∞上()f x 的大致图象,又()f x 为奇函数,可得()f x 的图象如下:()F x 的零点,即为方程()0f x a -=的根,即()f x 图像与直线y a =的交点.由图象知:()f x 与y a =有5个交点:若从左到右交点横坐标分别为12344,,,,x x x x x , 1、12,x x 关于3x =-对称,126x x +=-;2、30x <且满足方程()()()333f x a f x a f x a =⇒-=-⇒-=-即()132log 1x a -+=,解得:312a x =-;3、45,x x 关于3x =轴对称,则456x x +=;1234512∴++++=-a x x x x x 故选:B10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( ) A .4B .5C .6D .7【答案】A【答案解析】令(),()0t f x F x ==,则3()202f t t --=, 作出()y f x =的图象和直线32+2y x =,由图象可得有两个交点,设横坐标为12,t t ,∴120,(1,2)t t =∈.当1()f x t =时,有2x =,即有一解;当2()f x t =时,有三个解, ∴综上,()0F x =共有4个解,即有4个零点. 故选:A 二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【答案解析】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( ) A .1B .74C .2D .3【答案】BD【答案解析】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--≥-=⎨<⎩ , ∵函数()()y f x g x =-恰好有两个零点,∴方程()()0f x g x -=有两个解,即()(2)0f x f x b +--=有两个解, 即函数()(2)y f x f x =+-与y b =的图象有两个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩ ,作函数()(2)y f x f x =+-与y b =的图象如下, 当12x =-和52x =,即115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,当724b <≤时,有不止两个交点, 当2b >或74b =时,满足函数()(2)y f x f x =+-与y b =的图象有两个交点, 当74b <时,无交点, 综上,2b >或74b =时满足题意,故选:BD.13.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点【答案解析】当0,x ≤()22211y x x x =--=++-,故()221,02,0x x f x x x x ⎧->=⎨--≤⎩的图像如图所示,对AC ,函数()()g x f x m =-有3个零点,相当于()y f x =与y m =有3个交点,故m 的取值范围是()0,1,直线1y =与函数()y f x =的图象有两个公共点,AC 对; 对B ,函数()f x 在(),0∞-上先增后减,B 错;对D ,如图所示,联立222y x y x x =+⎧⎨=--⎩可得解得20x y =-⎧⎨=⎩或11x y =-⎧⎨=⎩,由图右侧一定有一个交点,故函数()f x 的图象与直线2y x =+不止一个公共点,D 错.14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 【答案】AD【答案解析】()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,作出()f x 的图象,如图所示:因为()()g x f x a =-,所以()g x 的零点个数即为函数()y f x =与y a =的图象的交点的个数,对于A :若()g x 有1个零点,则函数()y f x =与y a =的图象仅有一个公共点,由图象得0a =,故A 正确;对于B :由图象得()0f x ≥恒成立,故B 错误;对于C :若()g x 有3个零点,则函数()y f x =与y a =的图象有三个公共点,由图象得1a =或者102a <<,故C 错误;对于D :若()g x 有4个零点,则函数()y f x =与y a =的图象有四个公共点,由图象得112a ≤<,故D 正确. 故选:AD .15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点【答案】AC【答案解析】当0a >时,令()f x t =,由()10f t +=,解得13t =或3t =或2t a=-. 作出函数()f x 的图象,如图1所示,易得()f x t =有4个不同的实数解, 即当0a >时,()g x 有4个零点.故A 正确,B 错误; 当a<0时,令()f x t =,所以()10f t +=,解得13t =或3t =或2t a=-(舍) 作出函数()f x 的图象,如图2所示,易得()f x t =有1个实数解, 即当a<0时,()g x 有1个零点.故C 正确,D 错误. 故选:AC.16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;【答案】ACD【答案解析】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩的图象如图所示.所以max min ()1,()1f x f x ==-.对于A :任取12,[1,)x x ∈+∞,都有()12max min 13()()()()122f x f x f x f x -≤-=--=.故A 正确; 对于B :因为151111,,222222kf f f k ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以111?121511*********k k f f f k +⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- .故B 错误; 对于C :由1()(2)2f x f x =-,得到1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭,即()2(2)k f x f x k =+.故C 正确;对于D :函数()ln(1)y f x x =--的定义域为()1,+∞.作出()y f x =和ln(1)y x =-的图象如图所示:当2x =时,sin2ln10y π=-=;当12x <<时,函数()y f x =与函数()ln 1y x =-的图象有一个交点;当2x >时,因为2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,971ln 1ln 1224⎪->⎛⎫ ⎝>=⎭,所以函数()y f x =与函数()ln 1y x =-的图象有一个交点,所以函数()ln(1)y f x x =--有3个零点.故D 正确.故选:ACD17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( ) A .0B .14-C .13-D .15-【答案】BD【答案解析】在0x ≤上()f x 单调递增且值域为(,1]-∞; 在01x <≤上()f x 单调递减且值域为[0,)+∞; 在1x >上()f x 单调递增且值域为(0,)+∞; 故()f x 的图象如下:由题设,()[2()]g x f f x a =+有7个零点,即[2()]f f x a =-有7个不同解,当0a -<时有2()1f x <-,即1()2f x <-,此时()g x 有1个零点;当0a -=时有2()1f x =±,即1()2f x =±,∴1()2f x =-有1个零点,1()2f x =有3个零点,此时()g x 共有4个零点;当0lg 2a <-≤时有12()lg 21f x -<≤-或12()12f x ≤<或12()2f x <≤, ∴1lg 21()022f x --<≤<有1个零点,11()42f x ≤<有3个零点,1(1)2f x <≤有3个零点,此时()g x 共有7个零点;当lg 21a <-≤时有lg 212()0f x -<≤或102()2f x <<或22()10f x <≤, ∴lg 21()02f x -<≤有1个零点,10()4f x <<有3个零点,1()5f x <≤有2个零点,此时()g x 共有6个零点;当1a ->时有102()10f x <<或2()10f x >, ∴10()20f x <<有3个零点,()5f x >有2个零点,此时()g x 共有5个零点; 综上,要使()g x 有7个零点时,则lg 20a -≤<,(lg 20.30103≈) 故选:BD18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16【答案】AD【答案解析】函数f (x )的零点即为方程f (x )=0的解.当m =1时,解方程f (x )=0,当x <2时,4x ﹣1=0,解得:x =0; 当x ≥2时,2021(x ﹣1)(x ﹣3)=0,解得:x =1或3,只取x =3. ∴函数有两个零点0或3.∴A 对;当m =2时,解方程f (x )=0,当x <2时,4x ﹣2=0,解得:x =12; 当x ≥2时,2021(x ﹣2)(x ﹣6)=0,解得:x =2或6. ∴函数有三个零点12或2或6.∴B 错;当m =15时,解方程f (x )=0,当x <2时,4x ﹣15=0,解得:x =log 415<2; 当x ≥2时,2021(x ﹣15)(x ﹣45)=0,解得:x =15或45. ∴函数有三个零点log 415或15或45.∴C 错;当m =16时,解方程f (x )=0,当x <2时,4x ﹣16=0,解得:x =2不成立; 当x ≥2时,2021(x ﹣16)(x ﹣48)=0,解得:x =16或48. ∴函数有两个零点16或48.∴D 对; 故选:AD .三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________. 【答案】50m -<<【答案解析】由答案解析式知:在[0,1]上()f x 为增函数且()[,5]f x m m ∈+, 在(1,)+∞上,0m ≠时()f x 为单调函数,0m =时()5f x =无零点, 故要使()f x 有两个不同的零点,即1x =两侧各有一个零点,所以在(1,)+∞上()f x 必递减且()(,5)f x m ∈-∞+,则050m m <⎧⎨+>⎩,可得50m -<<.故答案为:50m -<<20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.【答案】)⎡⎡⎣⎣【答案解析】令()t f x =,则()()g x f t =,由于函数()[()]g x f f x =在R 上有三个不同的零点,所以()()0g x f t ==必有两解,所以20a -≤<或2a ≥.当20a -≤<时,()f x 的图像如下图所示,由图可知,()y f t =必有两个零点122,0t t =-=,由于()2f x t =有两个解,所以()1f x t =有一个解,即242a -≤-,解得0a ≤<.当2a ≥时,()f x 的大致图像如下图所示,()y f t =必有两个零点342,2t t =-=,由于()3f x t =有两个解,所以()4f x t =有一个解,所以242a -<,解得2a ≤<综上所述,实数a 的取值范围是)⎡⎡⎣⎣ .故答案为:)⎡⎡⎣⎣21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.【答案】1,0e ⎛⎫- ⎪⎝⎭【答案解析】因为函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以,0()ln ,0ax x f x x x ≤⎧=⎨>⎩,-,0()ln(-),0ax x f x x x ≥⎧-=⎨<⎩, 因为函数()()()g x f x f x =--恰有5个零点, 所以函数()y f x =与()y f x =-恰有5个交点,如图,因为y ax =-与y ax =交于原点,要恰有5个交点,,0y ax x =->与ln y x =必有2个交点, 设,0y ax x =->与ln y x =相切,切点为(,)m n , 此时切线斜率为1100n y x m m -'===-,解得1,ln 1n m ==, 解得e m =,所以切点为(e,1),所以e 1a -=,解得1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1(,0)ea ∈-.故答案为:1,0e ⎛⎫- ⎪⎝⎭.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______. 【答案】[]32,28--【答案解析】设(]4,8x ∈,则(]40,4x -∈,则[]6()(4)44(4)422x f x f x f x -=-+=-=-,设(]8,12x ∈,则(]80,4x -∈,则[][]()(4)44(4)4(8)4f x f x f x f x =-+=-=-+1016(8)1622x f x -=-=-,则(](](]2610220,4()4224,816228,12x x x x f x x x ---⎧-∈⎪⎪=-∈⎨⎪-∈⎪⎩,,,,则(3)(7)(11)0f f f ===,函数()f x 图象如下:由2()()()0g x f x t f x =+⋅=,可得()0f x =,或()f x t =-, 由()0f x =,可得3x =,或7x =,或11x =,则()f x t =-仅有一根,又(8)f =810162228--=,(12)f =1210162232--=, 则2832t ≤-≤,解之得3228t -≤≤-, 故答案为:3228t -≤≤-.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.【答案】12【答案解析】当0x ≥时,令()e 10xf x =-=,解得0x =,故()f x 在[)0+∞,上恰有1个零点,即方程20ax x a ++=有1个负根.当0a =时,解得0x =,显然不满足题意;当0a ≠时,因为方程20ax x a ++=有1个负根,所以2Δ140.a =-≥ 当2Δ140a =-=,即12a =±时,其中当12a =时,211022x x ++=,解得=1x -,符合题意;当12a =-时,211022x x -+-=,解得1x =,不符合题意; 当2140a ∆=->时,设方程20ax x a ++=有2个根1x ,2x ,因为1210x x =>,所以1x ,2x 同号, 即方程20ax x a ++=有2个负根或2个正根,不符合题意.综上,12a =.故答案为:0.5.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0xx x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________. 【答案】12m <≤【答案解析】由()0g x =得()f x m =,即函数()g x 的零点是直线y m =与函数()y f x =图象交点横坐标, 当0x ≤时,()e 1x f x =+是增函数,函数值从1递增到2(1不能取),当0x >时,()ln f x x =是增函数,函数值为一切实数,在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12m <≤时,直线y m =与函数()y f x =图象有2个交点,即函数()g x 有2个零点, 所以实数m 的取值范围是:12m <≤. 故答案为:12m <≤25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.【答案】14322---,,, 【答案解析】函数()h x 的零点即为方程()0h x =的解,也即()()1f g x =的解. 令()t g x =,则原方程的解变为方程组()()1t g x f t ⎧=⎪⎨=⎪⎩,①②的解.由方程②可得320t t -=, 解得0t =或1t =,将0t =代入方程①,而方程104x x+=无解, 由方程2680x x ---=解得4x =-或2x =-;将1t =代入方程①,而方程114x x +=,解得12x =, 由方程2681x x ---=,解得3x =-.综上,函数()h x 的零点为14322---,,,,共四个零点. 故答案为:14322---,,,. 26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____ 【答案】11(,)505504-【答案解析】由函数在[0,4)x ∈上的答案解析式作出如图所示图像,由(4)()f x f x a +=+知,函数()f x 是以4为周期,且每个周期上下平移|a |个单位的一个函数,若使[0,2021]x ∈时,存在R k ∈,方程()()g x f x k =+在[0,2021]x ∈上恰有2021个零点,等价于()f x k =-在[0,2021]x ∈上恰有2021个交点,如图所示,知在每个周期都有4个交点,即(1,2)k -∈时满足条件,且必须每个周期内均应使k -处在极大值和极小值之间,才能保证恰有2021个交点, 则当0a ≥时,需使最后一个完整周期[2016,2020)中的极小值(2018)2f <, 即(2018)(2)50415042f f a a =+=+<,解得1504a <,即1[0,504a ∈ 当a<0时,需使最后一个极大值(2021)1f >, 即(2021)(1)50525051f f a a =+=+>,解得1505a >-,即1(,0)505a ∈-, 综上所述,11(,505504a ∈-故答案为:11,505504⎛⎫- ⎪⎝⎭27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.【答案】10,4⎛⎫⎪⎝⎭【答案解析】当0x <时,令()0f x =可得:21k x =, 当0x >时,令()0f x =可得:21x k x-=,令()()()221010x x g x x x x ⎧<⎪⎪=⎨-⎪>⎪⎩, 若01x <<,()21x g x x -+=, ()320x g x x -'=<,()g x 为减函数, 若1x ≥,()21x g x x -=, ()320x g x x -+'==,2x =, 若[)1,2x ∈,()0g x '<,()g x 为减函数, 若()2,x ∈+∞,()0g x '>,()g x 为增函数,()124g = 画出()g x 的图像,如下图:如要()f x 有4个零点,则104k <<, 故答案为:10,4⎛⎫ ⎪⎝⎭. 28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________. 【答案】3(21)2n - 【答案解析】当312x ≤≤时,f (x )=8x ﹣8, 所以()218()82g x x =--,此时当32x =时,g (x )max =0; 当322x ≤<时,f (x )=16﹣8x ,所以g (x )=﹣8(x ﹣1)2+2<0; 由此可得1≤x ≤2时,g (x )max =0.下面考虑2n ﹣1≤x ≤2n 且n ≥2时,g (x )的最大值的情况. 当2n ﹣1≤x ≤3•2n ﹣2时,由函数f (x )的定义知()11112222n n x x f x f f --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 因为13122n x-≤≤, 所以()22251(2)82n n g x x --=--, 此时当x =3•2n ﹣2时,g (x )max =0;当3•2n ﹣2≤x ≤2n 时,同理可知,()12251(2)802n n g x x --=--+<.由此可得2n ﹣1≤x ≤2n 且n ≥2时,g (x )max =0. 综上可得:对于一切的n ∈N *,函数g (x )在区间[2n ﹣1,2n ]上有1个零点, 从而g (x )在区间[1,2n ]上有n 个零点,且这些零点为232n n x -=⋅,因此,所有这些零点的和为()3212n -. 故答案为()3212n -. 29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0x x x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________【答案】23a <≤.【答案解析】函数()f x 当0x >时是对勾函数,因为112x x x x -+=+≥=,当且仅当10x x x ⎧=⎪⎨⎪>⎩即1x =时,取最小值.所以函数最小值为2,且在(0,1)上为减函数,在(1,)+∞上为增函数.当0x ≤时,2x y -= 是减函数,且21x -≥,所以2x y -=-为增函数,且21x --≤-,所以函数()42x f x -=-为增函数,且()3f x ≤,函数图像如图所示.令32t x =-,函数(32)y f x a =--恰有三个不同的零点,可以看成函数()y f t a =-恰有三个不同的零点,函数()f t 的图像与直线y a =有三个交点.由图像可知23a <≤.30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.【答案】01m ≤<【答案解析】当0x ≥时,2'()121212(1)f x x x x x =-=-,在区间()0,1上,()()'0,f x f x <单调递减,在区间()1,+∞上,()()'0,f x f x >单调递增,故函数在1x =处取得极小值()11f =-,据此绘制函数()f x 的图像如图所示,结合函数图像和题意可知原问题等价于函数232y x x =-与函数y m =有两个交点,且交点的横坐标的范围分别位于区间(]1,0-和区间()0,1内,观察二次函数的图像可得m 的范围是01m ≤<.。
函数零点问题-学会解题之高三数学多题一解【原卷版】
函数零点问题【高考地位】函数的零点是新课标的新增内容,其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为新课标高考命题的热点.其经常与函数的图像、性质等知识交汇命题,多以选择、填空题的形式考查.类型一 零点或零点存在区间的确定万能模板 内 容使用场景 一般函数类型解题模板第一步 直接根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0; 第二步 若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可.例1 函数()43xf x e x =+-的零点所在的区间为( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C .13,24⎛⎫ ⎪⎝⎭ D .3,14⎛⎫ ⎪⎝⎭【变式演练1】(2023·全国·高三专题练习)在下列区间中,函数()23xf x x =--的零点所在的区间为( )A .)(01,B .()12,C .()23,D .()34,【变式演练2】(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【变式演练3】(2022·全国·高一课时练习)已知函数()226xf x x =+-的零点为0x ,不等式06x x ->的最小整数解为k ,则k =( ) A .8B .7C .5D .6类型二 零点的个数的确定方法1:定义法万能模板 内 容使用场景一般函数类型解题模板 第一步 判断函数的单调性;第二步 根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间或者直接运用方程的思想计算出其 零点;第三步 得出结论.例2.函数x e x f x3)(+=的零点个数是( ) A .0 B .1 C .2 D .3【变式演练4】(2022·重庆·三模)已知函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,则函数()()12g x f x =-的零点个数为( )A .0个B .1个C .2个D .3个【变式演练5】(2023·全国·高三专题练习)已知函数|2|1()2x f x -=,()g x 是定义在R 上的奇函数,且满足(2)(2)g x g x +=-,当[0,2]x ∈时,2()log (1)g x x =+.则当[0,2022]x ∈时,方程()()f x g x =实根的个数为_______.【变式演练6】(2022·北京·高三开学考试)已知函数()x af x a x a+=--,给出下列四个结论: ①存在a ,使得函数()f x 可能没有零点; ②存在a ,使得函数()f x 恰好有1个零点; ③存在a ,使得函数()f x 恰好有2个零点; ④存在a ,使得函数()f x 恰好有3个零点. 其中所有正确结论的序号是______.方法2:数形结合法万能模板 内 容使用场景 一般函数类型解题模板第一步 函数()g x 有零点问题转化为方程()()f x m x =有根的问题; 第二步 在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像;第三步 观察并判断函数()y f x =和()y m x =的图像的交点个数第四步 由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论.例3. 方程3()|log |3x x =的解的个数是 ( ) A .3 B .2 C .1 D .0【变式演练7】(2023·全国·高三专题练习)已知函数()f x 是定义在R 上的偶函数,满足()()1f x f x +=-,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( ) A .2B .3C .4D .5【变式演练8】(2022·河北省曲阳县第一高级中学高三阶段练习)(多选)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()()()1g x f f x =+,则下列说法正确的是( ) A .当0a >时,()g x 有4个零点 B .当0a >时,()g x 有5个零点 C .当0a <时,()g x 有1个零点D .当0a <时,()g x 有2个零点【变式演练9】(2022·湖南师大附中三模)(已知)已知函数()[)[)1,0,1,21,1,2,3x x f x x x ⎧-∈⎪=⎨-∈⎪-⎩对定义域内任意x ,都有()(2)f x f x =-,若函数()()=-g x f x k 在[0,+∞)上的零点从小到大恰好构成一个等差数列,则k 的可能取值为( ) A .0B .1C 2D 21【高考再现】1.【2021年北京市高考数学试题】已知函数,给出下列四个结论: ①若,则有两个零点; ①,使得有一个零点; ①,使得有三个零点; ①,使得有三个零点. 以上正确结论得序号是_______.2.【2021年天津高考数学试题】设,函数,若在区间()lg 2f x x kx =--0k =()f x 0k ∃<()f x 0k ∃<()f x 0k ∃>()f x a ∈R 22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩()f x (0,)+∞内恰有6个零点,则a 的取值范围是( ) A .B .C .D .3.【2020年高考天津卷9】已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞4.【2020年高考上海卷11】已知a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件,①对任意0x R ∈,0()f x 的值为0x 或02x ;②关于x 的方程()f x a =无实数解;则a 的取值范围为 .5. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}6.【2018年全国普通高等学校招生统一考试数学(浙江卷)】已知λ①R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________①7.【2017江苏】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .8.【2018年全国普通高等学校招生统一考试理科数学(天津卷)】已知a >0,函数f(x)={x 2+2ax +a, x ≤0,−x 2+2ax −2a,x >0.若关于x 的方程f(x)=ax 恰有2个互异的实数解,则a 的取值范围是______________.【反馈练习】1.函数的图象与函数的图象交点横坐标所在的区间可能为( )95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭11,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭()()=x f x e ()2ln g x x =-A .B .C .D .【来源】重庆市南开中学2022届高三上学期7月考试数学试题2.(2022·河南·高三阶段练习(文))已知直线l 与曲线ln (01)y x x =<<相切于点00(,)M x y ,若OM l ⊥,则0x 所在的取值区间是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭3.(2022·重庆南开中学高三阶段练习)已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,44.(2023·全国·高三专题练习)已知()=ln f x x ,()e x g x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭5.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c <<B .a b c <<C .a c d <<D .b c a <<6.(2022·江西·南昌二中高三开学考试(理))已知a 是()323652f x x x x =--+-的一个零点,b 是()e 1x g x x =++的一个零点,132log 5c =,则( )A .a c b <<B .a b c <<C .b c a <<D .a c b <<或c b a <<7.(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .68.(2022·甘肃·兰州市第五十五中学高三开学考试(文))定义域在R 上的奇函数()f x ,当0x ≥时,12log (1),01()13,1x x f x x x +≤<⎧⎪=⎨⎪--≥⎩,则关于x 的函数()()12g x f x =-的所有零点的和是( )A 21B .122C .122-D .129.(2022·河南·高三开学考试(文))已知定义域为R 的偶函数()f x 的图像是连续不间断的曲线,且()0,1()1,2()2,3()3,4(2)()(1)f x f x f ++=,对任意的1x ,20[]2,x -∈,12x x ≠,()()12120f x f x x x ->-恒成立,则()f x 在区间[]100,100-上的零点个数为( ) A .100B .102C .200D .20210.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( ) A .5或6个B .3或9个C .9或10个D .5或9个11.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()e 2x y f x -=--B .()e 2x y f x =+C .()e 2x y f x =-D .()e 2x y f x =-+12.(2022·陕西·西安铁一中滨河高级中学高三阶段练习(理))函数()222,0,23,0lnx x x x f x x x x ⎧-+>=⎨--≤⎩的零点个数为( ) A .0B .1C .2D .313.(2022·全国·模拟预测(文))已知函数()2,1,121,11,,1,1xx x f x x x x x x ⎧<-⎪+⎪=--≤≤⎨⎪⎪>-⎩方程()()()()2220f x a f x a a R -++=∈的不等实根个数不可能是( ) A .2个B .3个C .4个D .6个14.(2023·全国·高三专题练习)(多选)已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A .120x x +>B .120x x <C .12ln 0xe x +=D .12121x x x x -+<15.(2022·福建·上杭一中高三阶段练习)(多选)已知函数()1,0ln ,0kx x f x x x +≤⎧=⎨>⎩,下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数判断正确的是( ) A .当0k <时,有1个零点; B .当0k >时,有4个零点; C .无论k 取何值,均有2个零点;D .无论k 取何值,均有4个零点;16.(2022·全国·高二专题练习)设定义域为(0,)+∞的单调函数()f x ,对任意的,()0x ∈+∞,都有[]3()log 4f f x x -=,若0x 是方程()2()3f x f x '-=的一个解,且*0,(1),N x a a a ∈+∈,则实数a =_____. 17.(2022·重庆·高三阶段练习)函数||21()2x f x x ⎛⎫=- ⎪⎝⎭的零点个数是______.18.(2021·福建·福州市第十中学高三开学考试)已知函数24,1()lg 1,1x x x f x x x ⎧-≥⎪=⎨-<⎪⎩,则((9))f f -=__________,()f x 的零点个数为__________个.19.已知函数有两个不同的零点,则实数k 的取值范围是_________. 【来源】河北省衡水市饶阳中学2021届高三5月数学精编试题20.【陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试文科】已知函数2,0()12,02x e x f x x x x ⎧≤⎪=⎨-+->⎪⎩. (1)求斜率为12的曲线()y f x =的切线方程; (2)设()()f x g x m x=-,若()g x 有2个零点,求m 的取值范围.()()112 ()1421x x f x k -=-+-。
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
2023届高考数学压轴题(分段函数零点问题)专题练习(附答案)
2023届高考数学压轴题(分段函数零点问题)专题练习1.已知函数3,21(),20x x a x x f x a e x x ⎧---⎪⎪+=⎨⎪--<<⎪⎩…恰有3个零点,则实数a 的取值范围为( )A.11(,)3e --B.211(,e e--C.221[,)3e--D.21[,)33--【名师解析】解:函数3,21(),20x x a x x f x a e x x ⎧---⎪⎪+=⎨⎪--<<⎪⎩…, 可得2x -…时,31xa x =-+,函数1x y x =+的图象如图: 方程至多一个解,此时满足132a <-…,可得2[3a ∈-,13-.当(2,0)x ∈-时,x ae x=,即x a xe =, x y xe =,可得(1)x y e x '=+,令(1)0x e x +=,可得1x =-,(2,1)x ∈--时,0y '<,函数是减函数,(1,0)x ∈-时,函数是增函数,函数的最小值为:1e -,2x =-时,22y e =-,方程有两个解,可得212(,a e e∈--,综上,函数3,21(),20x xa x x f x a e x x ⎧---⎪⎪+=⎨⎪--<<⎪⎩…恰有3个零点,满足11(,)3a e ∈--,故选:A .2.已知函数21(),12()54,12xx f x x x x ⎧⎪⎪=⎨⎪-+->⎪⎩…,若函数()y f x a =-恰有3个零点,则实数a 的取值范围是( )A.1(0,2B.1(2,32C.1(2,5)2D.3(2,5)2【名师解析】解:由题意可得函数21(),12()54,12xx f x x x x ⎧⎪⎪=⎨⎪-+->⎪⎩… 的图象 和直线y a =有3个交点,如图所示: 故应有1322a <<, 故选:B .3.已知函数21(,12()54,12xx f x x x x ⎧⎪⎪=⎨⎪-+->⎪⎩…,若函数3()2g x x a =-,其中a R ∈,若函数()()y f x g x =-恰有3个零点,则实数a 的取值范围是( ) A.15(0,16B.15(16,1)C.16(1,)15 D.5(1,)4【名师解析】解:由()()0y f x g x =-=得()()f x g x =,作出两个函数()f x 和()g x 的图象, 则1(1,2A ,当()g x 经过点A 时,()f x 与()g x 有2个交点,此时g (1)3122a =-=,此时1a =, 当()g x 与()f x 在1x >相切时,此时()f x 与()g x 有2个交点 由253422x x x a -+-=-,即255022x x a -+-=, 由判别式△0=得255()4()022a --=,得1516a =, 要使()f x 与()g x 有3个交点,则()g x 位于这两条线之间, 则a 满足15(16a ∈,1),故选:B .4.已知函数11,2()2,2x x f x lnx x ⎧+⎪=⎨⎪>⎩…,方程()0f x ax -=恰有3个不同实根,则实数a 的取值范围是( )A.21(,)2ln eB.1(0,2C.1(0,eD.11(,)2e【名师解析】解:作函数11,2()2,2x x f x lnx x ⎧+⎪=⎨⎪>⎩…与y ax =的图象如下,,直线l 是y lnx =的切线,设切点为(,)x lnx , 故1()lnx lnx x x='=, 故x e =, 故1l k e=; 直线m 过点(2,2)ln , 故22m ln k =; 结合图象可知, 实数a 的取值范围是2(2ln ,1)e, 故选:A .5.已知函数3(1),0()(1),0xx x f x x e x ⎧-=⎨-+<⎩…,若函数()()g x f x a =-有3个零点,则实数a 的取值范围是( ) A.21(0,)e B.21(1,)e - C.2(e -,1)- D.(,1)-∞-【名师解析】解:3(1),0()(1),0xx x f x x e x ⎧-=⎨-+<⎩…, ∴函数()()g x f x a =-有3个零点⇔方程()f x a =有3个根()y f x ⇔=与y a =有三个交点,由23(1),0()(2),0xx x f x x e x ⎧-'=⎨-+<⎩…得: 当2x =-时,函数()f x 取得极大值21e; lim ()x f x →+∞=+∞,lim ()0x f x →-∞=在同一坐标系中作出两函数的图象如下:由图可知,当210a e <<时,()y f x =与y a =有三个交点, 即函数()()g x f x a =-有3个零点. 故选:A .6.已知函数22(0)()2(0)x m x f x x mx x ⎧->=⎨--⎩…,若函数()()g x f x m =-恰有3个零点,则实数m 的取值范围是( )A.1(,2-∞B.(,1)-∞C.1(2,1)D.(1,)+∞【名师解析】解:二次函数22y x mx =--最多只能有两个零点,要使函数()()g x f x m =-恰有3个零点,所以2x y m =-在区间(0,)+∞必须有一个零点,所以1m >,当1m >时,二次函数22y x mx =--与横轴的负半轴交点有两个(0,0)和(2,0)m -,故原函数有3个零点,综上,实数m 的取值范围是:(1,)+∞ 故选:D .7.已知函数(1),01()1,40xln x x e f x e x +<-⎧=⎨--⎩…剟,若函数1()|()|||g x f x x a e =--恰有3个零点,则a 的取值范围是( )A.[1-,2)e - B.[1-,0)(0⋃,2)e -C.3[4e e --,0)D.[1-,0)(0⋃,34)e e +-【名师解析】解:令()0g x =可得1|()|||f x x a e =-,∴函数|()|y f x =与1||y x a e=-的图象有三个交点. 作出函数(1),01|()|1,40xln x x e y f x e x +<-⎧==⎨--⎩…剟的图象如图所示:设直线1()y x a e=-与曲线|()|f x 在(0,1]e -上的图象相切,切点0(x ,0)y ,则00000111(1)1()x e y ln x y x a e ⎧=⎪+⎪⎪=+⎨⎪⎪=-⎪⎩,解得01x e =-,1a =-, 设直线1()y x a e=--与曲线|()|f x 在(4,0)-上相切,切点为1(x ,1)y ,则000111()x x e e e y x a y e⎧-=-⎪⎪-=⎨⎪⎪--=⎩,解得01x =-,2a e =-. ∴当1a <-或2a e -…时,函数|()|y f x =与1||y x a e=-的图象最多只有2个交点,不符合题意; 排除C ,D ;当0a =时,函数|()|y f x =与1||y x a e =-的图象只有2个交点,不符合题意;排除A ;故选:B .8.已知函数22,0()0x x x x f x x e⎧-=>⎩…,若关于x 的方程()10f x a -+=恰有3个不同的实数根,则实数a 的取值范围为( )A.(1,1)2e + B.1(1,1)e+C.1(0,1)2e + D.1(,1)e【名师解析】解:当0x >时,()f x =()f x '=,令()0f x '=,得12x =,1(0,)2x ∈时,()0f x '>,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '< ()f x ∴在1(0,2递增,在1(2,)+∞递减,所以函数()f x 的图形如下:根据图象可得:方程()10f x a -+=恰有3个不同的实数根时,101(2a f <-<1()22f e =,实数a的取值范围为(1,12e +. 故选:A .9.已知函数[],0()([]1,0x x f x x x x ⎧⎪=⎨<⎪⎩…表示不超过x 的最大整数),若()0f x ax -=有且仅有3个零点,则实数a 的取值范围是( ) A.12(,]23B.12[,)23C.23[,34D.23(,34【名师解析】解:当01x <…时,[]0x =, 当12x <…时,[]1x =, 当23x <…时,[]2x =, 当34x <…时,[]3x =,若()0f x ax -=有且仅有3个零点, 则等价为()f x ax =有且仅有3个根, 即()f x 与()g x ax =有三个不同的交点, 作出函数()f x 和()g x 的图象如图,当1a =时,()g x x =与()f x 有无数多个交点, 当直线()g x 经过点(2,1)A 时,即g (2)21a ==,12a =时,()f x 与()g x 有两个交点, 当直线()g x 经过点(3,2)B 时,即g (3)32a ==,23a =时,()f x 与()g x 有三个交点, 要使()f x 与()g x ax =有三个不同的交点,则直线()g x 处在过12y x =和23y x =之间, 即1223a <…, 故选:A .10.已知函数221,20(),0x x x x f x e x ⎧--+-<=⎨⎩……,若函数()()2g x f x ax a =-+存在零点,则实数a 的取值范围为( )A.31[,]4e - B.31(,][,)4e -∞-+∞C.211[,]4e - D.21(,][,)4e -∞-+∞【名师解析】解:函数()()2g x f x ax a =-+存在零点,即方程()2f x ax a =-存在实数根,即函数()y f x =与(2)y a x =-的图象有交点, 如图所示:直线(2)y a x =-恒过定点(2,0), 过点(2,1)-和点(2,0)的直线的斜率101224k -==---,设直线(2)y a x =-与x y e =相切于点0(x ,0)x e , 则切点处的导数值为0x e ,则过切点的直线方程为:000()x x y e e x x -=-, 又切线过点(2,0),则000(2)x x e e x -=-,03x ∴=, 此时切线的斜率为:3e ,由图可知,要使函数()()2g x f x ax a =-+存在零点,则实数a 的取值范围为:14a -…或3a e …,故选:B .11.已知函数11,1()3,1x x f x lnx x ⎧+⎪=⎨⎪>⎩…,若方程()0f x ax -=恰有两个不同的根,则实数a 的取值范围是( )A.1(0,3B.1[3,1eC.1(e ,4]3D.(-∞,40][3,)+∞【名师解析】解: 方程()0f x ax -=恰有两个不同实数根,()y f x ∴=与y ax =有2个交点, 又a 表示直线y ax =的斜率, 1x ∴>时,1y x'=, 设切点为0(x ,0)y ,01k x =, ∴切线方程为0001()y y x x x -=-, 而切线过原点,01y ∴=,0x e =,1k e=, ∴直线1l 的斜率为1e,又 直线2l 与113y x =+平行, ∴直线2l 的斜率为13,∴实数a 的取值范围是1[3,1)e故选:B .12.已知函数221,(20)()3,(0)ax x x f x ax x ⎧++-<=⎨->⎩…有3个零点,则实数a 的取值范围是( )A.3(4,1)B.1(4,1)C.(0,1) D.(,1)-∞【名师解析】解:()f x 由3个零点,()f x ∴在(2-,0]上有2个零点,在(0,)+∞上有1个零点.∴441012044040a aa a a -+>⎧⎪⎪-<-<⎪⎨-⎪<⎪⎪>⎩,解得314a <<. 故选:A .13.已知函数,0,(),0,x e x f x lnx x ⎧=⎨>⎩…若1()()3F x f x x a =+-的两个零点分别在区间(1,0)-和(1,)e 内,则实数a 的取值范围为( ) A.11(,1)33ee -+B.(1,13e+C.111(,33e -D.1(,1)3【名师解析】解: 1()()3F x f x x a =+-的两个零点分别在区间(1,0)-和(1,)e ,∴(1)(0)0(1)()0F F F F e -<⎧⎨<⎩ , ∴11()0311()(1)033a a e a e a ⎧---<⎪⎪⎨⎪-+-<⎪⎩ ∴111311133a e a e ⎧-<<⎪⎪⎨⎪<<+⎪⎩ ∴113a << 故选:D .14.已知函数221,20(),0x x x x f x e x ⎧--+-<=⎨⎩……,若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为() A.21[,]3e -B.21(,][,)3e -∞-+∞C.11[,3e-D.1(,[,)3e -∞-+∞【名师解析】解:根据题意,函数()()g x f x ax a =-+存在零点,即方程()0f x ax a -+=存在实数根, 也就是函数()y f x =与(1)y a x =-的图象有交点. 函数221,20(),0x x x x f x e x ⎧--+-<=⎨⎩……的图象如图,而直线(1)y a x =-恒过定点(1,0), 过点(2,1)-与(1,0)的直线的斜率101213k -==---, 设直线(1)y a x =-与x y e =相切于(,)m m e ,则切点处的导数值为m e ,则过切点的直线方程为()m m y e e x m -=-, 由切线过(1,0),则(1)m m e e m -=-, 即2m me em =,解可得2m =, 此时切线的斜率为2e ,由图可知,要使函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为21(,[3e -∞- ,)+∞故选:B .15.已知函数11,0()3||,0x f x lnx x ⎧+⎪=⎨⎪>⎩… 若函数()0f x ax -=恰有3个零点,则实数a 的取值范围为 1[3,1)e .【名师解析】解:画出函数()f x 的图象,如图所示:,若函数()0f x ax -=恰有3个零点, 则()f x ax =恰有3个交点, 当13a =时,13y x =和()y f x =有3个交点,(如红色直线), 直线y ax =和()f x 相切时,(如绿色直线),设切点是(,)m lnm ,由1()lnx x'=, 故1a m =,故1lnm =,解得:1m =, 故1a e=, 故直线1y x e =和()f x 相切时,2个交点,综上,1[3a ∈,1)e ,故答案为:1[3,1e.16.设函数1(1,0()2(2),0xx f x f x x ⎧-⎪=⎨⎪->⎩…,()log (1)(1)a g x x a =->. ①(2019)f 的值为 1 ;②若函数()()()h x f x g x =-恰有3个零点,则实数a 的取值范围是 .【名师解析】解:①11(2019)(2017)(1)()112f f f -==⋯⋯=-=-=;②当02x <…时,220x -<-…,所以21()(2)(12x f x f x -=-=-;当24x <…时,022x <-…,所以41()(2)()12x f x f x -=-=-;当46x <…时,224x <-…,所以61()(2)(12x f x f x -=-=-;当68x <…是,46x <…,所以81()(2)(12x f x f x -=-=-;画出()f x 和()g x 两个函数图象如下图所示,由log (41)3a -=,得a =log (61)3a -=,得a =, 由图可知,当两个函数的图象有3个交点时,也即函数()()()h x f x g x =-恰有3个零点时,实数a 的取值范围是.故答案为:1,.17.已知函数121,0()1||,0x x f x lg x x+⎧-⎪=⎨>⎪⎩…,若函数()()g x f x a =-有3个零点,则实数a 的取值范围为 {|01}a a <… .【名师解析】解:作出()f x 的函数图象如图所示:()()g x f x a =-有3个零点等价于函数()f x 与y a =图象有3个交点, 由图象可知当10a -<<时,()f x 与y a =图象只有1交点, 当01a <…时,()f x 与y a =图象有3个交点; 当1a >或0a =时,()f x 与y a =有2个零点; 综上,(0a ∈,1], 故答案为:{|01}a a <….18.已知函数22|2|,0()1,03x x ax a x f x e ex a x x⎧++⎪=⎨-+>⎪⎩…,若存在实数k ,使得函数()y f x =-k 有6个零点,则实数a 的取值范围为 3(,3)2.【名师解析】解:由题得函数()y f x =的图象和直线y =k 有六个交点,显然有0a >,20a a -<, 当0x >时,2(1)()(0)x e x f x x x -'=>, ∴函数()f x 在(0,1)单调递减,在(1,)+∞单调递增,且21(1)03f a =>,由题得221(,||),(0,),(1,)3A a a a B a C a --,A ,B ,C 三点的高度应满足A B c h h h >…或B A C h h h >…,所以21|1|3a a a a ->…或21|1|3a a a a ->…,0a > ,20a a -<,23a ∴<…或322a <…,综合得332a <<. 故答案为:3(,3)2.19.已知函数2|43|,0()2|1|,0x x x f x x x ⎧++=⎨->⎩…,若函数()y f x a =-恰有3个零点,则实数a 的取值范围是 0a =或23a 剟. 【名师解析】解:函数2|43|,0()2|1|,0x x x f x x x ⎧++=⎨->⎩…的图象如下图,()y f x a =-的零点即为函数()y f x =图象与函数y a =的交点个数,结合图象可知,函数()y f x a =-恰有3个零点,则0a =或23a 剟. 故答案为:0a =或23a 剟.20.已知函数()f x 满足:当1[3x ∈,1]时,1()2(f x f x =;当[1x ∈,3]时,()f x lnx =.若在区间1[3,3]内,函数()()(0)g x f x ax a =->恰有三个零点,则实数a 的取值范围为 3[3ln ,1)e. 【名师解析】解:设1[3x ∈,1],则1[1x∈,3]又因为:函数()f x 满足1()2()f x f x =,当[1x ∈,3]时,()f x lnx =,所以11()2(2f x f ln x x ==,1[3x ∈,1]所以112,[,1]()3,(1,3]ln x f x x lnx x ⎧∈⎪=⎨⎪∈⎩,()()(0)g x f x ax a =->恰有三个零点,即在1[3,3]内()f x 的图象与y ax =有三个交点,如图所示:当直线y ax =介于直线1l (过原点和(3,3)ln 的直线)和直线2l (当[1x ∈,3]时y lnx =的过原点的切线) 易知133l ln k =, 设y lnx =过原点的切线切点为(,)a lna ,则1y x '=,所以切线斜率为1a,所以切线为1()y lna x a a -=-,又因为过原点,所以1lna =,所以[1a e =∈,3]故21l k e =,故实数a 的范围是31[,3ln e故答案为:31[,3ln e。
高中数学函数的零点练习题(有解析)
高中数学函数的零点练习题(有解析)数学必修1(苏教版)2.5函数与方程2.5.1函数的零点已知二次函数y=x2-2x-3,令y=0即x2-2x-3=0时,这是一元二次方程,那么那个一元二次方程的根与前面二次函数的图象与x轴的交点有什么关系?基础巩固1.若x0是方程lgx+x=2的解,则x0属于区间()A.(0,1) B.(1,1.25)C.(1.25,1.75) D.(1.75,2)解析:设f(x)=lg x +x-2,则f(1.75)=f74=lg 74-140,f(2)=lg 2 0.答案:D2.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为()A.0个B.1个C.2个D.3个解析::x0时由x2+2x-3=0x=-3;x0时由-2+lnx=0x=e2.答案:C3.设函数f(x)=x2-x+a(a0),若f(m)0,则()A.f(m-1)0B.f(m-1)0C.f(m-1)=0D.f(m-1)与0的大小不能确定解析:结合图象易判定.答案:A4.函数f(x)=ex+x-2的零点所在的一个区间是()A.(-2,-1) B. (-1,0)C. (0,1) D.(1,2)解析:因为f(0)=-10,f(1)=e-10,因此零点在区间(0,1)上,选C.答案:C5.函数f(x)=4x-2x+1-3的零点是________解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.答案:log236.函数f(x)=(x-1)(x2-3x+1)的零点是__________.解析:利用定义可求解.答案:1,3527.若函数y=x2-ax+2有一个零点为1,则a等于__________.解析:由零点定义可求解.答案:38.已知函数f(x)=logax+x-b(a0且a1),当234时,函数f(x)的零点为x0(n,n+1)(nN*),则n=________.解析:依照f(2)=loga2+2-blogaa+2-3=0,f(3)=loga3+3-blogaa+3-4=0,x0(2,3),故n=2.答案:29.证明:方程x2x=1至少有一个小于1的正根.课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
高中数学【基本初等函数、函数的应用】专题练习
高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。
高中数学零点问题经典题型
高中数学零点问题经典题型1、 设()ln sin ,f x x x =+找出一个0(0,),x ∈+∞使得()00f x <。
2、 已知1()ln ,1x f x x x +=--找出一个0(0,1),x ∈使得()00f x >。
3、 已知230,(),a f x x a x>=+-找出一个0(,0)x ∈-∞使得()00f x >。
4、 设110,()e ,e x a f x ax x<<=-找出一个0(0,),x ∈+∞使得()00.f x <5、 设110,()(1)e ,e x a f x a x x<<=--找出一个0(0,)x ∈+∞使得()00.f x <6、 已知2(0,1),()(2),xx a f x ae a e x ∈=+--找出一个0(,0),x ∈-∞使得()00f x >。
7、 已知230,(),a f x x a x>=+-找出一个0(,0),x ∈-∞使得()00.f x <8、 设0,(),xa f x xe a >=-找出一个0(0,),x ∈+∞使得()00f x >9、 已知()(2)(1)2ln f x a x x =---在10,2⎛⎫ ⎪⎝⎭上无零点,求实数a 的取值范围。
10、 (2016江苏)若01,a b <<<函数()2x xg x a b =+-有且只有一个零点,求ab 的值。
11、(2018江苏19)若存在0x ∈满足()()()()0000,,f x g x fx g x ''==则称0x 为()f x 与()g x 的一个S “点”。
(I)若函数2()1,()ln f x ax g x x =-=存在“S 点”,求a ;(II)已知函数2e (),(),xb f x x a g x x=-+=对任意的0,a >判断是否存在0,b >使函数()f x 与()g x 在(0,)+∞内存在“S 点",并说明理由。
专题05 利用导数研究函数零点问题 (解析版)
导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
专题训练:嵌套函数的零点问题(含解析)
嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.642.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.13.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axe x -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x1e x 121-x 2e x21-x 3e x3的值为()A.1B.-1C.aD.-a5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.16.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.97.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2xe x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.98.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81 B.-81 C.9 D.-99.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x 1e x122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.3610.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.1611.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,113.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.64【答案】C【解析】令t (x )=x e x ,则t (x )=1-xe x.所以当x <1时,t (x )>0,函数t (x )=x e x 单调递增;当x >1时,t(x )<0,函数t (x )=x e x单调递减.所以t (x )max =t (1)=1e.由题意g t =t 2+at -2a 必有两个根t 1<0,且0<t 2<1e.由根与系数的关系有:t 1+t 2=-a ,t 1t 2=-2a .由图可知,t 1=x e x 有一解x 1<0,即t 1=x 1e x 1.t 2=xex 有两解x 2,x 3且0<x 2<1<x 3,即t 2=x 2e x 2=x3ex 3.所以2-x 1e x 122-x 2e x 22-x3e x 3=2-t 1 22-t 2 2-t 2 =2-t 1 2-t 2 2=4-2t 1+t 2 +t 1t 2 2=4+2a -2a 2=16.故选:C2.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.1【答案】D 【解析】令y =ln x x ,则y ′=1-ln xx 2,故当x ∈(0,e )时,y ′>0,y =ln x x 是增函数,当x ∈(e ,+∞)时,y ′>0,y =ln x x是减函数;且limx →0ln xx =-∞,ln e e =1e ,lim x →+∞ln xx =0;令ln x x =t ,则可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故△=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与t 1≤1e 且t 2≤1e相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合y =ln xx 的性质可得,ln x 1x 1=t 1,ln x 2x 2=t 2,ln x 3x 3=t 2,故1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=(1-t 1)2(1-t 2)(1-t 2)=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=1;故选D .3.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a【答案】A【解析】令t =xe x ,则t ′=(x +1)e x ,故当x ∈(-1,+∞)时,t ′>0,t =xe x 是增函数,当x ∈(-∞,-1)时,t ′<0,t =xe x 是减函数,可得x =-1处t =xe x 取得最小值-1e ,x →-∞,t →0,画出t =xe x 的图象,由f (x )=0可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故Δ=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与-2e<t 1+t 2<0相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合t =xe x 的性质可得,x 1e x 1=t 1,x 2e x 2=t 1,x 3e x 3=t 2,故(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-t 1)(1-t 1)(1-t 2)2=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-1+a +1-a )2=1.故选:A .4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x 1e x 121-x 2e x 21-x3ex 3的值为A.1B.-1C.aD.-a【答案】A 【解析】令x e x =t ,构造g (x )=x e x ,求导得g (x )=1-xex ,当x <1时,g (x )>0;当x >1时,g (x )<0,故g (x )在-∞,1上单调递增,在1,+∞ 上单调递减,且x <0时,g (x )<0,x >0时,g (x )>0,g (x )max =g (1)=1e,可画出函数g (x )的图象(见下图),要使函数f (x )=x e x2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则方程t 2+at -a =0需要有两个不同的根t 1,t 2(其中t 1<t 2),则Δ=a 2+4a >0,解得a >0或a <-4,且t 1+t 2=-at 1⋅t 2=-a ,若a >0,即t 1+t 2=-a <0t 1⋅t 2=-a <0 ,则t 1<0<t 2<1e,则x 1<0<x 2<1<x 3,且g x 2 =g x 3 =t 2,故1-x 1e x121-x 2e x21-x 3ex 3=1-t 1 21-t 2 2=1-t 1+t 2 +t 1t 2 2=1+a -a 2=1,若a <-4,即t 1+t 2=-a >4t 1⋅t 2=-a >4 ,由于g (x )max =g (1)=1e ,故t 1+t 2<2e<4,故a <-4不符合题意,舍去.故选A .5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.1【答案】D【解析】令f (x )=0,分离参数得a =x x -ln x -ln x x 令h (x )=x x -ln x -ln xx由h ′(x )=ln x 1-ln x 2x -ln xx 2x -ln x 2=0 得x =1或x =e .当x ∈(0,1)时,h ′(x )<0;当x ∈(1,e )时,h ′(x )>0;当x ∈(e ,+∞)时,h ′(x )<0.即h (x )在(0,1),(e ,+∞)上为减函数,在(1,e )上为增函数.∴0<x 1<1<x 2<e <x 3,a =x x -ln x -ln x x 令μ=ln xx则a =11-μ-μ即μ2+(a -1)μ+1-a =0,μ1+μ2=1-a <0,μ1μ2=1-a <0,对于μ=ln x x ,μ =1-ln xx 2则当0<x <e 时,μ′>0;当x >e 时,μ′<0.而当x >e 时,μ恒大于0.不妨设μ1<μ2,则μ1=ln x 1x 1,μ2=ln x 2x 2,μ3=ln x 3x 3, 1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 =(1-μ1)2(1-μ2)(1-μ3)=[(1-μ1)(1-μ2)]2=[1-(1-a )+(1-a )]2=1.故选D .6.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.9【答案】A【解析】f x =9ln x 2+a -3 x ln x +33-a x 2=0∴a -3 x ln x -3x 2 =-9ln x 2∴a -3=9ln x 23x 2-x ln x =9ln x x 23-ln xx令t =3-ln x x ,t ∈0,+∞ ,则ln xx =3-t ,∴t =-1-ln x x 2=ln x -1x 2令t =0,解得x =e∴t ∈0,e 时,t <0,t 单调递减;t ∈e ,+∞ 时,t >0,t 单调递增;∴t min =3-1e ,t ∈3-1e,+∞ ,∴a -3=9(3-t )2t =9t 2-54t +81t ∴9t 2-51+a t +81=0.设关于t 的一元二次方程有两实根t 1,t 2,∴Δ=51+a 2-4×9×81>0,可得a >3或a <-105.∵a -3=93-t 2t >0,故a >3∴a <-105舍去∴t 1+t 2=51+a 9>51+39=6,t 1t 2=9.又∵t 1+t 2=t 1+9t 1≥29=6,当且仅当t 1=t 2=3时等号成立,由于t 1+t 2≠6,∴t 1>3,t 2=9t 1<3(不妨设t 1>t 2).∵x 1<1<x 2<x 3,可得3-ln x 1x 1>3,3-ln x 2x 2<3,3-ln x 3x 3<3.则可知3-ln x 1x 1=t 1,3-ln x 2x 2=3-ln x 3x 3=t 2.∴3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3=t 1t 2 2=81.故选:A .7.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2x e x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.9【答案】D【解析】由f x =0得a =x e x -3e xe x -x,即a =x e x -31-x e x =-1-x e x -31-x e x+1,记t =1-x e x ,且设g x =1-xex ,一方面由a =-t -3t +1得t 2+a -1 t +3=0(*),当Δ>0时方程(*)有两个不相等的实数根t 1,t 2,且t 1+t 2=1-a ,t 1t 2=3;另一方面,由g x =x -1e x知g x 在-∞,1 上单调递减,在1,+∞ 上单调递增,g 1=1-1e,g 0 =1,当x →-∞时,g x →+∞,当x →+∞时,g x →1-,如图:t1≥1>t 2>1-1e,且1-x 1e x 1=t 1,1-x 2e x 2=1-x3ex 3=t 2,因此1-x 1e x 121-x 2e x 21-x 3e x 3=t 21⋅t 2⋅t 2=t 1t 2 2=9.故选:D8.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81B.-81C.9D.-9【答案】A【解析】由f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点知:9x 2+(a -3)xe x +3(3-a )e 2x =0有三个不同的实根,即a -3=9x 23e 2x -xe x =9x ex 23-x ex有三个不同实根,若t =3-xe x ,则a -3=9(3-t )2t ,整理得9t 2-(a +51)t +81=0,若方程的两根为t 1,t 2,∴t 1t 2=9,而t=xe x -e x e 2x=x -1e x,∴当x <1时,t <0即t 在(-∞,1)上单调递减;当x >1时,t >0即t 在(1,+∞)上单调递增;即当x =1时t 有极小值为3-1e ,又x 1<0<x 2<x 3,x =0有t =3,即t 1>3>t 2>3-1e.∵方程最多只有两个不同根,∴x 1<0<x 2<1<x 3,即t 1=3-x 1e x 1,t 2=3-x 2e x 2=3-x 3e x3,∴3-x1e x 123-x 2e x23-x 3ex 3=t 12t 22=81.故选:A9.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x1e x 122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.36【答案】D【解析】因为f (x )=2(a +2)e 2x -(a +1)xe x +x 2,所以f (x )=e 2x 2(a +2)-(a +1)x e x +x e x 2,因为e 2x>0,所以2(a +2)-(a +1)x e x +x e x 2=0有三个不同的零点x 1,x 2,x 3,令g x =x e x ,则g x =1-x e x,所以当x <1时g x >0,当x >1时g x <0,即g x 在-∞,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =1e ,当x >0时x e x >0,令t =x ex ∈-∞,1e ,则2(a +2)-(a +1)t +t 2=0必有两个根t 1、t 2,不妨令t 1<0、0<t 2<1e ,且t 1+t 2=a +1,t 1t 2=2a +2 ,即t 1=x e x 必有一解x 1<0,t 2=xe x 有两解x 2、x 3,且0<x 2<1<x 3,故2-x 1e x122-x 2e x22-x 3ex 3=2-t 1 22-t 2 2=4-2t 1+t 2 +t 1t 2 2=4-2a +1 +2a +2 2=36故选:D10.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.16【答案】C【解析】f (x )=(a +3)e 2x -(a +1)xe x +x 2=e 2x x e x 2-a +1 ⋅x ex +a +3 ,e 2x >0,x e x2-a +1 ⋅xex +a +3 =0有三个不同的零点x 1,x 2,x 3.令g x =x e x ,g x =1-xe x,g x 在-∞,1 递增,在1,+∞ 上递减,g x max =g 1 =1e .x >0时,xex >0.令t =x ex ∈-∞,1e,t 2-a +1 ⋅t +a +3 =0必有两个根t 1,t 2,t 1<0,0<t 2<1e,且t 1+t 2=a +1,t 1⋅t 2=a +3,t 1=x e x 有一解x 1<0,t 2=x ex 有两解x 2,x 3,且0<x 2<1<x 3,故1-x 1e x 121-x 2e x 21-x3e x 31-t 1 21-t 22=1-t 1+t 2 +t 1⋅t 2 2=1-a +1 +a +3 2=9.故选:C11.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m【答案】B【解析】令t =ln xx-1,则t =1-ln xx 2,当x >e 时,t <0,当0<x <e 时,t >0,所以t 在e ,+∞ 上递减,在0,e 上递增,所以当x =e 时,函数取得最大值1e-1,函数t =ln xx-1的图象如图所示:则ln x 1x 1-1=t 1,ln x 2x 2-1=t 2,ln x 3x 3-1=t 3,由图象知:t 2=t 3,因为关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,所以方程t +1t+m +1 =0有两个不等的实数解t 1,t 2,由韦达定理得:t 1⋅t 2=1,所以ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 =t 12⋅t 2⋅t 3=t 12⋅t 22=1,故选:B12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,1【答案】A 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+m +1 t +m +1=0.令函数g x =e ln x x ,则g x =e ⋅1-ln xx 2,由g x >0,解得0<x <e ,g x <0,解得x >e所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,且g e =1作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+m +1 t +m +1=0一定有两个实根t 1,t 2,且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-m +1 ,t 1t 2=m +1.所以Δ=m +1 2-4m +1 >0,解得m >3或m <-1若t 1=1,则1+m +1 ×1+m +1=0,解得m =-32,则t 2=-12此时e ln x 2x 2=t 2=-12只有1个实数根,此时原方程没有3个不等实数根,故不满足题意.若t 1=0,则m =-1,可得t 2=0,显然此时原方程没有3个不等实数根,故不满足题意.要使原方程有3个不等实数根,则t 1<0<t 2<1所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.所以e ln x 1x 1=t 1,e ln x 2x 2=e ln x 3x 3=t 2故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e t 1+t 2 =-2m +1 e ∈0,1e.故选:A13.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m【答案】B 【解析】设f x =ln x x ,则f x =1-ln xx 2,故函数在0,e 上单调递增,在e ,+∞ 上单调递减,f e =1e,画出函数图像,如图所示:设ln x x =t ,ln x x +x ln x -x +m =0,则ln x x +1ln x x -1+m =0,即t +1t -1+m =0,化简整理得到:t 2+m -1 t +1-m =0,故t 1+t 2=1-m ,t 1t 2=1-m ,且t 1<0,0<t 2<1e,ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1=t 1-1 2t 2-1 2=t 1t 2-t 1+t 2 +1 2=1.故选:B .14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e【答案】BC 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+(m +1)t +m +1=0.令函数g (x )=e ln x x ,则g (x )=e ⋅1-ln xx 2,所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减.作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+(m +1)t +m +1=0一定有两个实根t 1,t 2(t 1<0<t 2<1),且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-(m +1),t 1t 2=m +1.所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e (t 1+t 2)=-2(m +1)e ∈0,1e.因为2e 3∈0,1e ,1e 2∈0,1e,所以BC 都符合题意,故选:BC15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.【答案】0,1e 2-e【解析】由f x =0,两边同时除以e xx -e x变形为x e x +e xx -e x+m =0,有x ex +1x e x-1+m =0设x ex =t 即t +1t -1+m =0,所以t 2+(m -1)t +1-m =0令g (x )=x e x ,则g (x )=1-xe x,所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,且g 0 =0,g 1 =1e,当x >0时,g (x )>0其大致图像如下.要使关于x 的方程x e x +e xx -e x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3.结合图像可得关于t 的方程g (t )=t 2+(m -1)t +1-m =0一定有两个不等的实数根t 1,t 2且t 1<0<t 2<1e ,从而1<m <1+1e 2-e.t 1+t 2=1-m ,t 1⋅t 2=1-m ,则x 1e x 1=t 1,x 2e x 2=x3ex 3=t 2.所以x 1e x 1-1 2x 2e x 2-1 x3e x 3-1 =t 1-1 2t 2-1 2=t 1-1 t 2-1 2=t 1t 2-t 1+t 2 +1 2=[1-m -(1-m )+1]2=1m -x 1e x1-12x 2e x 2-1 x 3e x 3-1 =m -1∈0,1e 2-e .故答案为:0,1e 2-e。
高中数学零点试题及答案
高中数学零点试题及答案一、选择题1. 若函数f(x)=x^2-4x+3在区间[1,3]上有零点,则下列说法正确的是()。
A. 函数f(x)在区间[1,3]上单调递增B. 函数f(x)在区间[1,3]上单调递减C. 函数f(x)在区间[1,3]上先减后增D. 函数f(x)在区间[1,3]上先增后减2. 函数y=x^3-3x+1的零点个数是()。
A. 0个B. 1个C. 2个D. 3个二、填空题3. 函数f(x)=x^2-2x-3的零点是_______。
4. 若函数f(x)=x^2-6x+8在区间[2,4]上恰好有一个零点,则该零点为_______。
三、解答题5. 已知函数f(x)=x^3-3x^2+4,求证:函数在区间[1,2]上存在零点。
6. 已知函数f(x)=x^2-2ax+a^2-1,其中a为实数,求证:当a>1时,函数在区间(-∞,a)上不存在零点。
答案:一、选择题1. C2. B二、填空题3. 3或-14. 3三、解答题5. 证明:首先求出函数f(x)的导数f'(x)=3x^2-6x。
令f'(x)=0,解得x=0或x=2。
在区间[1,2]上,f'(x)>0,说明函数f(x)在该区间上单调递增。
又因为f(1)=2>0,f(2)=-1<0,所以根据零点存在定理,函数在区间[1,2]上存在零点。
6. 证明:首先求出函数f(x)的导数f'(x)=2x-2a。
令f'(x)=0,解得x=a。
在区间(-∞,a)上,f'(x)<0,说明函数f(x)在该区间上单调递减。
又因为f(a)=a^2-1>0,所以函数在区间(-∞,a)上不存在零点。
高中数学函数零点问题必考点梳理+真题精练(附答案)
第 7 页 共 19 页
由图可知:当
0
m
1 2
时,两图象有两个不同的交点,
在区间 1,1 上方程 f x mx m 0 有两个不同的实根,故选:B
例 5.(2020·江苏宝应中学高三三模)已知函数 f x 2ln x2 3x 3 ,其中x 表示不大于 x 的
最大整数(如1.6 1,2.1 3),则函数 f x 的零点个数是( )
对函数
y
ln x
1, x
0 求导得
y
1 x 1
,
设切点为
x0, ln x0 1
,则
ln x0 1
x0 1
2 3
1 x0 1
m ,解得
x0
1
1
e3
,m
1
e3
,
数形结合可知,当
m
2 3
1
,e 3
时,直线
y
mx
m
2 3
与函数
f
x
的图象有四个交点,即函数
g
x
有四个零点.故选:B.
第 6 页 共 19 页
f |
(x) x|
有
2
个不同交点,不满足题意;
当 k 0 时,如图 2,此时 y | kx 2 |与 h(x)
f |
(x) x|
恒有
3
个不同交点,满足题意;
当 k 0 时,如图 3,当 y kx 2 与 y = x2 相切时,联立方程得 x2 kx 2 0 ,
令 0 得 k2 8 0 ,解得 k 2 2 (负值舍去),所以 k 2 2 . 综上, k 的取值范围为 (,0) (2 2, ) ,故选 D.
图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)1) 对于函数 y=f(x),将方程 f(x)=0 的实数根称为函数y=f(x) 的零点。
2) 方程 f(x)=0 有实根⇔函数 y=f(x) 的图像与 x 轴有交点⇔函数 y=f(x) 有零点。
若函数 f(x) 在区间 [a,b] 上的图像是连续的曲线,则 f(a)f(b)<0 是 f(x) 在区间 (a,b) 内有零点的充分不必要条件。
2、二分法:对于在区间 [a,b] 上连续不断且 f(a)f(b)<0 的函数 y=f(x),通过不断地把函数 y=f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。
二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:一)函数零点的存在性定理指出:“如果函数 y=f(x) 在区间 [a,b] 上的图象是连续不断的一条曲线,并且 f(a)f(b)<0,那么,函数 y=f(x) 在区间 (a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0,这个 c 也是方程 f(x)=0 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件。
例如,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 ( )。
分析:显然函数 f(x)=ln(x+1)-2 在区间 [1,2] 上是连续函数,且 f(1)0,所以由根的存在性定理可知,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 (1,2),选 B。
二)求解有关函数零点的个数(或方程根的个数)问题。
函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。
对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。
高中数学函数及函数的零点专题练习题试卷(含答案)
高中数学函数及函数的零点专题练习题试卷姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(每题3分,共48分)1.设函数f(x)=,若函数g(x)=f(x)+a有三个零点x1,x2,x3,则x12+x22+x32=()A.13B.5C.a2D.2a2.已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,f n (x)=f(f n-1(x)),n=2,3,4,…满足f n(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动点的个数是()A.2n个B.2n2个C.2(2n-1)个D.2n个3.若x0是方程lgx+x=5的解,则x0属于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,5)4.一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶(汽车与人的前进方向相同),汽车在时刻t的速度为v(t)=t米/秒,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米5.某工厂某种产品的年固定成本为250万元,每生产x千件需另投入成本为G(x),当年产量不足80千克时,G(x)=x2+10x(万元).当年产量不小于80千件时,G(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.则该厂在这一商品的生产中所获年利润的最大值是()A.900万元B.950万元C.1000万元D.1150万元6.设x0是方程lnx+x=4的解,则x0属于区间()A.(3,4)B.(2,3)C.(1,2)D.(0,1)7.若关于x的方程asinx•cosx+sin2x-3=0在恒有解,则实数a的取值范围是()A.B.C.D.8.函数f(x)=x3+3x-1在以下哪个区间一定有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)9.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于()A.7~9km B.9~11km C.5~7km D.3~5km10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606B.45.6C.45.56D.45.5111.f(x)=x3-3x-3有零点的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12.已知函数若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是()A.(0,1]B.(0,1)C.[0,1)D.[0,1]13.如果函数f(x)=-(a>0)没有零点,则a的取值范围为()A.(0,1)B.(,+∞)C.(2,+∞)D.(0,2)14.函数y=1+的零点是()A.(-1,0)B.1C.-1D.015.已知方程x2-2x-3=0在区间[0,m]上只有一个根3,则m的取值范围是()A.[3,+∞)B.(0,3)C.(-∞,-1]D.[-1,3)16.函数f(x)=x+lnx的零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(1,e)第Ⅱ卷(非选择题)二.填空题(共52分)17.(3分)若不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,则b的取值范围是______.18.(3分)令f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1)则下列命题正确的有______.①f n()<0;②f n(x)在区间(,1)一定存在唯一零点;③若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递减;④若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递增;⑤以上③④两种情况都有可能.19.(5分)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为______元.20、(5分)某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差______元.21、的零点的个数为______.22.(4分)函数f(x)=kx+2在区间[-2,2]上存在零点,则实数k的取值范围______.23.(4分)方程lg2x+x-2=0的解在(k-1,k)内,则整数k的值为______.24.(4分)有甲、乙两城,甲城位于一直线河岸,乙城离岸40km,乙城到河岸的垂足B与甲城相距50km,两城要在此河边合舍一个水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和我700元,则水厂甲城的距离为______千米,才能使水管费用最省?25.(4分)已知函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个,则a=______.26.(6分)对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[-0.25]=-1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[t t]=n同时成立,则正整数n的最大值为______.27.(5分)若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是______.28.将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______.29.(5分)甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有______公里.30.(4分)函数f(x)=x+2x的零点所在区间为(n,n+1),n∈z,则n=______.参考答案一.单选题(共__小题)1.设函数f(x)=,若函数g(x)=f(x)+a有三个零点x1,x2,x3,则x12+x22+x32=()A.13B.5C.a2D.2a答案:B解析:解:如右图为函数f(x)=的图象,函数g(x)=f(x)+a有三个零点可转化为方程f(x)=-a有三个不同的根,则由图象可知,a=-1,则x1,x2,x3分别为0,1,2;故x12+x22+x32=5,故选B.2.已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,f n (x)=f(f n-1(x)),n=2,3,4,…满足f n(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动点的个数是()A.2n个B.2n2个C.2(2n-1)个D.2n个答案:D解析:解:函数f(x)=1-|2x-1|=当x∈[0,]时,f1(x)=2x=x,解得x=0,当x∈(,1]时,f1(x)=2-2x=x,解得x=,∴f的1阶周期点的个数为2当x∈[0,]时,f1(x)=2x,f2(x)=4x=x,解得x=0当x∈(,]时,f1(x)=2x,f2(x)=2-4x=x,解得x=,当x∈(,]时,f1(x)=2-2x,f2(x)=4x-2=x,解得x=当x∈(,1]时,f1(x)=2-2x,f2(x)=4-4x=x,解得x=,∴f的2阶周期点的个数为22,依此类推:∴f的n阶周期点的个数为2n3.若x0是方程lgx+x=5的解,则x0属于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,5)答案:D解析:解:令f(x)=lgx+x-5,由于f(4)=lg4-1<0,f(5)=lg5>0,即f(4)•f(5)<0,且f(x)是连续函数,在(0,+∞)上单调递增,故函数f(x)在(4,5)上有唯一零点.若x0是方程lgx+x=5的解,则x0是函数f(x)的零点,故x0∈(4,5),故选D.4.一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶(汽车与人的前进方向相同),汽车在时刻t的速度为v(t)=t米/秒,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米答案:D解析:解:∵汽车在时刻t的速度为v(t)=t米/秒∴a==1M/S由此判断为匀加速运动再设人于x秒追上汽车,有6x-25=①∵x无解,因此不能追上汽车①为一元二次方程,求出最近距离为7米故选D5.某工厂某种产品的年固定成本为250万元,每生产x千件需另投入成本为G(x),当年产量不足80千克时,G(x)=x2+10x(万元).当年产量不小于80千件时,G(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.则该厂在这一商品的生产中所获年利润的最大值是()A.900万元B.950万元C.1000万元D.1150万元答案:C解析:解:由题意,每千件商品售价为50万元;设该厂生产了x千件商品并全部售完,则所获得的利润为y万元;则当x<80时,y=50x-(x2+10x)-250=-x2+40x-250,则当x=60时,y max=950万元;当x≥80时,y=50x-(51x+-1450)-250=-(x+)+1200≤1000;(当且仅当x=100时,等号成立);故该厂在这一商品的生产中所获年利润的最大值是1000万元;故选C.6.设x0是方程lnx+x=4的解,则x0属于区间()A.(3,4)B.(2,3)C.(1,2)D.(0,1)答案:B解析:解:设f(x)=lnx+x-4,由于x0是方程lnx+x=4的解,则x0是函数f(x)的零点.再由f(2)=ln2-2<0,f(3)=ln3-1>0,f(2)f(3)<0,可得x0属于区间(2,3),故选B.7.若关于x的方程asinx•cosx+sin2x-3=0在恒有解,则实数a的取值范围是()A.B.C.D.答案:A解析:解:关于x的方程asinx•cosx+sin2x-3=0,化为a==2tanx+,因为,所以a≥2=2,当且仅当tanx=时a取得最小值,当x=时,a=3,x=时,a=5,又35,所以a∈,此时方程在时方程恒有解.故选A.8.(2015秋•包头校级期末)函数f(x)=x3+3x-1在以下哪个区间一定有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:B解析:解:∵f(x)=x3+3x-1∴f(-1)f(0)=(-1-3-1)(-1)>0,排除A.f(1)f(2)=(1+3-1)(8+6-1)>0,排除C.f(0)f(1)=(-1)(1+3-1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.9.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于()A.7~9km B.9~11km C.5~7km D.3~5km答案:C解析:解:设陈先生的行程为xkm根据题意可得,陈先生要付的车费为y=6+(x-2)×1.8+11.5×1.8=17∴x=6.19故选C.10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606B.45.6C.45.56D.45.51答案:B解析:解析:依题意,可设甲销售x辆,则乙销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30(x≥0).∴当x=10.2时,S取最大值又x必须是整数,故x=10,此时S max=45.6(万元).故选B.11.f(x)=x3-3x-3有零点的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:D解析:解:由题意,知当x=-1,0,1,2,3时,y的值是-1,-3,-5,-1,15由零点判定定理知,f(x)=x3-3x-3有零点的区间是(2,3)故选D12.已知函数若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是()A.(0,1]B.(0,1)C.[0,1)D.[0,1]答案:B解析:解:函数f(x)的图象如图:使得函数g(x)=f(x)-m有3个零点⇔f(x)-m=0有3个解,即函数y=f(x)与函数y=m有3个交点,故有0<m<1,故选B.13.如果函数f(x)=-(a>0)没有零点,则a的取值范围为()A.(0,1)B.(,+∞)C.(2,+∞)D.(0,2)答案:D解析:解:若函数f(x)=-(a>0)没有零点,则方程=(a>0)没有实数根,即方程a-x2=2(a>0)没有实数根,即方程x2=a-2(a>0)没有实数根,故a-2<0且a>0,故a的取值范围为(0,2),故选:D14.函数y=1+的零点是()A.(-1,0)B.1C.-1D.0答案:C解析:解:令函数y=1+=0,可得x=-1,故选:C.15.已知方程x2-2x-3=0在区间[0,m]上只有一个根3,则m的取值范围是()A.[3,+∞)B.(0,3)C.(-∞,-1]D.[-1,3)答案:A解析:解:由x2-2x-3=0,解得x=3,或-1.∵方程x2-2x-3=0在区间[0,m]上只有一个根3,因此3∈[0,m].∴m≥3.∴m的取值范围是[3,+∞).故选A.16.函数f(x)=x+lnx的零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(1,e)答案:B解析:解:令f(x)=x+lnx=0,可得lnx=-x,再令g(x)=lnx,h(x)=-x,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(0,1),从而函数f(x)的零点在(0,1),故选B.二.填空题(共__小题)17.若不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,则b的取值范围是______.答案:(2,+∞)解析:解:不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,令f(x)=x2-bx+1,则有f(1)=2-b<0,b>2,故答案为(2,+∞).18.令f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1)则下列命题正确的有______.①f n()<0;②f n(x)在区间(,1)一定存在唯一零点;③若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递减;④若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递增;⑤以上③④两种情况都有可能.答案:②④解析:解:由f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1),可得f n()=--+1=->0,故①不正确.根据f n()=--+1≥--+1>0,f n(1)=-1-2+1=-2<0,可得f n()f n(1)<0,故f n(x)在区间(,1)一定存在唯一零点,故②正确.③若x n是f n(x)在(,1)上的零点,则f n(x n)=0,即--2x n+1=0,即+2x n-1=0,同取导数可得n+2=0,即=,∴是增函数,故③不正确且④正确,故答案为:②④.19.稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为______元.答案:2800解析:解:由题意,设这个人应得稿费(扣税前)为x元,则280=(x-800)×20%×(1-30%)所以x=2800,故答案为:2800.20、某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差______元.答案:10解析:解:如题图,当打出电话150分钟时,这两种方式电话费差为线段BD的长度,根据相似三角形的性质可得:,∴BD=10.故答案为:10元.21、的零点的个数为______.答案:3解析:解:的零点的个数,即函数y=x2的图象和y=|x-|=的图象的交点的个数,如图所示:显然,函数y=x2的图象和射线y=-x+(x<)有2个交点.再由可得x2-x+=0.由于判别式△=1-1=0,故y=x2y=x-(x≥)只有一个交点.综上可得,函数y=x2的图象和y=|x-|的图象的交点的个为3,故答案为:3.22.函数f(x)=kx+2在区间[-2,2]上存在零点,则实数k的取值范围______.答案:k≥1或k≤-1解析:解:由题意知k≠0,∴f(x)是单调函数,又在闭区间[-2,2]上存在零点,∴f(-2)f(2)≤0,即(-2k+2)(2k+2)≤0,解得k≤-1或k≥1.故答案为:k≥1或k≤-1.23.方程lg2x+x-2=0的解在(k-1,k)内,则整数k的值为______.答案:2解析:解:∵lg2x+x-2=0的解在(k-1,k)内,∴函数f(x)=lg2x+x-2在(k-1,k)内有零点.又函数f(x)在(k-1,k)内单调递增,又f(1)=lg2-1<0,f(2)=lg4>0,故f(1)f(2)<0,故函数在(1,2)内有唯一的零点,∴k=2,故答案为2.24.有甲、乙两城,甲城位于一直线河岸,乙城离岸40km,乙城到河岸的垂足B与甲城相距50km,两城要在此河边合舍一个水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和我700元,则水厂甲城的距离为______千米,才能使水管费用最省?答案:50-解析:解:设甲在A处,乙在D处,供水站C,总的水管费用为y元,CB=x,BD=40,AC=50-x,∴DC=依题意有:y=500(50-x)+700(0<x<50)得y′=-500+,令y′=0,解得x=y在(0,)单调递减,在(,50)单调递增上,函数在x=(km)处取得最小值,此时AC=50-(km)故答案为:50-.25.已知函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个,则a=______.答案:解析:解:函数f(x)=x2+a|x|+a2-3(a∈R)是一个偶函数,又函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个所以函数的零点一定是x=0,(若不是零,则至少有两个,此可由偶函数的对称性得)故有f(0)=a2-3=0,解得a=±当a=-时,验证知函数有三个零点,不合题意舍∴a=故答案为26.对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[-0.25]=-1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[t t]=n同时成立,则正整数n的最大值为______.答案:4解析:解:若[t]=1,则t∈[1,2),若[t2]=2,则t∈[,)(因为题目需要同时成立,则负区间舍去),若[t3]=3,则t∈[,),若[t4]=4,则t∈[,),若[t5]=5,则t∈[,),其中≈1.732,≈1.587,≈1.495,≈1.431<1.495,通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)上,但当t=5时,无法找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)∩[,)上,∴正整数n的最大值4.故答案为:4.27.若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是______.答案:4解析:解:∵定义在R上的偶函数f(x)满足f(x+1)=-f(x),∴满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f(x)=2x-1,故当x∈[-1,0]时,f(x)=-2x-1.函数y=f(x)-log3|x|的零点的个数等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,故答案为:4.28.将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______.答案:14解析:解:假设商品的价格为x元/个,由题意可得获得利润f(x)=(x-8)[100-10(x-10)]=-10x2+280x-1600=-10(x-14)2+360,可知:当且仅当x=14时,获得最大利润360元.故答案为14.29.甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有______公里.答案:60解析:解:设从出发到上午11时行了s公里,则从出发到现在的平均速度为公里/分钟,则,解得s=190公里,此时小袁距乙地还有250-190=60公里.故答案为:60.30.函数f(x)=x+2x的零点所在区间为(n,n+1),n∈z,则n=______.答案:-1解析:解:因为f(0)=1>0,f(-1)=-1+=-<0,由函数零点的存在性定理,函数f(x)=x+2x的零点所在的区间为(-1,0),∴n=-1.故答案为:-1.。
高考常考题- 函数的零点问题(含解析)
函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数
专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。
2023届新高考数学复习:专项(函数零点问题之分段分析法模型)经典题提分练习(附答案)
2023届新高考数学复习:专项(函数零点问题之分段分析法模型)经典题提分练习一、单选题1.(2023ꞏ浙江宁波ꞏ高三统考期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭2.(2023ꞏ黑龙江ꞏ高三大庆市东风中学校考期中)设函数21()2nxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是 A .21(0]e e,-B .21(0]e e+,C .21[)e e -+∞, D .21(]e e-∞+,3.(2023ꞏ湖北ꞏ高三校联考期中)设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是( ) A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .210,e e ⎛⎫+ ⎪⎝⎭C .210,e e ⎛⎤+ ⎝⎦D .21,e e ⎛⎤-∞+ ⎥⎝⎦4.(2023ꞏ福建厦门ꞏ厦门外国语学校校考一模)若至少存在一个x ,使得方程2ln (2)x mx x x ex -=-成立.则实数m 的取值范围为( ) A .21m e e≥+B .21m e e≤+C .1m e e ≥+D .1m e e≤+5.(2023ꞏ湖南长沙ꞏ高三长沙一中校考阶段练习)设函数()22xxf x x x a e =--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1e+B .1(0,e e +C .1[,)e e ++∞D .1(,1]e-∞+6.(2023ꞏ全国ꞏ高三专题练习)已知函数2ln ()2xf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是( )A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .21,e e ⎛⎤-∞+ ⎥⎝⎦C .21,e e ⎡⎫-+∞⎪⎢⎣⎭D .21,e e ⎛⎫-+∞ ⎪⎝⎭7.(2023ꞏ全国ꞏ高三校联考专题练习)已知函数1()24e xf x x =-+的图象上存在三个不同点,且这三个点关于原点的对称点在函数2()(2)e x g x x x a =--+的图象上,其中e 为自然对数的底数,则实数a 的取值范围为( )A .(,3)-∞B .(3,2e 2)-C .(2e 2,)-+∞D .(3,)+∞8.(2023ꞏ全国ꞏ高三假期作业)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,C .3(0]2e ,D .3[)2e+∞, 9.(2023ꞏ全国ꞏ高三专题练习)若存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,其中e为自然对数的底数,则a 的取值范围为( )A .210,e ⎛⎤ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .(),0∞-D .()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭二、填空题10.(2023ꞏ全国ꞏ模拟预测)若函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点,则实数a 的取值范围为______.11.(2023ꞏ全国ꞏ高三专题练习)已知函数()()e ln xf x x a x x =-+(e 为自然对数的底数)有两个不同零点,则实数a 的取值范围是___________.12.(2023ꞏ全国ꞏ高三专题练习)已知函数()24eln eln x f x x mx x x =-+-存在4个零点,则实数m 的取值范围是__________.13.(2023ꞏ全国ꞏ高三专题练习)设函数()322e ln ,f x x x mx x =-+- 记()(),f x g x x=若函数()g x 至少存在一个零点,则实数m 的取值范围是________________________.参考答案一、单选题1.(2023ꞏ浙江宁波ꞏ高三统考期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭【答案】A【答案解析】因为函数322ln ()x ex mx xf x x -+-=至少存在一个零点所以322ln 0x ex mx x x-+-=有解即2ln 2xm x ex x=-++有解 令()22ln h x x e xx x=+-+, 则()21ln 22xh x x e x -'=-++()()34244432ln 1ln 32ln 322ln 222x x x x x x x x x x x x h x x e x x x x '-----+--+⎛⎫''=-++=-+== ⎪⎝⎭因为0x >,且由图象可知3ln x x >,所以()0h x ''<所以()h x '在()0,∞+上单调递减,令()0h x '=得x e = 当0<<x e 时()0h x '>,()h x 单调递增 当>x e 时()0h x '<,()h x 单调递减 所以()()2max 1h x h e e e==+且当x →+∞时()h x →-∞所以m 的取值范围为函数()h x 的值域,即21,e e ⎛⎤-∞+ ⎥⎝⎦故选:A2.(2023ꞏ黑龙江ꞏ高三大庆市东风中学校考期中)设函数21()2nxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是 A .21(0]e e,-B .21(0]e e+,C .21[)e e -+∞, D .21(]e e-∞+,【答案】D【答案解析】令()2ln 20x f x x ex a x =--+=,则2ln 2(0)x a x ex x x =-++>,设()2ln 2x h x x ex x=-++,令()212h x x ex =-+, ()2ln x h x x =,则()'221ln x h x x -=,发现函数()()12,h x h x 在()0,e 上都是单调递增,在[),e +∞上都是单调递减,故函数()2ln 2xh x x ex x=-++在()0,e 上单调递增,在[),e +∞上单调递减,故当x e =时,得()2max 1h x e e=+,所以函数()f x 至少存在一个零点需满足()max a h x ≤,即21a e e ≤+.应选答案D .3.(2023ꞏ湖北ꞏ高三校联考期中)设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .210,e e ⎛⎫+ ⎪⎝⎭C .210,e e ⎛⎤+ ⎝⎦D .21,e e ⎛⎤-∞+ ⎥⎝⎦【答案】D【答案解析】由题意得函数()f x 的定义域为(0,)+∞. 又2()ln ()2f x xg x x ex m x x==-+-, ∵函数()g x 至少存在一个零点,∴方程2ln 20xx ex m x-+-=有解, 即2ln 2xm x ex x=-++有解. 令2ln ()2,0xx x ex x xϕ=-++>, 则221ln 1ln ()222()x xx x e e x x x ϕ--'=-++=-+, ∴当(0,)x e ∈时,()0,()x x ϕϕ'>单调递增;当(,)x e ∈+∞时,()0,()x x ϕϕ'<单调递减. ∴2max 1()()x e e eϕϕ==+.又当0x →时,()x ϕ→-∞;当x →+∞时,()x ϕ→-∞.要使方程2ln 2x m x ex x=-++有解,则需满足21m e e ≤+,∴实数m 的取值范围是21(,e e -∞+.故选D .4.(2023ꞏ福建厦门ꞏ厦门外国语学校校考一模)若至少存在一个x ,使得方程2ln (2)x mx x x ex -=-成立.则实数m 的取值范围为 A .21m e e≥+B .21m e e≤+C .1m e e ≥+D .1m e e≤+【答案】B【答案解析】原方程化简得:2ln 2,(0)xm x ex x x=-+>有解,令2ln ()2,(0)x f x x ex x x =-+>,21ln ()2()xf x e x x -=+'-,当>x e 时,()0f x '<,所以f(x)在(,)e +∞单调递减,当x<e 时, ()0f x '>,所以f(x)在(,)o e 单调递增.2max 1()()f x f e e e==+.所以21m e e ≤+.选B.5.(2023ꞏ湖南长沙ꞏ高三长沙一中校考阶段练习)设函数()22x xf x x x a e=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1e+B .1(0,e e +C .1[,)e e ++∞D .1(,1]e-∞+【答案】D【答案解析】依题意得,函数()f x 至少存在一个零点,且()22x xf x x x a e=--+, 可构造函数22y x x =-和xx y e =-, 因为22y x x =-,开口向上,对称轴为1x =,所以(),1∞-为单调递减,()1,+∞为单调递增; 而x x y e=-,则1x x y e -'=,由于e 0x >,所以(),1∞-为单调递减,()1,+∞为单调递增; 可知函数22y x x =-及xxy e =-均在1x =处取最小值,所以()f x 在1x =处取最小值, 又因为函数()f x 至少存在一个零点,只需()10f ≤即可,即:()11120f a e=--+≤解得:11a e ≤+.故选:D.6.(2023ꞏ全国ꞏ高三专题练习)已知函数2ln ()2xf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是( )A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .21,e e ⎛⎤-∞+ ⎥⎝⎦C .21,e e ⎡⎫-+∞⎪⎢⎣⎭D .21,e e ⎛⎫-+∞ ⎪⎝⎭【答案】B【答案解析】令2ln ()20x f x x ex a x=-+-=,即2ln 2xx ex a x =-+ 令ln ()xg x x=,2()2h x x ex a =-+ 则函数ln ()xg x x=与函数2()2h x x ex a =-+的图象至少有一个交点 易知,函数2()2h x x ex a =-+表示开口向上,对称轴为x e =的二次函数221ln 1ln ()x xx x g x x x ⋅--'== ()00g x x e '>⇒<<,()0g x x e '<⇒>∴函数()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,max 1()()g x g e e ==作出函数()g x 与函数()h x 的草图,如下图所示由图可知,要使得函数()g x 与函数()h x 的图象至少有一个交点只需min max ()()h x g x …,即2212e e a e-+…解得:21a e e +…故选:B7.(2023ꞏ全国ꞏ高三校联考专题练习)已知函数1()24e xf x x =-+的图象上存在三个不同点,且这三个点关于原点的对称点在函数2()(2)e x g x x x a =--+的图象上,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .(,3)-∞B .(3,2e 2)-C .(2e 2,)-+∞D .(3,)+∞【答案】B【答案解析】令()()()()2222e e x x x x a h x g x x x a ---⎡⎤=--=-----+=⎣⎦,则由题意可得函数()f x 的图象与函数()h x 的图象有三个交点,即方程()()f x h x =有三个不同的实数根.由()()f x h x =可得21224e e x xx x a x ---+=,即()2224e 1x a x x x =----,令()()2224e 1xp x x x x =----,则直线y a =与函数()p x 的图象有三个交点,易得()()()211e xp x x =--',当0x <或1x >时()0p x '<,当01x <<时()0p x '>,所以函数()p x 在(),0-∞上单调递减,在()0,1上单调递增,在()1,+∞上单调递减,所以函数()p x 的极小值为()03p =,极大值为()12e 2p =-.又()()6121p p e-=+>,()()210p p =-<,所以当32e 2a <<-时,直线y a =与函数()p x 的图象有三个交点,故实数a 的取值范围为()3,2e 2-.故选B .8.(2023ꞏ全国ꞏ高三假期作业)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞, C .3(0]2e ,D .3[)2e+∞, 【答案】B【答案解析】由3(24)(ln ln )0x a y ex y x +--=得32(2)ln 0y ya e x x +-=,设y t x =,0t >,则3(24)ln 0a t e t +-=,则3(2)ln 2t e t a-=-有解,设()(2)ln g t t e t =-, 2()ln 1e g t t t =+-'为增函数,2()ln 10eg e e e+-'==, 当t e >时()0g t '>,()g t 递增,当0t e <<时()0g t '<,()g t 递减,所以当t e =时函数()g t 取极小值,()(2)ln g e e e e e =-=-,即()()g t g e e ≥=-, 若3(2)ln 2t e t a-=-有解,则32e a -≥-,即32e a ≤, 所以a<0或32a e≥, 故选:B .9.(2023ꞏ全国ꞏ高三专题练习)若存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,其中e为自然对数的底数,则a 的取值范围为( )A .210,e ⎛⎤ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .(),0∞-D .()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭【答案】D【答案解析】依题意存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,243e ln 0y y a x x ⎛⎫+-⋅= ⎪⎝⎭,当0a =时,40=,不符合题意,所以0a ≠ 令0yt x=>,()243e ln 0a t t +-⋅=,()243e ln t t a -=-⋅,构造函数()()23e ln ,0f t t t t =-⋅>,()22'3e 3e ln ln 1t f t t t t t-=+=-+,()2213e 0f t t t =+>",所以()'f t 在()0,∞+上递增,()2'2223e e ln e 10ef =-+=,所以在区间()()()2'0,e ,0,f x f x <递减;在区间()()()2'e ,,0,f x f x +∞>递增.所以()f t 的最小值为()()22222e e 3e ln e 4ef =-⋅=-.要使()243e ln t ta-=-⋅有解, 则22414e ,e a a-≥-≤①,当a<0时,①成立, 当0a >时,21e a ≥. 所以a 的取值范围是()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭.故选:D 二、填空题10.(2023ꞏ全国ꞏ模拟预测)若函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点,则实数a 的取值范围为______. 【答案】20,π⎛⎤⎥⎝⎦【答案解析】函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点等价于函数()sin πx a x ϕ=与函数()11xx g x e e --=-的图像只有一个交点.∵()10ϕ=,()10g =,∴函数()sin πx a x ϕ=与函数()11xx g x ee --=-的图像的唯一交点为()1,0.又∵()11xx g x e e --'=--,且10x e ->,10x e ->,∴()11xx g x ee --'=--在R 上恒小于零,即()11x x g x e e --=-在R 上为单调递减函数.又∵()1112xxg x ee--'=--≤-,当且仅当111x xe e--=,即1x =时等号成立,且()()sin π0x a x a ϕ=>是最小正周期为2.最大值为a 的正弦型函数, ∴可得函数()sin πx a x ϕ=与函数()11xx g x ee --=-的大致图像如图所示.∴要使函数()sin πx a x ϕ=与函数()11xx g x e e --=-的图像只有唯一一个交点,则()()11g ϕ''≥.∵()πcos π1πa a ϕ'==-,()21g '=-, ∴π2a -≥-,解得2πa ≤. 对∵0a >,∴实数a 的取值范围为20,π⎛⎤⎥⎝⎦.故答案为:20,π⎛⎤⎥⎝⎦.11.(2023ꞏ全国ꞏ高三专题练习)已知函数()()e ln xf x x a x x =-+(e 为自然对数的底数)有两个不同零点,则实数a 的取值范围是___________. 【答案】(,)e +∞【答案解析】由()e (ln )xf x x a x x =-+,得()()()11(1)1x xxe a f x x e a x x x-'=+-+=+⋅,且0x >由0x >,则100x x xe +>>,若0a ≤,则0x xe a ->,此时()0f x ¢>,()f x 在()0,∞+上单调递增,至多有一个零点,不满足题意.若0a >,设()x h x xe a =-,则()()10xh x x e '=+>,所以()h x 在()0,∞+上单调递增由()00h =,所以x xe a =有唯一实数根,设为0x ,即00x x ea =则当00x x <<时,x xe a <,()0f x '<,则()f x 在()00x ,单调递减,当0x x >时,x xe a >,()0f x ¢>,则()f x 在()0x +∞,单调递增, 所以当0x x =时,()()()00000min ln xf x f x x e a x x ==-+由00x x ea =可得()00ln ln x x e a =,即00ln ln ln x x e a +=,即00ln ln x x a +=所以()()0min ln f x f x a a a ==-,()0a > 又当0x →时,()f x →+∞,当x →+∞,指数函数增加的速度比对数函数增加的速度快得多,可得()f x →+∞ 所以函数()e (ln )x f x x a x x =-+有两个不同零点,则()()0min ln 0f x f x a a a ==-< 设()ln g x x x x =-,则()ln g x x '=-当()0,1x ∈时,有()0g x '>,则()g x 在()0,1上单调递增. 当()1,x ∈+∞时,有()0g x '<,则()g x 在()1,+∞上单调递减. 又当0x →时,()0g x →,()0g e =所以当0<<x e 时,()0g x >,当>x e 时,()0g x <, 所以ln 0a a a -<的解集为a e > 故答案为:(,)e +∞12.(2023ꞏ全国ꞏ高三专题练习)已知函数()24eln eln x f x x mx x x =-+-存在4个零点,则实数m 的取值范围是__________. 【答案】(0,1)【答案解析】转化为()24eln =0eln x f x x mx x x =-+-有四个解,即24eln =0eln x x mx x x -+-在0x >范围内有四个解,即eln 4=0eln x xm x x x-+-在0x >范围内有四个解, 即eln 4=eln x xm x x x--在0x >范围内有四个解,即1eln 4=eln 1xmx x x--在0x >范围内有四个解,令eln ()x g x x =, 则2e(1ln )()x g x x -'=, 令()0g x '=得e x =,所以当0e x <<时,()0g x '>,当e x >时,()0g x '<, 所以eln ()x g x x=在(0,e)单调递增,在(e,+)∞单调递减, 所以max ()(e)1g x g ==,做出()g x 大致图像如下:令eln ()x t g x x==, 则原方程转化为14=(1)1t m t t -<-, 令1()41h t t t =--, ()21()41h t t '=--,令()0h t '=得1=2t , 当12t <时,()0h t '<,当112t <<时,()0h t '>, 所以()h t 在1(,2-∞递减,在1(1)2,递增, 做出()h x 大致图像如下:所以(0,1)m ∈时,对应解出两个t 值,从而对应解出四个x 值,故答案为:(0,1)m ∈.13.(2023ꞏ全国ꞏ高三专题练习)设函数()322e ln ,f x x x mx x =-+- 记()(),f x g x x =若函数()g x 至少存在一个零点,则实数m 的取值范围是________________________. 【答案】21,e e ⎛⎤-∞+ ⎥⎝⎦ 【答案解析】依题意,令()2ln 2e 0x g x x x m x =-+-=,即()2ln 2e 0x m x x x x=-++>, 设2ln ()2e x h x x x x =-++,求导得21ln ()22e x h x x x -'=-++, 当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上递增,在[e,)+∞上递减,因此当e x =时,2max 1()e eh x =+,因当0e x <≤时,22e y x x =-+的取值集合为2(0,e ],ln x y x =的取值集合为1(,]e-∞, 则当0e x <≤时,()h x 的取值集合为21(,e ]e-∞+,当e x ≥时,22e y x x =-+的取值集合为2(,e ]-∞, ln x y x =的取值集合为1(0,]e,即当e x ≥时,()h x 的取值集合为21(,e ]e -∞+, 所以函数()g x 至少存在一个零点,实数m 的取值范围是21,e e ⎛⎤-∞+ ⎥⎝⎦. 故答案为:21,e e ⎛⎤-∞+ ⎥⎝⎦.。
专题04 函数零点问题之分段分析法模型(原卷版)
专题04 函数零点问题之分段分析法模型一、单选题1.(2021·浙江奉化·高二期末)若函数322ln ()x ex mx x f x x-+-=至少存在一个零点,则m 的取值范围为( )A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎥⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭2.(2021·天津·耀华中学高二期中)设函数()322ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .210,e e ⎛⎤+ ⎥⎝⎦ C .21e ,e ⎛⎫++∞ ⎪⎝⎭ D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦ 3.(2021·湖南·长沙一中高三月考(文))设函数()22x x f x x x a e =--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( )A .1(0,1]e +B .1(0,]e e +C .1[,)e e ++∞D .1(,1]e-∞+ 4.(2021·天津·南开中学高三)设函数21()2nx f x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是A .21(0]e e,- B .21(0]e e +, C .21[)e e -+∞, D .21(]e e-∞+, 5.(2021·全国·高三专题练习(文))已知函数2ln ()2x f x x ex a x =-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是( )A .21,e e ⎛⎫-∞+ ⎪⎝⎭ B .21,e e ⎛⎤-∞+ ⎥⎝⎦ C .21,e e ⎡⎫-+∞⎪⎢⎣⎭ D .21,e e ⎛⎫-+∞ ⎪⎝⎭6.(2018·全国全国·高三专题练习(文))已知函数1()24e x f x x =-+的图象上存在三个不同点,且这三个点关于原点的对称点在函数2()(2)e x g x x x a =--+的图象上,其中e 为自然对数的底数,则实数a 的取值范围为A .(,3)-∞B .(3,2e 2)-C .(2e 2,)-+∞D .(3,)+∞7.(2022·全国·高三专题练习)已知函数()2ln 2x x f x ex a x =-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( )A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .21,e e ⎛⎫-∞+ ⎪⎝⎭ C .21,e e ⎡⎫-+∞⎪⎢⎣⎭ D .21,e e ⎛⎫-+∞ ⎪⎝⎭ 8.(2021·全国·高二)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,, C .3(0]2e , D .3[)2e+∞, 9.(2017·黑龙江大庆·三模(文))设函数()322ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .210,e e ⎛⎤+ ⎥⎝⎦ C .21e ,e ⎛⎫++∞ ⎪⎝⎭ D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题练习-函数零点问题[题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围.常考题型精析题型一 零点个数与零点区间问题例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3}D.{-2-7,1,3}(2)(2015·北京)设函数f (x )=⎩⎨⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.①若a =1,则f (x )的最小值为________;②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法;(2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3D.4题型二 由函数零点求参数范围问题例2 (·天津)已知函数f (x )=⎩⎨⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.点评 利用函数零点的情况求参数值或取值范围的方法:(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.变式训练2 (·北京东城区模拟)函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ).当x ∈[0,1]时,f (x )=2x .若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是______.高考题型精练1.已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( ) A.1e <x 1x 2<1 B.1<x 1x 2<e C.1<x 1x 2<10D.e<x 1x 2<102.(·天津)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫74,+∞ B.⎝ ⎛⎭⎪⎫-∞,74 C.⎝ ⎛⎭⎪⎫0,74 D.⎝ ⎛⎭⎪⎫74,2 3.(·福州模拟)已知函数f (x )=⎩⎨⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B.-2,0 C.12D.04.函数f (x )=2sin πx -x +1的零点个数为( ) A.4 B.5 C.6D.75.设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点的是( ) A.[-4,-2] B.[-2,0] C.[0,2]D.[2,4]6.(·课标全国Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A.(2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,-1)7.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎨⎧log 0.5(x +1),0≤x <1,1-|x -3|,x ≥1,则关于x 的函数F (x )=f (x )-a (0<a <1)的所有零点之和为( ) A.1-2a B.2a -1 C.1-2-aD.2-a -18.(·北京朝阳区模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x +34,x ≥2,log 2x ,0<x <2.若函数g (x )=f (x )-k 有两个不同的零点,则实数k 的取值范围是__________.9.已知函数f (x )=log a x +x -b (a >0,且a ≠1),当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.10.方程2-x +x 2=3的实数解的个数为________.11.(·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎨⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.12.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1 (k ∈R ,k ≠-1)有四个根,则k 的取值范围是__________.答案精析函数零点问题 常考题型精析例1 (1)D (2)①-1 ②⎣⎢⎡⎭⎪⎫12,1∪[2,+∞)解析 (1)令x <0,则-x >0, 所以f (-x )=(-x )2+3x =x 2+3x . 因为f (x )是定义在R 上的奇函数, 所以f (-x )=-f (x ).所以当x <0时,f (x )=-x 2-3x .所以当x ≥0时,g (x )=x 2-4x +3.令g (x )=0,即x 2-4x +3=0,解得x =1或x =3.当x <0时,g (x )=-x 2-4x +3.令g (x )=0,即x 2+4x -3=0,解得x =-2+7>0(舍去)或x =-2-7.所以函数g (x )有三个零点,故其集合为{-2-7,1,3}. (2)①当a =1时,f (x )=⎩⎨⎧2x -1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x -1∈(-1,1), 当x ≥1时,f (x )=4(x 2-3x +2) =4⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -322-14≥-1, ∴f (x )min =-1.②由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.变式训练1 B [函数h (x )=f (x )-g (x )的零点个数可转化为函数f (x )与g (x )图象的交点个数,作出函数f (x )=x -[x ]=⎩⎪⎨⎪⎧…x +1,-1≤x <0,x ,0≤x <1,x -1,1≤x <2,…与函数g (x )=log 4(x -1)的大致图象如图,由图可知两函数图象的交点个数为2,即函数h (x )=f (x )-g (x )的零点个数是2.]例2 1<a <2解析 画出函数f (x )的图象如图所示.函数y =f (x )-a |x |有4个零点,即函数y 1=a |x |的图象与函数f (x )的图象有4个交点(根据图象知需a >0).当a =2时,函数f (x )的图象与函数y 1=a |x |的图象有3个交点.故a <2.当y =a |x |(x ≤0)与y =|x 2+5x +4|相切时,在整个定义域内,f (x )的图象与y 1=a |x |的图象有5个交点,此时,由⎩⎨⎧y =-ax ,y =-x 2-5x -4得x 2+(5-a )x +4=0. 由Δ=0得(5-a )2-16=0,解得a =1,或a =9(舍去), 则当1<a <2时,两个函数图象有4个交点. 故实数a 的取值范围是1<a <2. 变式训练2 25<a <23解析 由f (x +2)=f (x )得函数的周期是2. 由ax +2a -f (x )=0得f (x )=ax +2a ,设y =f (x ),y =ax +2a ,作出函数y =f (x ),y =ax +2a 的图象,如图,要使方程ax +2a -f (x )=0恰有四个不相等的实数根, 则直线y =ax +2a =a (x +2)的斜率满足k AH <a <k AG , 由题意可知,G (1,2),H (3,2),A (-2,0), 所以k AH =25,k AG =23, 所以25<a <23. 高考题型精练1. A [在同一坐标系中画出函数y =e -x 与y =|ln x |的图象,结合图象不难看出,它们的两个交点中,其中一个交点的横坐标属于区间(0,1),另一个交点的横坐标属于区间(1,+∞),即在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e -x 1=|ln x 1|=-ln x 1∈(e -1,1),e -x 2=|ln x 2|=ln x 2∈(0,e -1),e -x 2-e -x 1= ln x 2+ln x 1=ln x 1x 2∈(-1,0),于是有e -1<x 1x 2<e 0,即1e <x 1x 2<1.] 2.D [方法一 当x >2时,g (x )=x +b -4,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=b -x ,f (x )=2-x ; 当x <0时,g (x )=b -x 2,f (x )=2+x . 由于函数y =f (x )-g (x )恰有4个零点, 所以方程f (x )-g (x )=0恰有4个根.当b =0时,当x >2时,方程f (x )-g (x )=0可化为x 2-5x +8=0,无解; 当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x -(-x )=0,无解; 当x <0时,方程f (x )-g (x )=0可化为x 2+x +2=0,无解. 所以b ≠0,排除答案B.当b =2时,当x >2时,方程f (x )-g (x )=0可化为(x -2)2=x -2,得x =2(舍去)或x =3,有1解;当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x =2-x ,有无数个解;当x <0时,方程f (x )-g (x )=0可化为2-x 2=x +2,得x =0(舍去)或x =-1,有1解. 所以b ≠2,排除答案A.当b =1时,当x >2时,方程f (x )-g (x )=0可化为x 2-5x +7=0,无解; 当0≤x ≤2时,方程f (x )-g (x )=0可化为1-x =2-x ,无解; 当x <0时,方程f (x )-g (x )=0可化为x 2+x +1=0,无解. 所以b ≠1,排除答案C.因此答案选D.方法二 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎨⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有两个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有4个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.]3.D [当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.]4.B [∵2sin πx -x +1=0,∴2sin πx =x -1,图象如图所示,由图象看出y =2sin πx 与y =x -1有5个交点,∴f (x )=2sin πx -x +1的零点个数为5.]5.A [f (0)=4sin 1>0,f (2)=4sin 5-2,由于π<5<2π, 所以sin 5<0,故f (2)<0,则函数在[0,2]上存在零点;由于f (-1)=4sin(-1)+1<0,故函数在[-1,0]上存在零点,也在[-2,0]上存在零点; 令x =5π-24∈[2,4],则f (5π-24)=4sin 5π2-5π-24=4-5π-24=18-5π4>0, 而f (2)<0,所以函数在[2,4]上存在零点.选A.] 6.B [f ′(x )=3ax 2-6x ,当a =3时,f ′(x )=9x 2-6x =3x (3x -2),则当x ∈(-∞,0)时,f ′(x )>0;x ∈(0,23)时,f ′(x )<0;x ∈(23,+∞)时,f ′(x )>0,注意f (0)=1,f (23)=59>0,则f (x )的大致图象如图1所示.图1不符合题意,排除A 、C.当a =-43时,f ′(x )=-4x 2-6x =-2x (2x +3),则当x ∈(-∞,-32)时,f ′(x )<0,当x ∈(-32,0)时,f ′(x )>0,当x ∈(0,+∞)时,f ′(x )<0,注意f (0)=1,f (-32)=-54,则f (x )的大致图象如图2所示.图2不符合题意,排除D.] 7.A [当0≤x <1时,f (x )≤0.由F (x )=f (x )-a =0,画出函数y =f (x )与y =a 的图象如图.函数F (x )=f (x )-a 有5个零点. 当-1<x <0时,0<-x <1,所以f (-x )=log 0.5(-x +1)=-log 2(1-x ), 即f (x )=log 2(1-x ),-1<x <0. 由f (x )=log 2(1-x )=a , 解得x =1-2a , 因为函数f (x )为奇函数,所以函数F (x )=f (x )-a (0<a <1)的所有零点之和为1-2a .] 8.⎝ ⎛⎭⎪⎫34,1 解析 画出函数f (x )的图象如图.要使函数g (x )=f (x )-k 有两个不同零点,只需y =f (x )与y =k 的图象有两个不同交点,则图易知k ∈⎝ ⎛⎭⎪⎫34,1.9.2解析 由于2<a <3<b <4, 故f (1)=log a 1+1-b =1-b <0, 而0<log a 2<1,2-b ∈(-2,-1), 故f (2)=log a 2+2-b <0, 又log a 3∈(1,2),3-b ∈(-1,0), 故f (3)=log a 3+3-b >0,因此函数必在区间(2,3)内存在零点,故n =2. 10.2解析 方程变形为3-x 2=2-x =(12)x ,令y 1=3-x 2,y 2=(12)x .如图所示,由图象可知有2个交点.11.4解析 令h (x )=f (x )+g (x ), 则h (x )=⎩⎨⎧-lnx ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2.当1<x <2时,h ′(x )=-2x +1x =1-2x 2x <0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4. 12.⎝ ⎛⎭⎪⎫-13,0 解析 由题意作出f (x )在[-1,3]上的图象如图,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个根, 即函数y =f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.。