高中数学-函数零点问题及例题解析

合集下载

高中数学函数零点问题必考点梳理+真题精练(附答案)

高中数学函数零点问题必考点梳理+真题精练(附答案)
4、几个“不一定”与“一定”(假设 f x 在区间 a,b 连续) (1)若 f a f b 0 ,则 f x “一定”存在零点,但“不一定”只有一个零点.要分析 f x 的 性质与图象,如果 f x 单调,则“一定”只有一个零点 (2)若 f a f b 0 ,则 f x “不一定”存在零点,也“不一定”没有零点.如果 f x 单调,
f
x
mx
m
2 3
有四个解,即直线
y
mx
m
2 3
与函数
f
x
的图象有四个交点,
因为直线
y
mx
m
2 3
过定点
1,
2 3

在同一直角坐标系中作出直线 y mx m 2 与函数 f x 的图象,如下图所示,
3
当直线
y
mx
m
2 3
过原点时,
m
2 3

当直线
y
mx
m
2 3
与函数
y
ln
x
1
,
x
0
的图象相切时,
4、函数的零点,方程的根,两图象交点之间的联系 (1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的 单调性确定是否存在零点. (2)方程:方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两 个可分析的函数,为作图做好铺垫. (3)图象的交点:通过作图可直观的观察到交点的个数,并能初步判断交点所在区间.
专题 08 函数零点问题面面观 【热点聚焦与扩展】
函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助 于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1) 零点所在区间——零点存在性定理;(2)二次方程根分布问题;(3)判断根的个数问题;(4) 根据方程解的情况确定求参数的值或范围.上述情形除(1)简单,其它往往与分段函数结合或 与导数的应用结合,难度往往较大. 一、基础知识:

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

函数零点高中数学解题方法含详解

函数零点高中数学解题方法含详解
5.C
【分析】
分别解函数对应的方程,逐项判断,即可得出结果.
【详解】
A选项,由 可得 ,即函数 有零点;
B选项,由 得 ,即函数 有零点;
C选项,由 解得, 不存在,即函数 没有零点;
D选项,由 解得 或 ,即函数 有零点.
故选:C.
6.A
【分析】
直接令 ,求方程的实数根,确定零点个数.
【详解】
令 ,解得: 或 ,
故选:C
8.D
【分析】
由已知,根据奇函数的对称性有(-∞,0)上也有1009个零点,由奇函数在R上有定义即f(0)=0,即可知零点的总个数.
【详解】
∵f(x)为奇函数且在(0,+∞)内有1009个零点,
∴在(-∞,0)上也有1009个零点,
又∵f(0)=0,
∴共有2018+1=2019(个)零点.
故选:D
故选:C
2.C
【分析】
根据函数的零点存在性定理即可求解.
【详解】
因为函数 的图象是连续的曲线,
且 , ,
所以 ,
根据零点存在性定理可得函数 必定存在零点位于区间 ,
故方程 必存在有根的一个区间是 ,
故选:C.
3.B
【分析】
令 ,利用零点存在性定理即可求解.
【详解】
令 ,则f(0)=-4<0,f(1)=-1<0,f(2)=3>0,
(2)若不等式 在 上有解,求实数 的取值范围;
(3)设函数 ,若 在 上有零点,求实数 的取值范围.
参考答案
1.C
【分析】
题目是让我们找零点所在的一个区间,注意是一个区间,意味着只要找到一个,问题就解决,利用零点存在定理即可判断.

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

零点定理高等数学例题

零点定理高等数学例题

零点定理高等数学例题零点定理是高等数学中非常重要的一条定理,该定理有着广泛的应用。

这篇文章主要介绍关于零点定理高等数学例题的一些基本知识和应用。

首先,我们来了解一下零点定理的定义。

零点定理就是如果一个连续函数f(x)在区间[a,b]上取到两个不同的符号,那么在这个区间内至少有一个零点。

接下来我们结合一些例题来加深理解。

例题一:证明函数f(x)=x^3-5x^2+3x+15在区间[1,4]内有且仅有一个零点。

解:首先,我们需要判断f(x)在区间[1,4]的取值。

我们可以使用寻找函数极值点法:f'(x)=3x^2-10x+3f'(1)=-4<0,f'(2)>0,f'(4)<0由于导数在区间[1,2]上大于0,在区间[2,4]上小于0,所以f(x)在点x=2处取得极值。

设f(2)=k,则轮换成(x,0)、(2,-k)两个点,可以得出f(x)=(x-2)(x-a)(x-b)其中a、b均在[1,4]中,即f(x)在[1,4]中至少存在三个零点,与题目不符合。

因此,我们可以得出结论:函数f(x)=x^3-5x^2+3x+15在区间[1,4]内有且仅有一个零点。

例题二:证明函数f(x)=(x+1)(x+2)(x-3)在区间[0,2]和[-3,0]不存在零点。

解:由于f(x)是一个三次函数,因此存在三个零点。

我们可以用反证法来证明。

首先,我们假设f(x)在区间[0,2]存在至少一个零点,即存在一个x0∈[0,2],使得f(x0)=0。

由于f(x)是一个连续函数,而且区间[0,2]上f(x)的取值为正负负,所以根据零点定理,在区间[0,2]上f(x)至少存在一个零点,且零点个数为奇数,矛盾!因此,f(x)在区间[0,2]不存在零点。

同理,我们可以证明f(x)在区间[-3,0]也不存在零点。

综上所述,这两道例题都依据了零点定理,通过张贴轮换和反证法的方式来证明结论的正确性。

函数零点的7种问题及解法

函数零点的7种问题及解法

函数零点的7种问题及解法1.若x0是方程lgx+x=2的解,则x0属于区间()a.(0,1) b.(1,1.25)c.(1.25,1.75) d.(1.75,2)解析:设f(x)=lg x +x-2,则f(1.75)=f74=lg 74-,f(2)=lg 20.答案:d2.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为()a.0个 b.1个 c.2个 d.3个解析::x0时由x2+2x-3=0x=-3;x0时由-2+lnx=0x=e2.答案:c3.设函数f(x)=x2-x+a(a0),若f(m)0,则()a.f(m-1)0b.f(m-1)0c.f(m-1)=0d.f(m-1)与0的'大小不能确定解析:融合图象极易推论.答案:a4.函数f(x)=ex+x-2的零点所在的一个区间就是()a.(-2,-1) b. (-1,0)c. (0,1) d.(1,2)解析:因为f(0)=-10,f(1)=e-10,所以零点在区间(0,1)上,选c.答案:c5.函数f(x)=4x-2x+1-3的零点是________解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.答案:log236.函数f(x)=(x-1)(x2-3x+1)的零点就是__________.解析:利用定义可求解.答案:1,7.若函数y=x2-ax+2有一个零点为1,则a等于__________.解析:由零点定义可以解.答案:38.未知函数f(x)=logax+x-b(a0且a1),当时,函数f(x)的零点为x0(n,n+1)(nn*),则n=________.解析:根据f(2)=loga2+2-blogaa+2-3=0,f(3)=loga3+3-blogaa+3-4=0,x0(2,3),故n=2.答案:29.证明:方程x2x=1至少有一个小于1的正根.证明:令f(x)=x2x-1,则f(x)在区间(-,+)上的图象是一条连续不断的曲线.当x=0时,f(x)=-10.当x=1时,f(x)=10.f(0)f(1)0,故在(0,1)内至少有一个x0,当x=x0时,f(x)=0.即至少有一个x0,满足01,且f(x0)=0,故方程x2x=1至少有一个小于1的正根.。

高一数学必修一函数零点试题及解析

高一数学必修一函数零点试题及解析

高一数学必修一函数零点试题及解析一、选择题(每小题5分,共30分)1.函数f (x )=lg x -1x的零点所在的区间是( )A .(3,4)B .(2,3)C .(1,2)D .(0,1) 答案:B解析:∵函数f (x )=lg x -1x,∴f (2)=lg2-12=lg2-lg1012<0,f (3)=lg3-13=lg3-lg1013>0,∴f (2)f (3)<0由零点的存在性定理可知:零点所在的区间为(2,3),故选B. 2.如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +2x +a 的零点所在区间是( )A.⎝ ⎛⎭⎪⎫14,12 B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(2,3) 答案:C解析:解:由函数f (x )=x 2+ax +b 的部分图象得0<b <1,f (1)=0,从而-2<a <-1,而g (x )=ln x +2x +a 在定义域内单调递增,产品用时30 min,组装第A件产品用时15 min,那么c和A的值分别是________.答案:60,16解析:因为组装第A 件产品用时15 min ,所以cA=15 ①;所以必有4<A ,且c4=c2=30 ②,联立①②解得c =60,A =16. 8.设函数y =x3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),若x 0所在的区间是(n ,n +1)(n ∈Z ),则n =________.答案:1解析:画出函数y =x3和y =⎝ ⎛⎭⎪⎫12x -2的图象,如图所示.由函数图象,知1<x 0<2,所以n =1.9.若关于x 的方程|x |x -2=kx 有三个不等实数根,则实数k 的取值范围是________.答案:⎝⎛⎭⎪⎫0,12解析:由题意可知k ≠0, ∵|x |x -2=kx ,∴kx 2-2kx =|x |. 当x ≥0时,kx 2-2kx =x , 解得x =0或x =2k +1k,∴2k +1k >0,∴k >0或k <-12;当x <0时,kx 2-2kx =-x ,解:设函数f (x )=2x +x -4, ∵f (1)=-1<0,f (2)=2>0,f (x )在区间(1,2)上单调递增,∴f (x )在区间(1,2)内有唯一的零点,则方程2x +x -4=0在区间(1,2)内有唯一一个实数解. 取区间(1,2)作为起始区间,用二分法逐次计算如下:区间 中点的值 中点的函数值 区间长度 (1,2) 1.5 0.33 1 (1,1.5) 1.25 -0.37 0.5 (1.25,1.5)1.375-0.0310.25由上表可知,区间(1.25,1.5)的长度为0.25<0.3. ∴方程的实数解为1.375.能力提升12.(5分)若容器A 有m 升水,将水慢慢注入容器B ,t 分钟后A 中剩余水量y 符合指数函数y =m e -at (e 为自然对数的底).假设经过5分钟时,容器A 和容器B 水量相等,且又过n 分钟容器A 中水只有m8,则n 的值为( ) A .7 B .8 C .9 D .10 答案:D解析:⎩⎪⎨⎪⎧m ·e -5a =12m ,m ·e-a5+n=m8,温馨提示:最好仔细阅读后才下载使用,万分感谢!。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)1) 对于函数 y=f(x),将方程 f(x)=0 的实数根称为函数y=f(x) 的零点。

2) 方程 f(x)=0 有实根⇔函数 y=f(x) 的图像与 x 轴有交点⇔函数 y=f(x) 有零点。

若函数 f(x) 在区间 [a,b] 上的图像是连续的曲线,则 f(a)f(b)<0 是 f(x) 在区间 (a,b) 内有零点的充分不必要条件。

2、二分法:对于在区间 [a,b] 上连续不断且 f(a)f(b)<0 的函数 y=f(x),通过不断地把函数 y=f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。

二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:一)函数零点的存在性定理指出:“如果函数 y=f(x) 在区间 [a,b] 上的图象是连续不断的一条曲线,并且 f(a)f(b)<0,那么,函数 y=f(x) 在区间 (a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0,这个 c 也是方程 f(x)=0 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件。

例如,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 ( )。

分析:显然函数 f(x)=ln(x+1)-2 在区间 [1,2] 上是连续函数,且 f(1)0,所以由根的存在性定理可知,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 (1,2),选 B。

二)求解有关函数零点的个数(或方程根的个数)问题。

函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。

对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。

高中数学-函数的零点问题及例题分析

高中数学-函数的零点问题及例题分析

高中数学-函数的零点问题及例题分析1. 引言函数是数学中一个非常重要的概念,它在数学和实际问题中发挥着重要的作用。

函数的零点问题是函数中一个常见且重要的问题,它与方程的解有着紧密的联系。

本文将介绍函数的零点问题,并通过一些例题分析来加深理解。

2. 函数的定义与性质回顾函数是一个将一个集合的元素映射到另一个集合的元素的规则。

函数通常用符号表示,如$f(x)$,其中$x$是自变量,$f(x)$是对应的函数值。

函数的零点指的是函数取零值的点,即满足$f(x)=0$的$x$值。

函数的零点问题与方程的解问题紧密相关。

对于一元函数,函数的零点就是方程$f(x)=0$的解。

因此,解方程可以转化为求函数的零点。

函数的零点可以通过图像、图表或数值计算等方法来确定。

下面将通过几个例题来进一步分析。

3. 例题分析3.1 例题一已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点。

解析:要求函数$f(x)$的零点,即求解方程$2x^2-3x+1=0$。

我们可以使用配方法、求根公式或因式分解等方法来解这个二次方程,最终可以得到$x=1$和$x=\frac{1}{2}$两个解。

3.2 例题二已知函数$g(x)=\sqrt{x+3}-2$,求函数$g(x)$的零点。

解析:要求函数$g(x)$的零点,即求解方程$\sqrt{x+3}-2=0$。

为了消除平方根,我们可以将方程两边平方,得到$x+3=4$,然后解得$x=1$。

因此,函数$g(x)$的零点为$x=1$。

3.3 例题三已知函数$h(x)=\frac{1}{x-2}$,求函数$h(x)$的零点。

解析:函数$h(x)$在$x=2$处不存在定义,因此不存在零点。

4. 总结本文介绍了函数的零点问题及其与方程的解之间的联系。

函数的零点是函数取零值的点,可以通过解相应的方程来求得。

通过例题分析,我们进一步了解了求函数零点的具体方法。

在实际问题中,函数的零点问题有时对于确定某个变量的取值非常重要,因此对于函数的零点问题的理解和掌握是非常有益的。

【高考理数】利用导数解决函数零点问题(解析版)

【高考理数】利用导数解决函数零点问题(解析版)

2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

函数与导数之零点问题(解析版)

函数与导数之零点问题(解析版)

函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。

第17讲 高中数学零点问题(解析版)

第17讲 高中数学零点问题(解析版)

第17讲 零点问题高考预测一:三次函数零点问题 1.已知函数32()(,)f x x ax b a b R =++∈(1)若函数()f x 在1x =处取得极值2,求a ,b 的值; (2)求试讨论()f x 的单调性;(3)若b c a =-(实数c 是a 与无关的常数),当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞,求c 的值. 【解析】解:(1)32()f x x ax b =++,2()32f x x ax '=+, 若函数()f x 在1x =处取得极值2, 则(1)320(1)12f a f a b '=+=⎧⎨=++=⎩,解得:3252a b ⎧=-⎪⎪⎨⎪=⎪⎩;(2)2()32(32)f x x ax x x a '=+=+,0a >时,令()0f x '>,解得:0x >或23x a <-,()f x ∴在2(,)3a -∞-递增,在2(3a -,0)递减,在(0,)+∞递增,0a =时,()0f x ',()f x 在R 递增,0a <时,令()0f x '>,解得:0x <或23x a >-,()f x ∴在(,0)-∞递增,在2(0,)3a -递减,在2(3a -,)+∞递增;(3)由(2)得:函数()f x 有2个极值, 分别是:(0)f b =,324()327f a a b -=+,则函数()f x 有3个零点等价于324(0)()()0327f f a b a b -=+<,∴304027a a b >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩,又b c a =-,0a ∴>时,34027a a c -+>或0a <时,34027a a c -+<, 设g (a )3427a a c =-+,函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞, (,3)∴-∞-上,g (a )0<,在(1,33)(22⋃,)+∞上,g (a )0>均恒成立,从而(3)10g c -=-,且3()102g c =-,故1c =;此时,322()1(1)[(1)1]f x x ax a x x a x a =++-=++-+-,()f x 有3个零点,则2(1)10x a x a +-+-=有2个异于1-的不等实根, ∴△22(1)4(1)230a a a a =---=+->,且2(1)(1)10a a ---+-≠, 解得:33(,3)(1,)(,)22a ∈-∞-+∞, 综上:1c =.2.已知函数21()(),()4lnxf x x a a Rg x x x=-+-∈=. (1)当a 为何值时,x 轴为曲线()y f x =的切线,(2)用{max m ,}n 表示m ,n 中的最大值,设函数(){()h x max xf x =,()}(0)xg x x >,当03a <<时,讨论()h x 零点的个数.【解析】解:(1)设曲线()y f x =与x 轴相切与点0(x ,0),则00()0()0f x f x =⎧⎨'=⎩,即20020201041204x a x x x ⎧-+-=⎪⎪⎨⎪-+=⎪⎩,∴01234x a ⎧=⎪⎪⎨⎪=⎪⎩,∴当34a =时,x 轴为曲线()y f x =的切线. (2)令211()()4f x xf x x ax ==-+-,1()()(0)g x xg x lnx x ==>,则1(){()h x max f x =,1()}g x ,21()3f x x a '=-+,由1()0f x '=,得x = ∴当x ∈时,1()0fx '>,1()f x 为增函数; 当x ∈)+∞时,1()f x '为减函数,03a <<,01∴<, ①当10f <,即304a <<时,()h x 有一个零点; ②当10f =,即34a =时,()h x 有两个零点; ③当110()0f f x ⎧>⎪⎨⎪<⎩,即3544a <<时,()h x 有三个零点; ④当110()0f f x ⎧>⎪⎨⎪=⎩,即54a =时,()h x 有两个零点; ⑤当11(1)0f f ⎧>⎪⎨⎪>⎩,即534a <<时,()h x 有一个零点, 综上,304a <<或534a <<时,()h x 有一个零点; 当34a =或54a =时,()h x 有两个零点; 当3544a <<,()h x 有三个零点. 高考预测二:含超越函数的零点问题3.已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【解析】证明:(1)()f x 的定义域为(1,)-+∞, 1()cos 1f x x x'=-+,21()sin (1)f x x x ''=-++,令21()sin (1)g x x x =-++,则32()cos 0(1)g x x x '=--<+在(1,)2π-恒成立, ()f x ∴''在(1,)2π-上为减函数, 又(0)1f ''=,21()11102(1)2f ππ''=-+<-+=+,由零点存在定理可知, 函数()f x ''在(1,)2π-上存在唯一的零点0x ,结合单调性可得,()f x '在0(1,)x -上单调递增,在0(x ,)2π上单调递减,可得()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)知,当(1,0)x ∈-时,()f x '单调递增,()(0)0f x f '<'=,()f x 单调递减; 当0(0,)x x ∈时,()f x '单调递增,()(0)0f x f '>'=,()f x 单调递增;由于()f x '在0(x ,)2π上单调递减,且0()0f x '>,1()0212f ππ'=-<+,由零点存在定理可知,函数()f x '在0(x ,)2π上存在唯一零点1x ,结合单调性可知,当0(x x ∈,1)x 时,()f x '单调递减,1()()0f x f x '>'=,()f x 单调递增; 当1(,)2x x π∈时,()f x '单调递减,1()()0f x f x '<'=,()f x 单调递减.当(2x π∈,)π时,cos 0x <,101x -<+,于是1()cos 01f x x x'=-<+,()f x 单调递减,其中 3.2()1(1)1(1)1 2.610222f ln ln ln lne ππ=-+>-+=->-=,()(1)30f ln ln ππ=-+<-<.于是可得下表:结合单调性可知,函数()f x 在(1-,]2π上有且只有一个零点0,由函数零点存在性定理可知,()f x 在(2π,)π上有且只有一个零点2x ,当[x π∈,)+∞时,sin 1(1)x ln x <+,则()sin (1)0f x x ln x =-+<恒成立, 因此函数()f x 在[π,)+∞上无零点. 综上,()f x 有且仅有2个零点. 4.已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 【解析】解析:(1)函数1()1x f x lnx x +=--.定义域为:(0,1)(1⋃,)+∞;212()0(1)f x x x '=+>-,(0x >且1)x ≠, ()f x ∴在(0,1)和(1,)+∞上单调递增,①在(0,1)区间取值有21e,1e 代入函数,由函数零点的定义得, 21()0f e <,1()0f e >,211()()0f f e e<, ()f x ∴在(0,1)有且仅有一个零点,②在(1,)+∞区间,区间取值有e ,2e 代入函数,由函数零点的定义得, 又f (e )0<,2()0f e >,f (e )2()0f e <,()f x ∴在(1,)+∞上有且仅有一个零点,故()f x 在定义域内有且仅有两个零点; (2)0x 是()f x 的一个零点,则有00011x lnx x +=-, 曲线y lnx =,则有1y x'=; 由直线的点斜式可得曲线的切线方程,曲线y lnx =在点0(A x ,0)lnx 处的切线方程为:0001()y lnx x x x -=-, 即:0011y x lnx x =-+,将00011x lnx x +=-代入, 即有:00121y x x x =+-, 而曲线x y e =的切线中,在点01(ln x ,01)x 处的切线方程为:00000011111()y x ln x lnx x x x x x -=-=+, 将00011x lnx x +=-代入化简,即:00121y x x x =+-, 故曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 故得证.5.已知函数1()1x xf x e x+=+-.( 2.71828e =⋯⋯ 1.64872)⋯⋯ (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线x y e =在点00(,)xA x e 处的切线也是曲线y lnx =的切线. 【解析】解:(1)()f x 的定义域为{|1}x x ≠22()0(1)x f x e x '=+>-所以()f x 在(,1)-∞,(1,)+∞上单调递增.又3223(2)30,()502f e f e =->=-<,所以()f x 在区间(1,)+∞有唯一零点1x ,即()1111101x x f x e x +=⋅=-即, 又1111111111111,()0111x x x x x f x e x x x -----<--=+=+=+++, 所以()f x 在区间(,1)-∞有唯一零点1x -. 综上所述,()f x 有且仅有两个零点. (2)因为00x lne x -=-,所以点00(,)x B ex --在曲线y lnx =上.由题设()000010,1x x f x e x +==-即 所以直线AB 的斜率00000000000111111x x x x x e x x x k e x x x e x x -+++-+====----+.因为曲线x y e =在点00(,)xA x e 处切线的斜率是0x e , 曲线y lnx =在点00(,)x B ex --处切线的斜率也是0x e ,所以曲线x y e =在点00(,)xA x e 处的切线也是曲线y lnx =的切线. 6.已知函数2()(21)f x lnx ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,f (2))处的切线方程; (2)讨论函数()f x 的单调性;(3)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,且两个零点互为倒数. 【解析】解:(1)1()221f x ax a x'=+++,(0)x >, 由已知有f '(1)0=,即12210a a +++=,所以12a =-(经验证成立),切点为3(2,22),(2)2ln k f '-==-,故切线方程为:3122y x ln =-++;(2)()f x 的定义域为(0,)+∞, 1(21)(1)()221ax x f x ax a x x++'=+++=, 若0a ,则当(0,)x ∈+∞时,()0f x '>, 故()f x 在(0,)+∞上单调递增, 若0a <,则当1(0,),()02x f x a '∈->;当1(,),()02x f x a'∈-+∞<, 故()f x 在1(0,)2a-上单调递增,在1(,)2a -+∞上单调递减;综上:0a 时,()f x 在(0,)+∞上单调递增, 0a <时,()f x 在1(0,)2a-上单调递增,在1(,)2a -+∞上单调递减;(3)证明:2()(1)()1(1)1g x x f x x x lnx x =---=---, 1()g x lnx x'=-,因为y lnx =在(0,)+∞上递增,1y x =在(0,)+∞递减,所以()g x '在(0,)+∞上递增,又141(1)10,(2)2022ln g g ln -''=-<=-=>, 故存在唯一0(1,2)x ∈使得0()0g x '=,所以()g x 在0(0,)x 上递减,在0(x ,)+∞上递增, 又220()(1)2,()30g x g g e e <=-=->,所以()0g x =在0(x ,)+∞内存在唯一根α, 由01x α<<,得:011x α<<,又1111()()(1)10g g ln αααααα=---==,故1α是()0g x =在0(0,)x 上的唯一零点, 综上,函数()g x 有且仅有两个零点,且两个零点互为倒数.7.已知函数2()67(f x lnx ax x b a =--+,b 为常数),且2x =为()f x 的一个极值点. (1)求a ;(2)求函数()f x 的单调区间;(3)若()y f x =的图象与x 轴有且只有3个交点,求b 的取值范围.(20.693, 1.50.405)ln ln == 【解析】解:(1)2()67f x lnx ax x b =--+,6()27f x ax x∴'=--, 又2x =是()f x 的一个极值点f ∴'(2)3470a =--=,则1a =-.(2)函数()f x 的定义域为(0,)+∞. 由(1)知2()67f x lnx x x b =+-+. 6(2)(23)()27x x f x x x x--∴'=+-=. 由()0f x '>可得2x >或32x <,由()0f x '<可得322x <<. ∴函数()f x 的单调递增区间为3(0,)2和(2,)+∞,单调递减区间为3(2,2).(3)由(2)可知函数()f x 在3(0,)2单调递增,在3(2,2)单调递减,在(2,)+∞单调递增.且当2x =或32x =时,()0f x '=. ()f x ∴的极大值为3333()6224f ln b =-+,()f x '的极小值为f (2)6210ln b =-+.当x 充分接近0时,()0f x '<.当x 充分大时,()0f x >. ∴要使的()f x '图象与x 轴正半轴有且仅有三个不同的交点,只需3()2f f (2)0<,即333(6)(6210)024ln b ln b -+-+<,解得:3336106242ln b ln -<<-. 8.已知函数2()8f x x x =-+,()6g x lnx m =+. (Ⅰ)求()f x 在区间[t ,1]t +上的最大值()h t ;(Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.【解析】解:22()()8(4)16I f x x x x =-+=--+. 当14t +<,即3t <时,()f x 在[t ,1]t +上单调递增,22()(1)(1)8(1)67h t f t t t t t =+=-+++=-++;当41t t +,即34t 时,()h t f =(4)16=; 当4t >时,()f x 在[t ,1]t +上单调递减,2()()8h t f t t t ==-+.综上,2267,3()16,348,4t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩()II 函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()m x g x f x =-的图象与x 轴的正半轴有且只有三个不同的交点.2()86m x x x lnx m =-++,∴262862(1)(3)()28(0)x x x x m x x x x x x-+--'=-+==>,当(0,1)x ∈时,()0m x '>,()m x 是增函数; 当(1,3)x ∈时,()0m x '<,()m x 是减函数; 当(3,)x ∈+∞时,()0m x '>,()m x 是增函数; 当1x =,或3x =时,()0m x '=.()m x m ∴=极大值(1)7m =-,()m x m =极小值(3)6315m ln =+-.当x 充分接近0时,()0m x <,当x 充分大时,()0m x >.∴要使()m x 的图象与x 轴正半轴有三个不同的交点,必须且只须()70()63150m x m m x m ln =->⎧⎨=+-<⎩极大值极小值即71563m ln <<-.∴存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7,1563)ln -.9.已知函数()f x x alnx =+(Ⅰ)当1a =时,求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间;(Ⅲ)若函数()f x 没有零点,求a 的取值范围.【解析】解:()I 当1a =时,()f x x lnx =+,1()1(0)f x x x'=+>,f ∴(1)1=,f '(1)2=,∴曲线()y f x =在点(1,f (1))处的切线方程为210x y --=;()II 函数()f x x alnx =+,()(0)x af x x x+'=>.当0a 时,在(0,)x ∈+∞时()0f x '>,()f x ∴的单调增区间是(0,)+∞; 当0a <时,函数()f x 与()f x '在定义域上的情况如下:()f x ∴的单调减区间为(0,)a -,单调增区间为(,)a -+∞. ∴当0a 时()f x 的单调增区间是(0,)+∞;当0a <时,()f x 的单调减区间为(0,)a -,单调增区间为(,)a -+∞. ()III 由()II 可知,①当0a >时,(0,)+∞是函数()f x 的单调增区间, 且有11()1110aaf e e--=-<-=,f (1)10=>,此时函数有零点,不符合题意;②当0a =时,函数()f x x =,在定义域(0,)+∞上没零点;③当0a <时,()f a -是函数()f x 的极小值,也是函数()f x 的最小值, ∴当()(()1)0f a a ln a -=-->,即a e >-时,函数()f x 没有零点.综上所述,当0e a -<时,()f x 没有零点. 10.已知关于x 的函数()(0)xax af x a e -=≠. (1)当1a =-时,求函数()f x 在点(0,1)处的切线方程; (2)设()()x g x e f x lnx '=+,讨论函数()g x 的单调区间; (3)若函数()()1F x f x =+没有零点,求实数a 的取值范围. 【解析】解:(1)当1a =-时,1()xx f x e-+=, ∴2(1)112()()x x x x x e e x x x f x e e e ---+-+--'===,∴002(0)2f e -'==-, (0)1f =, 12y x ∴-=-,即()f x 在(0,1)处的切线方程为210y x +-=.(2)2()()2(0)()x x xx ae e ax a g x e lnx ax a lnx a e --=+=-++≠, ∴1()g x a x'=-+, 当0a <时,()0g x '>在(0,)+∞上恒成立, ()g x ∴在(0,)+∞上单调递增;当0a >时,令()0g x '>,解得10x a<<, 令()0g x '<,解得1x a>, ()g x ∴在1(0,)a 单调递增,在1(,)a+∞单调递减.(3)()0xxax a e F x e-+==没有零点, 即(1)x e a x =--无解,∴1x y e =与2(1)y a x =--两图象无交点,设两图象相切于(,)m n 两点, ∴(1)m n e a m e a ⎧=--⎨=-⎩,2m ∴=,2a e =-,两图象无交点,2(a e ∴∈-,0).11.已知函数2()(2)(1)x f x x e a x =---,a R ∈. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】解:(1)由2()(2)(1)x f x x e a x =---, 可得()(1)2(1)(1)(2)x x f x x e a x x e a '=---=--,①当0a 时,由()0f x '>,可得1x >;由()0f x '<,可得1x <, 即有()f x 在(,1)-∞递减;在(1,)+∞递增;②当0a >时,由()0f x '=,解得1x =或2x ln a =, 若2ea =,则()0f x '恒成立,即有()f x 在R 上递增;若02ea <<时,由()0f x '>,可得1x >或(2)x ln a <; 由()0f x '<,可得(2)1ln a x <<; 即有()f x 在(-∞,(2))ln a ,(1,)+∞递增, 在((2)ln a ,1)递减; 若2ea >,由()0f x '>,可得1x <或(2)x ln a >; 由()0f x '<,可得1(2)x ln a <<即有()f x 在(,1)-∞,((2)ln a ,)+∞递增;在(1,(2))ln a 递减; 综上:当0a 时,()f x 在(,1)-∞递减;在(1,)+∞递增; 当0a >时,2ea =时,()f x 在R 上递增; 02ea <<时,()f x 在(-∞,(2))ln a ,(1,)+∞递增,在((2)ln a ,1)递减; 2ea >时,()f x 在(,1)-∞,((2)ln a ,)+∞递增;在(1,(2))ln a 递减. (2)①由(1)可得,当0a <时,()f x 在(,1)-∞递减;在(1,)+∞递增, 且f (1)0e =-<,f (2)0a =->,故()f x 在(1,2)上存在1个零点, 取b 满足0b <,且()2ab ln <-,则f (b )223(2)(1)(2)(1)()022b a b e a b b a b ab b =--->----=-->,故()f x 在(,1)b 是也存在1个零点, 故0a <时,()f x 有2个零点;②当0a =时,()(2)x f x x e =-,所以()f x 只有一个零点2x =,不合题意; ③当0a >时,若2ea =时,()f x 在R 递增,()f x 不存在2个零点,不合题意; 若02ea <<,()f x 在(1,)+∞递增,又当1x 时,()0f x <,()f x 不存在2个零点,不合题意,当2ea >时,()f x 在(,1)-∞单调增,在(1,(2))ln a 递减,在((2)ln a ,)+∞递增, ()f x 极大值f =(1)0e =-<,故()f x 不存在2个零点,不合题意;综上,()f x 有两个零点时,a 的取值范围为(,0)-∞. 12.已知函数21()2f x lnx ax =-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】解:(1)()f x 的定义域为(0,)+∞,且21()ax f x x-'=,当0a 时,()0f x '>,此时()f x 在(0,)+∞上单调递增;当0a >时,由()0f x '>解得0x <,由()0f x '<解得x >,此时()f x 在上单调递增,在)+∞上单调递减; 综上,当0a 时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在上单调递增,在)+∞上单调递减; (2)由(1)知,当0a 时,()f x 在(0,)+∞上单调递增,函数()f x 至多一个零点,不合题意;当0a >时,()f x 在上单调递增,在)+∞上单调递减,则211()(1)22max f x f a ln a ==⋅⋅=-+,当1ae时,1()(1)02max f x f ln a ==-+,函数()f x 至多有一个零点,不合题意;当10a e<<时,1()(1)02max f x f ln a ==-+>,由于1∈,且211(1)11022f ln a a =-⋅⋅=-<,由零点存在性定理可知,()f x 在上存在唯一零点,由于2a >222122222()()02f ln a ln a a a a a a a =-⋅⋅=-<-=(由于)lnx x <, 由零点存在性定理可知,()f x 在)+∞上存在唯一零点;综上,实数a 的取值范围为1(0,)e.13.已知函数2()(2)x x f x ae a e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】解:(1)由2()(2)x x f x ae a e x =+--,求导2()2(2)1x x f x ae a e '=+--, 当0a =时,()210x f x e '=--<, ∴当x R ∈,()f x 单调递减,当0a >时,11()(21)(1)2()()2x x x x f x e ae a e e a '=+-=+-,令()0f x '=,解得:1x ln a =,当()0f x '>,解得:1x ln a >,当()0f x '<,解得:1x ln a<,1(,)x ln a ∴∈-∞时,()f x 单调递减,1(x ln a ∈,)+∞单调递增;当0a <时,11()2()()02x x f x a e e a '=+-<,恒成立,∴当x R ∈,()f x 单调递减,综上可知:当0a 时,()f x 在R 单调减函数,当0a >时,()f x 在1(,)ln a -∞是减函数,在1(ln a,)+∞是增函数;(2)①若0a 时,由(1)可知:()f x 最多有一个零点, 当0a >时,2()(2)x x f x ae a e x =+--, 当x →-∞时,20x e →,0x e →, ∴当x →-∞时,()f x →+∞,当x →∞,2x e →+∞,且远远大于x e 和x , ∴当x →∞,()f x →+∞,∴函数有两个零点,()f x 的最小值小于0即可,由()f x 在1(,)ln a -∞是减函数,在1(ln a ,)+∞是增函数,21111()()()(2)0min f x f ln a a ln a a a a ∴==⨯+-⨯-<,1110ln a a ∴--<,即1110ln a a+->, 设1t a=,则()1g t lnt t =+-,(0)t >, 求导1()1g t t '=+,由g (1)0=,11t a∴=>,解得:01a <<, a ∴的取值范围(0,1).方法二:(1)由2()(2)x x f x ae a e x =+--,求导2()2(2)1x x f x ae a e '=+--,当0a =时,()210x f x e '=--<, ∴当x R ∈,()f x 单调递减,当0a >时,11()(21)(1)2()()2x x x x f x e ae a e e a'=+-=+-,令()0f x '=,解得:x lna =-, 当()0f x '>,解得:x lna >-, 当()0f x '<,解得:x lna <-,(,)x lna ∴∈-∞-时,()f x 单调递减,(,)x lna ∈-+∞单调递增; 当0a <时,11()2()()02x x f x a e e a '=+-<,恒成立,∴当x R ∈,()f x 单调递减,综上可知:当0a 时,()f x 在R 单调减函数,当0a >时,()f x 在(,)lna -∞-是减函数,在(,)lna -+∞是增函数; (2)①若0a 时,由(1)可知:()f x 最多有一个零点,②当0a >时,由(1)可知:当x lna =-时,()f x 取得最小值,11()()1min f x f lna ln a a=-=--, 当1a =,时,()0f lna -=,故()f x 只有一个零点, 当(1,)a ∈+∞时,由1110ln a a-->,即()0f lna ->, 故()f x 没有零点, 当(0,1)a ∈时,1110ln a a--<,()0f lna -<, 由422(2)(2)2220f ae a e e ----=+-+>-+>, 故()f x 在(,)lna -∞-有一个零点,假设存在正整数0n ,满足03(1)n ln a >-,则00000000()(2)20n n n nf n e ae a n e n n =+-->->->,由3(1)ln lna a->-,因此在(,)lna -+∞有一个零点.a ∴的取值范围(0,1).14.已知函数2()x f x e ax =-.(1)若1a =,证明:当0x 时,()1f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .【解析】解:(1)证明:当1a =时,函数2()x f x e x =-. 则()2x f x e x '=-,令()2x g x e x =-,则()2x g x e '=-, 令()0g x '=,得2x ln =.当(0,2)x ln ∈时,()0g x '<,当(2,)x ln ∈+∞时,()0g x '>,2()(2)222220ln g x g ln e ln ln ∴=-⋅=->,()f x ∴在[0,)+∞单调递增,()(0)1f x f ∴=.(2)方法一:()f x 在(0,)+∞只有一个零点⇔方程20x e ax -=在(0,)+∞只有一个根,2xe a x⇔=在(0,)+∞只有一个根,即函数y a =与2()xe G x x =的图象在(0,)+∞只有一个交点.3(2)()x e x G x x -'=, 当(0,2)x ∈时,()0G x '<,当(2,)∈+∞时,()0G x '>, ()G x ∴在(0,2)递减,在(2,)+∞递增,当0→时,()G x →+∞,当→+∞时,()G x →+∞,()f x ∴在(0,)+∞只有一个零点时,a G =(2)24e =.方法二:①当0a 时,2()0x f x e ax =->,()f x 在(0,)+∞没有零点..②当0a >时,设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点.()(2)x h x ax x e -'=-,当(0,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()0h x '>,()h x ∴在(0,2)递减,在(2,)+∞递增,∴24()(2)1min ah x h e==-,(0)x . 当h (2)0<时,即24e a >,()i 由于(0)1h =,当0x >时,2x e x >,可得33342241616161(4)11110()(2)a a a a a h a e e a a =-=->-=->. ()h x 在(0,)+∞有2个零点()ii 当h (2)0>时,即24e a <,()h x 在(0,)+∞没有零点,()iii 当h (2)0=时,即24e a =,()h x 在(0,)+∞只有一个零点,综上,()f x 在(0,)+∞只有一个零点时,24e a =.15.已知函数32()(1)(5)f x x k x k x d =+-+++. (1)若1k =-,求函数()f x 的单调区间;(2)若函数()f x 在区间(0,3)上不单调,求实数k 的取值范围;(3)求证:2k <-或7k >是函数()f x 在R 上有三个不同零点的必要不充分条件. 【解析】解:(1)若1k =-,则32()24f x x x x d =-++,2()344f x x x ∴'=-+由于△16480=-<,2()3440f x x x ∴'=-+>∴函数()f x 的单调递增区间为(,)-∞+∞,没有单调递减区间.(2)32()(1)(5)f x x k x k x d =+-+++,2()32(1)5f x x k x k ∴'=+-++,()f x 在区间(0,3)上不单调,由题意知,当[0x ∈,3]时,()0max f x '>,且()0min f x '<, 函数()f x '的对称轴为直线13kx -=, ①当103k-<,即1k >时, 由()max f x f '='(3)0>,得267k >-,由()(0)0min f x f '='<得5k <-, 此时解集为空集; ②当133k->,即8k <-时, 由()(0)0max f x f '='>得5k >-, 由()min f x f '='(3)0<得267k <-, 此时解集为空集; 1370,1322k k -<<-<<③若则, 由()max f x f '='(3)0>,得267k >-, 由1()()03min kf x f -'='<,得2k <-或7k >,此时解集为7(,2)2--;④若3173,8232k k -<-<-则,由()(0)0max f x f '='>得5k >-, 由()0min f x '<得2k <-或7k >, 此时解集为7(5,]2--综上可得,k 的取值范围是(5,2)--. (3)证明:2()32(1)5f x x k x k '=+-++∴当△224(1)12(5)4(514)0k k k k =--+=--,即27k -时函数()f x 在R 上单调递增故()f x 在R 上不可能有三个不同零点∴若()f x 在R 上有三个不同零点,则必有△0>,即2k <-或7k >是()f x 在R 上有三个不同零点的必要条件;而当0d =,3k =+2k <-或7k >但322()(1)(5)(1f x x k x k x x x =+-++=+ 即此时()f x 只有两个不同零点同样,当3k =-2k <-或7k >,但322()(1)(5)(1f x x k x k x x x =+-++=+- 即此时()f x 也只有两个不同零点,2k ∴<-,或7k >是()f x 在R 上有三个不同零点的不充分条件,故2k <-或7k >是()f x 在R 上有三个不同零点的必要不充分条件. 16.设函数()23(0)f x alnx ax a =-+≠ (1)设1a =-,求()f x 的极值;(2)在(1)的条件下,若321()[()]3g x x x f x m =+'+在(1,3)上不是单调函数,求m 的范围;(3)求()(3)x f x x e =-的单调递增区间.【解析】解:(1)当1a =-,()23(0)f x lnx x x =-++>,1()2f x x-'=+,⋯(2分) ()f x ∴的单调递减区间为1(0,)2,单调递增区间为1(2,)+∞⋯(4分),()f x ∴的极小值是111()2324222f ln ln =-+⨯+=+.⋯(6分)(2)3211()(2)3g x x x m x=+-++,2()(42)1g x x m x '=++-,⋯(8分)()g x ∴在区间(1,3)上不是单调函数,且(0)1g '=-,∴(1)0(3)0g g '<⎧⋯⎨'>⎩(10分)∴4202060m m +<⎧⎨+>⎩,即:1023m -<<-. 故m 的取值范围10(,2)3--⋯(12分) (3)()(3)x f x x e =-,()(3)(3)()(2)x x x f x x e x e x e ∴'=-'+-'=-,令()0f x '>,解得2x >. 即函数单调递增区间为(2,)+∞.17.设常数0a >,函数2()1x f x alnx x=-+(Ⅰ)当34a =时,求()f x 的最小值; (Ⅱ)求证:()f x 有唯一的极值点. 【解析】解:(Ⅰ)()f x 的定义域是(0,)+∞,322(2)2()(1)x a x ax a f x x x +---'=+,34a =时,322224563(1)(493)()4(1)4(1)x x x x x x f x x x x x +---++'==++, 0x >,∴2249304(1)x x x x ++>+, 令()0f x '>,解得:1x >,令()0f x '<,解得:01x <<, ()f x ∴在(0,1)递减,在(1,)+∞递增, 1x ∴=时,()f x 最小,最小值是f (1)12=;(Ⅱ)由(Ⅰ)得:322(2)2()(1)x a x ax af x x x +---'=+, 令32()(2)2g x x a x ax a =+---,要证()f x 有唯一的极值点,即证()g x 在(0,)+∞有唯一的变号零点, 而2()3(42)2g x x a x a '=+--,令()0g x '=,解得:1x =,2x =其中10x <,20x >,(0)20g a '=-<,且()g x '的图象开口向上,故在区间2(0,)x 上,()0g x '<,()g x 递减, 2()(0)0g x g a ∴<=-<,在区间2(x ,)+∞上,()0g x '>,()g x 递增,2()()2()g x x x a x x a a =-+--, 2(1)(1)20g a a a ∴+=+++>,2()(1)0g x g a ∴+<,即()g x 在(0,)+∞上有唯一零点,即()f x 在(0,)+∞上有唯一的极值点且是极小值点.18.已知函数3()1()h x ax a R =-∈,()g x lnx =,()()3()(f x h x xg x e =+为自然对数的底数). ()I 若()f x 图象过点(1,1)-,求()f x 的单调区间;()II 若()f x 在区间1(e,)e 上有且只有一个极值点,求实数a 的取值范围;()III 函数3211()()32F x a x x g =-+(a )()1h x --,当103a e >时,函数()F x 过点(1,)A m 的切线至少有2条,求实数m 的值.【解析】解:(Ⅰ)由已知3()()3()13f x h x xg x ax xlnx =+=-+, 又()f x 过点(1,1)-,所以0a =, ()31f x xlnx ∴=-,且定义域为(0,)+∞, ()333(1)f x lnx lnx '=+=+,令()0f x '>,解得:1x e >,令()0f x '<,解得:10x e <<,故()31f x xlnx =-在1(0,)e 上是减函数,在1(e,)+∞上是增函数;(Ⅱ)函数3()31f x ax xlnx =+-的定义域为(0,)+∞,2()3(1)f x ax lnx '=++,令2()1r x ax lnx =++,则2121()2ax r x ax x x+'=+=,当0a >时,()0r x '>在(0,)+∞恒成立, 故2()3(1)f x ax lnx '=++在(0,)+∞上是增函数, 而213()0af e e'=>,故当1(x e∈,)e 时,()0f x '>恒成立,故()f x 在区间1(e ,)e 上单调递增,故()f x 在区间1(e,)e 上没有极值点;当0a =时,由(Ⅰ)知,()f x 在区间1(e,)e 上没有极值点;当0a <时,令2210ax x +=,解得,x故2()1r x ax lnx =++在上是增函数,在)+∞上是减函数,①当r (e )1()0r e <,即220a e-<<时,()r x 在1(e ,)e 上有且只有一个零点,且在该零点两侧异号,②令1()0r e =,得20ae=,不成立;③令r (e )0=,得22a e =-1(e ,)e ,而1()0222e e r r ln ==+>,又1()0r e<, 所以()r x 在1(e,)e 上有且只有一个零点,且在该零点两侧异号,综上所述,实数a 的取值范围是22[e -,0). (Ⅲ)函数3211()()32F x a x x g =-+(a )()1h x --,由函数()F x 过点(1,)A m 的切线,所以3200011(1)32m x lna x x lna =-++,(*)②据题意,原命题等价于关于0x 的方程(*)至少有2个不同的解. 设3221()(1)32x x lna x xlna ϕ=-++, 2()2(2)(1)(2)x x lna x lna x x lna ϕ'=-++=--,因为103a e >,所以15123lna >>,当(,1)x ∈-∞和1(2lna ,)+∞时,()0x ϕ'>,()x ϕ为增函数;当1(1,)2x lna ∈时,()0x ϕ'<,()x ϕ为减函数;所以()x ϕ的极大值为ϕ(1)1123lna =-,()x ϕ的极小值为32111()2244lna ln a ln a ϕ=-+, 设lna t =,103t >, 则原命题等价于3232111123231111244244m lna t m ln a ln a t t ⎧-=-⎪⎪⎨⎪-+=-+⎪⎩对103t >恒成立,所以由1123m t -对103t >恒成立,得43m ; (1) 记3211()244s t t t =-+,21111()(1)8224s t t t t t '=-+=-, 所以103t >时,()s t 的最大值为s (4)43=,由3211244m t t -+对103t >恒成立,得43m . (2)由(1)(2)得,43m =. 综上,当103a e >,实数m 的值为43时,函数()F x 过点(1,)A m 的切线至少有2条. 19.在平面直角坐标系xOy 中,已知函数()()f x clnx c R =∈的图象与直线2y x e=相切,其中e 是自然对数的底数. (1)求实数c 的值;(2)设函数()()a h x ax f x x=--在区间1(e,)e 内有两个极值点.①求实数a 的取值范围;②设函数()h x 的极大值和极小值的差为M ,求实数M 的取值范围.【解析】解:(1)()cf x x'=,设切点0(P x ,0)y ,则0c k x =,所以过原点的切线方程为:0c y x x =,且000clnx c x x =, 所以0x e =,由题意:c y x e =与2y x e=是同一条直线,所以2c =;(2)由(1)知,①()2ah x ax lnx x=--, 设函数()h x 在区间1(e,)e 内有两个极值点分别为1x ,2x ,12()x x <,22222()(0)a ax x ah x a x x x x-+'=+-=>, 由题意()0h x '=则220ax x a -+=,2()2m x ax x a =-+,121x x =, 所以只需020()a m e >⎧⎪⎪>⎨⎪⎪⎩,所以2211e a e <<+②因为121x x =,所以21211221111112111112()()2()2(2)22a a a a a M f x f x ax lnx ax lnx ax lnx ax ln ax lnx x x x x x x =-=-----=-----=--,由21120ax x a -+=,12121x a x ∴=+,且111x e<<, 所以1222211111122111222111224()112x x x x M x lnx lnx x x x +-=--=-++,设21x t =,211t e<<, 令11()4()12t g t lnt t -=-+,222212(1)()4[]0(1)2(1)t g t t t t t --'=-=<++, 所以()g t 在21(e ,1)单调递减, 从而g (1)21()()g t g e <<, 所以实数M 的取值范围28(0,)1e +.。

函数的零点与解析问题及例题分析

函数的零点与解析问题及例题分析

函数的零点与解析问题及例题分析1. 函数的零点函数的零点指的是函数取值为零的点,即满足$f(x) = 0$的$x$值。

求函数的零点是许多数学问题中的基本任务。

求函数的零点方法很多,常见的包括二分法、牛顿法、割线法等。

下面以二分法为例来说明求函数零点的过程。

例题1::已知函数$f(x) = \sin(x)$,求$f(x)$的零点。

解析过程如下:1. 首先确定一个区间$[a, b]$,使得$f(a)$和$f(b)$异号。

2. 将区间中点记作$c$,计算$f(c)$的值。

3. 如果$f(c)$为零,则$c$是$f(x)$的零点;否则,根据$f(c)$和$f(a)$(或$f(b)$)的符号确定新的区间。

4. 重复步骤2和3,直到找到一个足够接近零点的解。

2. 解析问题解析问题是指在数学运算中的一些特殊情况,如分母为零、根号内为负数等。

解析问题的存在可能导致函数无法取值或无法计算。

解析问题的判定和处理与具体的数学表达式有关。

以下是一些常见的例子:- 分母为零:当函数中出现分母为零的情况时,其解析问题是分母为零的$x$值,并且在该点处函数无法取值。

- 根号内为负数:当函数中出现根号内为负数的情况时,其解析问题是根号内为负数的$x$值,并且在该点处函数无法计算。

解析问题在数学问题的解决中需要注意,可以通过数值计算的方法来规避这些问题。

3. 例题分析例题2::已知函数$f(x) = \frac{1}{x^2 - 4}$,求$f(x)$的定义域。

解析过程如下:由于分母为$x^2 - 4$,我们需要排除使分母为零的情况。

即解方程$x^2 - 4 = 0$,求得$x = \pm 2$。

因此,函数$f(x)$的定义域为$(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$。

以上是关于函数的零点与解析问题的简要分析和例题讲解。

希望对您有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-函数零点问题及例题解析
一、函数与方程基本知识点
1、函数零点:(变号零点与不变号零点)
(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =
,通过不断地把函数
()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似
值的方法叫做二分法; 二、函数与方程解题技巧
零点是经常考察的重点,对此部分的做题方法总结如下:
(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如
例、函数x
x x f 2
)1ln()(-
+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数x
x x f 2
)1ln()(-
+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数x
x x f 2
)1ln()(-+=的零点所在的大致区间是(1,2),选B
(二)求解有关函数零点的个数(或方程根的个数)问题。

函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。

对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。

如:
1.对于求一个陌生函数的零点个数,若能把已知函数分解成两个熟悉的函数,那么可利用构造函数法化归为求两个熟悉函数图象的交点个数求解,如: 例.求x x x f 2)(2-=零点的个数。

分析:本题直接求解,无法下手,由函数x x x f 2)(2-=的零点也是方程02)(2=-=x x x f 的根,即方程x x 22=的解,但这个方程不是熟悉的常规方程,由方程的解与两函数图象交点的关系,可构造函数21x y =、x y 22=,在同一坐标系中作出它们的图象,可得出它们有三个交点,所以x x x f 2)(2-=零点的个数有三个。

2.对于一元高次函数,可利用导数法研究函数图象的特征,作出函数的图象,确定图象与X 轴交点的情况求解。

(导数专题再续讲)
(三)求函数的具体零点或求方程的根。

对于某些特殊类型的函数,可通过研究式子的特征,构造新函数,转化求解。

如:
例、求函数36)35()(55++++=x x x x f 的零点。

分析:考察036)35()(55=++++=x x x x f 的特点,直接求解难以入手,可转化为求
)()35()35(55x x x x +-=+++的解,根据式子特点构造函数x x x g +=5)(,显然)(x g 为奇函数,
且在R 上单调递增,由)()35()35(55x x x x +-=+++可化为)()()35(x g x g x g -=-=+,故利用函数)(x g 的性质可得x x -=+35,则21-
=x ,所以函数)(x f 的零点为2
1
-=x
基础练习
1、下列函数中,不能用二分法求零点的是( )答案B
2、已知函数)(x f 的图象是连续的,有如下表。

函数)(x f 在区间]6,1[上的零点至少有( ) 答案C
x
1 2 3 4 5 6 )(x f
123.56 21.45 -7.82 11.57 53.76 -126.49
A .2个
B .3个
C .4个
D .5个
3. 设α、β分别是方程2log 40240x x x x +-=+-=和的根,则α+β= 。

答案4
4. 已知函数b a b
ax x x f ,()(2
+=为常数),且方程012)(=+-x x f 有两实根3和4 (1)求函数)(x f 的解析式; (2)设1>k ,解关于x 的不等式:x
k
x k x f --+<
2)1()(
解: (1)即方程
0122
=+-+x b
ax x 有两根3和4,所以 ⎪⎪⎩⎪⎪⎨
⎧=++=++084160939
b
a b
a 得 ⎩⎨
⎧=-=2
1b a 所以x x x f -=2)(2
(2)即x
k
x k x x --+<-2)1(22整理的0))(1)(2(>---k x x x 21<<k 时,不等式的解集}21|{><<x k x x 或;2=k 时,不等式的解集}221|{><<x x x 或;2>k 时,不等式的解集}21|{k x x x ><<或。

相关文档
最新文档