人教A版高中数学五《等差数列》评课稿

合集下载

《等差数列》说课稿#(精选.)

《等差数列》说课稿#(精选.)

《等差数列》说课稿#(精选.)work Information Technology Company.2020YEAR“等差数列”说课稿说课人:王娜尊敬的各位评委老师,你们好!今天我说课的内容是人教版高中数学必修五高二上第二章第三节“等差数列”,下面我将从以下五个方面阐述我对本节课的理解和设计。

它们分别是教材分析、教法学法分析、教学过程、板书设计以及教学评价。

一、教材分析教材分析主要体现在以下三个方面其一,教材的地位和作用等差数列是高中数学的必修部分,在学习等差数列之前,学生已经学习了数列的概念及其简单的表示方法。

它的学习起着承上启下的作用,为以后学习等比数列和数列的极限打下基础。

除此之外,它在高考中是必考内容,主要以选择题和填空题的形式考查,等差数列的学习利于提高学生用数学去解决实际问题的能力,从而培养学生的数学思维能力,因此有极其重要的地位和作用。

其二,教学重点和难点教学重在过程,重在学生在探索的过程中能够主动认知、建构创造力,使得学生的潜力得以充分发挥。

在吃透教材的基础上,我将重点定为:等差数列的概念和等差数列数学表达式及通项公式的运用。

根据高中学生的年龄特征、思维认知水平的局限性。

我将教学难点定为:使用不完全归纳法推导等差数列的通项公式以及用等差数列解决实际应用问题。

为了突出重点,突破和分散难点,采取的方法是充分发挥教师的主导作用,适时点拨领导,使学生在与他人合作交流中能获得新知识,并使学生个性思维得以发展。

其三,教学目标新课改的精神在于以学生发展为本、能力培养为重。

根据上述教材分析,结合课程标准的课程目标、课程内容、课程要求,以及本节课的内容与结构。

我确定了如下三维教学目标:.(1).知识与技能目标掌握等差数列的概念,了解等差数列的通项,公式的推导过程及思想,初步引入“数学建模”的思想方法并能运用。

(2).过程与方法目标培养学生的知识、方法迁移能力;把研究函数的方法迁移来研究数列,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

等差数列说课与评课

等差数列说课与评课

《等差数列及其通项公式》的评课稿民勤职专数学组李荣仁本周星期三第三节课,在12级1班听了杨伟老师的一节(等差数列)复习观摩课的教学,本节课中,杨伟老师通过精心准备,创设了丰富、生动的教学情境,设计了新颖、有效的数学问题,成功地激发了学生的学习兴趣.老师的课堂教学风格和教育教学设计理念,都有自己独到认识和做法.下面我就从“导”和“学”的两个方面,谈谈我对本节课的看法:一.“导”的角度:1、教学目标的确定教学目标具有科学性、全面性、层次性,教学目标的制定符合课标及教材要求,切合学生实际,符合学生认识规律,符合知识的产生、形成、发展规律。

引导学生参与知识的发生发展过程,体现情感态度价值观,既要有知识传授、能力的培养,又要有思想品质的教育及美学教育。

反映在了解、理解、掌握、灵活应用四个层次上。

2.对教材的处理:⑴新课的引入从实际问题出发,从学生现实生活中、身边熟知的事物中提出问题,创设情境,激发学生求知欲望;⑵引导学生通过观察、猜想、分析、实验、论证得出结论和方法;⑶应用这些结论和方法解决一些简单的数学问题;⑷有变式训练、拓展提高的综合训练,使学生的知识得以强化,能力得以提升;(2)突出重点、突破难点、抓住关键内容得到落实;(3)内容安排符合学生认知结构,体现了由易到难、由浅入深的原则;(4)对例题、习题的选配有针对性和阶梯性,使不同的学生得到不同的发展;3、教学结构的设计教学层次的安排合理,各教学环节的衔接紧密;整个教学设计从特殊到一般,从具体到抽象,从简单到复杂;层层深入环环相扣二.“学”的角度:探究有效的教学过程,挖掘学生的学习潜能.《课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式.”这节课也体现了这一特点.这节课中,教师设计了有效的数学问题,引导学生发现等差数列的共同特点,并归纳出等差数列定义.又如,通项公式的学习,教师通过问题引导学生从等差数列的定义出发,运用数学思想方法,导出其通项公式.整堂课,学生情绪高昂,课堂气氛热烈、融洽.总之,在这节课中,教师能创设有效的教学情境,引导学生多角度思考问题,解决问题.让学生真正成为学习的主人,教师真正成为组织者、引导者和参与者.让整个课堂焕发出生命活力!篇二:等差数列说课评课稿《等差数列复习课》评课稿(评卢长凤所讲等差数列一课)评课人:黄文梅高考班的课堂教学如何进行,一直是高考班课任教师探讨的重要方面,听了卢长风老师的这节等差数列复习课,受益匪浅。

人教版高三数学必修五《等差数列》评课稿

人教版高三数学必修五《等差数列》评课稿

人教版高三数学必修五《等差数列》评课稿一、教材内涵及重点难点分析1. 教材内涵《等差数列》是高中数学必修五教材中的重要章节之一,主要包括等差数列的定义、性质、通项公式、求和公式以及等差数列应用等内容。

2. 重点内容•等差数列的定义:解释等差数列的概念,理解首项、公差和项数的意义。

•等差数列的性质:掌握等差数列的常见性质,如公差的相等性、前后项差值的相等性等。

•等差数列的通项公式:掌握推导等差数列通项公式的方法,能够灵活运用通项公式求解相关问题。

•等差数列的求和公式:了解等差数列求和公式的推导过程,掌握求和公式的应用方法。

•等差数列的应用:应用等差数列解决实际问题,如找规律、推导公式、计算累计人数等。

3. 难点分析•掌握等差数列通项公式的推导方法;•灵活运用等差数列求和公式;•结合实际问题求解等差数列的应用题。

二、教学目标和要求1. 教学目标•理解等差数列的概念,能够应用等差数列的相关术语;•掌握等差数列通项公式的推导过程,能够灵活运用通项公式求解问题;•掌握等差数列求和公式的应用方法,能够计算等差数列的累加和;•能够结合实际问题运用等差数列解决相应的应用题。

2. 教学要求•学生能够准确理解等差数列的概念和相关术语;•学生具备基本的代数运算能力,能够进行简单的方程和不等式的变形;•学生能够运用等差数列的相关公式解决基本的数学问题;•学生具备一定的应用问题分析和解决能力。

三、教学内容和教学步骤1. 教学内容•等差数列的定义和性质;•等差数列的通项公式;•等差数列的求和公式;•等差数列的应用。

2. 教学步骤步骤一:导入与引导•介绍等差数列的定义,引导学生理解等差数列的概念;•解释等差数列的相关术语,如首项、公差、项数等;•提出一个关于等差数列的问题,激发学生思考和讨论。

步骤二:讲解和示范•通过示例,讲解等差数列的性质,如公差的相等性、前后项差值的相等性等;•推导等差数列通项公式的过程,引导学生理解通项公式的含义和应用方法;•演示运用通项公式求解等差数列相关问题的步骤。

等差数列评课稿【推荐下载】

等差数列评课稿【推荐下载】

书山有路勤为径;学海无涯苦作舟
等差数列评课稿
【教学目标分析】
本节课授课教师制定的目标为:掌握等差数列的定义,判定方法,通项
公式及前n项和公式。

教师通过本节课的教学,圆满地完成了教学目标,并通过例3的教学,
进一步拓展,加深了对前n项和公式的理解。

【“从问题到对策”的评述】
本节课提出需要解决的问题
1.等差数列的定义,基本量的求解;
2.等差数列的通项公式及前n项和公式的理解。

对策1::教师为了让学生能清楚的认识等差数列定义的本质,通过一
组基础自测题,让学生在感性认识的过程中,上升到理性认识,并总结出判定一个数列是等差数列的基本方法;
对策2:针对事物之间是普遍联系的,教师抓住等差数列的5个基本量之间相互联系的两个等式:,通过例1和例2的教学,以解方程(组)的思想到达问题求解的目标,进一步培养了学生的基本运算能力,并挖掘了学生对待定系数法的理解和运用;
对策3:针对事物是变化发展的,教师通过例3的教学,将等差数列的
通项公式引申到从一次函数的解析式来理解认识,通过图象更直观的发现中的待定系数k,b的实际意义;同时从二次函数解析式的角度进一步认识了等差数列前n项和公式,并结合图象将等差数列中如何求的最大(小) 值的方法,层层递进,深入浅出,由此及彼,由表及里地分析问题,很好的解决了此类问题。

专注下一代成长,为了孩子。

人教版高三数学必修五《等差数列》教案及教学反思

人教版高三数学必修五《等差数列》教案及教学反思

人教版高三数学必修五《等差数列》教案及教学反思一、引言等差数列是高中数学中的重要内容,它在数学中的运用十分广泛。

在教学过程中,我们需要注重培养学生的思维能力和解决问题的能力,让他们能够灵活地运用所学知识,提高数学应用能力。

本文将会介绍人教版高三数学必修五《等差数列》的教学反思和教案。

二、教学反思1. 教学目标通过本次授课,我们的教学目标是:•掌握等差数列的概念,理解等差数列的性质和运用;•能够分析等差数列的通项公式和求和公式,灵活掌握运用;•培养学生的数学思维能力和解决实际问题的能力。

2. 教学内容本次授课的教学内容包括:•等差数列的定义、通项公式和求和公式;•等差数列的性质和运用;•等差中项和等差数列的应用。

3. 教学方法我们采用了多种教学方法,包括:•讲授法:通过精心准备的PPT和示例,向学生讲解等差数列的定义、通项公式和求和公式,并阐述等差数列的性质和运用;•互动式教学法:通过提问、举例和解题过程中的互动讨论,培养学生的思考能力和分析问题的能力;•组织小组讨论:通过小组讨论,让学生自主探索等差数列的应用,培养学生的团队合作精神和创新精神。

4. 教学效果经过本次教学,我们发现学生的数学知识水平有了明显的提高。

在讲解等差数列的性质和运用时,学生能够将数学知识与实际问题结合起来,灵活掌握应用技巧。

在解题过程中,学生能够主动思考和分析问题,掌握解题方法,并能够独立解答一些复杂题目。

三、教案设计1. 教学目标通过本节课的教学,让学生掌握等差数列的相关概念、性质和运用,并能够通过实际问题,灵活运用所学知识,提高数学应用能力。

2. 教学内容和教学步骤:第一步:引入通过实际问题导入,引发学生兴趣,激发学生对等差数列的认识和探索欲望。

第二步:讲授•定义等差数列的概念,并介绍等差数列的通项公式和求和公式。

•阐述等差数列的性质和运用,主要包括公差、项、数列取值等。

•介绍等差中项的概念,引入等差中项的应用。

第三步:练习通过练习巩固所学知识,提高学生的运用能力。

人教A版高中数学必修五第二章第三节《等差数列的前n项和》点评

人教A版高中数学必修五第二章第三节《等差数列的前n项和》点评

人教A版高中数学必修五第二章第三节?等差数列的前n项和?点评点评〔宁海知恩中学贝跃敏〕本节课通过“复习提问,情景引入,算法思考,问题探究,方法探究,算法启发,探索公式,公式应用,公式拓展,公式稳固,例题讲解,课堂练习,课堂小结〞等多个环节设计课堂,该模式别致新颖,富有创造性。

整个教学过程的设计重点突出,思路清晰,过渡自然,环环相扣,引人入胜,是一节成功的公式教学课例。

突出表现在以下几个方面:1. 本节课王老师以新课程理念为指导,以问题为载体,通过师生合作交流相结合的方式,学生参与数学活动,领会蕴含其中的逻辑推理方法和数学思想方法。

较好地表达了“以学生为主体,教师为主导〞的教学思想,切实发挥了“授之以鱼不如授之以渔〞的价值作用。

2.王老师善于利用数学家故事,现实生活中的例子来辅助教学,不但一下子能集中学生的注意力,极大地激发学生学习的兴趣与积极性,又切中了本节课的主题。

让学生感受到生活中处处有数学,数学离不开生活,领会数学教学的应用价值。

3.本节课采用了两组问题串来完成公式的建构与认识,从特殊到一般,从具体到抽象,通过类比高斯算法,借助几何直观,启发学生独立思考,讨论交流,形成感性认识后,又从数学的本质上对倒序相加法的原理加以解释,让学生意识到数学知识的科学性与严谨性。

引导学生从不同思维角度探求等差数列的前n项和公式,有效的化解了本节课的难点。

4.在公式的应用,稳固阶段,通过“例题---练习----变式----拓展〞这种由易到难、由浅入深、层层递进的训练模式,恰到好处的来突破了本节课的教学重点,符合学生的认知规律,学生稳固知识的同时又形成了技能,深刻领会到特殊到一般,数形结合,转化与化归,函数与方程〔组〕思想在研究数学问题中的应用,较好地表达了数学课堂的过程性价值与思想方法价值。

等差数列说课稿

等差数列说课稿

等差数列说课稿尊敬的各位评委老师:大家好!今天我说课的课题是“等差数列”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“等差数列”是人教版高中数学必修 5 第二章第二节的内容。

数列作为一种特殊的函数,是反映自然规律的基本数学模型。

等差数列是数列这一章节中非常重要的内容,它不仅在实际生活中有广泛的应用,而且为后续学习等比数列等知识奠定了基础。

本节课主要研究等差数列的定义、通项公式以及性质。

通过对等差数列的学习,学生将进一步体会从特殊到一般,从具体到抽象的数学思维方法,提高观察、分析和解决问题的能力。

二、学情分析授课对象是高一年级的学生,他们在初中已经接触过数列的相关知识,具有一定的知识储备和思维能力。

但对于抽象的数学概念和公式的推导,可能会存在一定的困难。

在这个阶段,学生的思维正从形象思维向抽象思维过渡,需要教师通过引导和启发,帮助他们完成思维的转化。

同时,学生具有较强的好奇心和求知欲,在教学中可以充分利用这一点,激发学生的学习兴趣。

三、教学目标基于以上对教材和学情的分析,我确定了以下教学目标:1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式。

(2)能够运用等差数列的通项公式解决相关问题。

2、过程与方法目标(1)通过观察、分析、归纳等方法,培养学生的抽象思维和逻辑推理能力。

(2)让学生经历等差数列通项公式的推导过程,体会从特殊到一般的数学思想方法。

3、情感态度与价值观目标(1)通过等差数列在实际生活中的应用,让学生感受数学与生活的紧密联系,提高学习数学的兴趣。

(2)培养学生勇于探索、敢于创新的精神。

四、教学重难点教学重点:等差数列的定义和通项公式。

教学难点:等差数列通项公式的推导及应用。

五、教法与学法1、教法为了突出重点,突破难点,我将采用讲授法、启发式教学法和练习法相结合的教学方法。

通过讲授法,让学生系统地掌握等差数列的相关知识;通过启发式教学法,引导学生思考问题,培养学生的思维能力;通过练习法,让学生巩固所学知识,提高应用能力。

《等差数列》教学设计与反思

《等差数列》教学设计与反思

《等差数列》教学设计与反思一.教材分析本节内容是人教A版高中数学必修五第二章第二节——等差数列,两课时内容,本节是第一课时。

研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。

通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。

本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。

在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。

同时也是培养学生数学能力的良好题材。

等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

二.学情分析学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。

他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。

同时思维的严密性还有待加强。

三.教学目标1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。

2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。

四.重点、难点教学重点:等差数列的概念及通项公式的推导。

教学难点:对等差数列概念的理解及学会通项公式的推导及应用。

五.教学策略和手段数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。

等差数列课堂评价

等差数列课堂评价

等差数列课堂评价遵循认知规律,启迪心智成长——“等差数列”课例评析一、关注学情,顺学而导《等差数列》是《高中数学必修5(人教A版)》第二章第二节的内容,是在学生学习了关于数列的通项公式和递推公式等相关概念的基础上的进一步深入学习,是《函数》内容的延伸,是学生探究特殊数列的开始,对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

基于此,杨老师顺着学生的思维,和学生一起经历观察、体验、感悟知识的认知过程,扎实有效地实现了学生获得“四基”的目标。

二、注重学法,层层递进在本节课中,杨老师很注重学法指导,让学生经历主动观察-分析归纳-形成概念-探究推导-理论迁移-巩固提高的过程,层层递进引导学生去联想、去探索,培养了学生归纳、概括的能力,同时杨老师渗透函数思想,引导学生用函数的观点看数列,加深了学生对等差数列概念的理解,培养了学生周密慎思的学风。

三、深入探究,重点突出本节课的重点是等差数列的概念,难点是等差数列通项公式的推导。

杨老师从定义的解析入手,引导学生主动参与、自主进行了问题的分析探究,启发学生运用归纳猜想、累加的方法进行了公式的推导。

整个过程突出了重点,突破了难点,踏实自然,顺利的完成了教学任务。

四、美中不足,瑕不掩瑜本节课总体来讲,是一节成功的课,当然也存在一些不足之处。

第一,课堂上学生的活动不太活跃,更多采用的是教师引导下的启发式教学方法。

第二,在侧重公式推导的同时,课堂上公式的应用对较少。

第三,对归纳法得到公式没有做严谨的说明,应告诉学生这种方法属不完全纳法,是一种很重要的“猜想”方法,但其结论不一定正确,需严格的证明才可认为结论的正确性教学是一门有着缺憾的艺术。

需要老师们本着以学生的学为核心来设计教学,通过不断思考和探索,才可让教学中的这种缺憾逐渐减少,让教学艺术不断完善。

高中数学等差数列说课稿(通用8篇)

高中数学等差数列说课稿(通用8篇)

高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。

同时等差数列也为今后学习等比数列提供了学习比照的根据。

2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。

b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。

3、教学重点和难点重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。

学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

等差数列说课稿

等差数列说课稿

《等差数列》说课稿各位领导、各位专家,你们好!我说课的课题是《等差数列》。

我将从以下五个方面来分析本节课:一、教材分析1.教材的地位和作用:《等差数列》是人教A版新课标教材《数学》必修5第二章第二节的内容,是学生在学习了数列的有关概念和学习了给出数列的两种方法——通项公式和递推公式的基础上,对数列知识的进一步深入和拓展。

同时等差数列也为今后学习等比数列提供了学习对比的依据。

另一方面,等差数列作为一种特殊的函数与函数思想密不可分,有着广泛的实际应用。

2.教学目标及重难点的确立及依据:根据《新课程课标》的要求和学生的实际水平,我确定了本节课的教学目标和重难点.(一)教学目标:知识与技能:要求学生理解并掌握等差数列的概念,了解等差数列通项公式的推导及思想,初步引入“数学建模”的思想方法并能简单运用。

b.过程与方法:注重培养学生观察、分析、归纳、推理的能力;在领会了函数与数列关系的前提下,把研究函数的方法迁移到研究数列上来,培养学生的知识、方法迁移能力,提高学生分析和解决问题的能力。

c.情感,态度与价值观:通过对等差数列的研究,让学生体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。

(二)教学重、难点:重点:①等差数列的概念。

②等差数列通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导。

②用数学思想解决实际问题。

二、学情分析(1)从学生知识层面看:学生对数列已有初步的认识,对方程、函数、数学公式的运用已有一定的基础,对方程、函数思想的体会也逐渐深刻。

(2)从学生素质层面看:从高一新生入学开始,我就很注意学生自主探究习惯的养成。

现阶段学生思维活跃,课堂参与意识较强,而且已经具有一定的分析、推理能力。

三、教法、学法、教学手段分析教法:针对高中生的思维特点与心理特征,在本节课的教学中设置了以启发式、讨论式以及讲练结合的学习方法,通过问题激发学生的求知欲,目的在于使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题.学法:《新课程标准》所倡导的课程理念与学生的学习心理决定了本节课学习方法.在自主探究和交流合作中,不断地经历直观感知、观察发现、归纳类比、抽象概括等思维过程,经历知识的产生与发展,体会方法的本质与运用,自主建构相应的知识体系与方法.教学手段:为了充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,而且有助于适当增加课堂容量,提高课堂效率。

《等差数列》说课稿

《等差数列》说课稿

《等差数列》说课稿“等差数列”说课稿说课人:唐小博尊敬的各位评委老师,你们好!今天我说课的内容是人必修五高二上第一章第二节“等差数列”,下面我将从以下五个方面阐述我对本节课的理解和设计。

它们分别是教材分析、教法学法分析、教学过程、以及教学评价。

一、教材分析教材分析主要体现在以下三个方面其一,教材的地位和作用等差数列是高中数学的必修部分,在学习等差数列之前,学生已经学习了数列的概念及其简单的表示方法。

它的学习起着承上启下的作用,为以后学习等比数列和数列的极限打下基础。

除此之外,它在高考中是必考内容,主要以选择题和填空题的形式考查,等差数列的学习利于提高学生用数学去解决实际问题的能力,从而培养学生的数学思维能力,因此有极其重要的地位和作用。

其二,教学重点和难点教学重在过程,重在学生在探索的过程中能够主动认知、建构创造力,使得学生的潜力得以充分发挥。

在吃透教材的基础上,我将重点定为:等差数列的概念和等差数列数学表达式及通项公式的运用。

根据高中学生的年龄特征、思维认知水平的局限性。

我将教学难点定为:使用不完全归纳法推导等差数列的通项公式以及用等差数列解决实际应用问题。

为了突出重点,突破和分散难点,采取的方法是充分发挥教师的主导作用,适时点拨领导,使学生在与他人合作交流中能获得新知识,并使学生个性思维得以发展。

其三,教学目标新课改的精神在于以学生发展为本、能力培养为重。

根据上述教材分析,结合课程标准的课程目标、课程内容、课程要求,以及本节课的内容与结构。

我确定了如下三维教学目标:.(1).知识与技能目标掌握等差数列的概念,了解等差数列的通项,公式的推导过程及思想,初步引入“数学建模”的思想方法并能运用。

(2).过程与方法目标培养学生的知识、方法迁移能力;把研究函数的方法迁移来研究数列,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

(3).情感态度与价值观目标通过个性化学习,培养学生主动探索、勇于发现、大胆创新的精神;养成细心观察、认真分析、善于总结的良好思维习惯;增强学生学习的自信心。

人教A版高中数学必修五2.2《等差数列》评课稿

人教A版高中数学必修五2.2《等差数列》评课稿

第 1 页 评课稿王教师上的是必修5第二章第二节?2.2.1等差数列?第一课时的内容,是学生学习了数列的有关概念的根底上,对数列知识的进一步深化和拓展。

同时等差数列的学习也为今后学习等比数列和研究其它特殊数列提供了学习比照的根据,所以本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

王教师围绕“数列是特殊的函数〞这一中心,抓住研究函数的步骤为主线设计本节课。

课堂开场王教师复习了数列的有关概念,并凸显了函数在数列中的地位,然后以生活实例“创设情景〞,内容生动、学生熟悉、感兴趣,符合课堂所追求的“让学生真正成为主体,拥有学习主动权〞,在预设好的情境和师生的共同努力下得以落实,让学生初步认识等差数列这一特殊数列,并引出定义,得到等差数列的递推关系式,有意识地培养学生的抽象概括和直观想象才能。

当学生能初步认识等差数列的根底上,让学生求某一等差数列中的第20项,此时学生认为单纯的定义通过列表可以解决,但必须依次递推得到,更难去求更大项,使之与已有知识产生思维碰撞,迫使学生去寻求等差数列的通项公式,即函数解析式。

在探寻过程中,王教师以“活动〞为根底,充分为学生创设操作和理论的时机,让学生在探究中体验“迭代〞法和“累加〞法在数列中的使用,这一环节学生情绪高昂、气氛热烈、融洽。

学生的手、脑、眼、口等多种感官直接参与了学习活动,不仅解决了数学知识高度抽象性与青少年思维开展详细形象性的矛盾,经历了通项公式的形成过程,培养了学生“数学建模〞才能和逻辑推理才能。

并且让学生感受通项公式的实用性,进一步强调“n a n d a ,,,1〞知三求一的特点,同时提出“d a ,1〞是等差数列的两个根本量,从而有联络到定义中的递推关系,为今后数学归纳法的学习埋下了伏笔。

最后王教师不忘函数的第三种表达形式——函数图像,从图象上让学生感知等差数列各项在平面直角坐标系中是一次函数上一群离散的孤立点。

整节课王教师始终围绕着培养学生数学核心素养,从一定程度上有意培养学生的数学抽象、直观想象、逻辑推理和数学建模才能。

《等差数列》说课稿

《等差数列》说课稿

《等差数列》说课稿以下是学校数学《等差数列》的说课稿范文,仅供参考。

盼望大家喜爱!《等差数列》说课稿各位评委老师好,我是4号考生,我今日说课的题目是《等差数列》,我从教材分析,学情教法分析,学法分析,教学过程四方面对本节课的内容加以说明。

一、教材分析1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5其次章其次节的内容。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特别的函数与函数思想密不行分;另一方面,学习数列也为进一步学习数列的极限等内容做好预备。

而等差数列是在同学学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上,对数列的学问进一步深化和拓广。

同时等差数列也为今后学习等比数列供应了学习对比的依据。

2、教学目标依据教学大纲的要求和同学的实际水平,确定了本次课的教学目标a学问与技能:理解并把握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入"数学建模'的思想方法并能运用。

培育同学观看、分析、归纳、推理的力量;在领悟函数与数列关系的前提下,把讨论函数的方法迁移来讨论数列,培育同学的学问、方法迁移力量;通过阶梯性练习,提高同学分析问题和解决问题的力量。

b.过程与方法:在教学过程中我采纳争论式、启发式的方法使同学深刻的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的讨论,培育同学主动探究、勇于发觉的求知精神;养成细心观看、仔细分析、擅长总结的良好思维习惯。

3、教学重点和难点重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析:对于高一同学,学问阅历已较为丰富,具备了肯定的抽象思维力量和演绎推理力量,所以我本节课我采纳启发式、争论式以及讲练结合的教学方法,通过问题激发同学求知欲,使同学主动参加数学实践活动,以独立思索和相互沟通的形式,在老师的指导下发觉、分析和解决问题。

高中数学评优课教案 等差数列的性质点评

高中数学评优课教案 等差数列的性质点评

《等差数列性质》点评
高三一轮复习,重在夯基释疑,培养和提高学生运用知识、解决问题的能力。

本节课以学生为主体,教师为主导,充分调动了学生的积极性。

教师教态自然,亲和力好,课堂气氛融洽。

教学环节的设置松弛有度,从例题入手,探索实验,概括提炼,综合应用,步骤层次感强,学生参与度高,老师指导有方,引导得法,学生能充分体会成功的喜悦,从而促进学生学习的兴趣。

1.选题针对性强,点评到位
选材取自学生练习,针对性强,内容相对集中;从学生问题的点评答疑中,提炼结论,符合从具体到抽象的认知规律
2. 充分发挥学生学习的自主性
学生在课堂上体现了高度的参与和热情。

学生对于本节课的内容由于事先做好了导学案,所以有充分的思考和训练时间,通过合作学习,进一步应用定义解决问题,学生积极主动参与复习的全过程,特别是让学生参与归纳、整理的过程,为学生提供了充分的锻炼机会。

3.系统有效的完成教学任务
系统规划复习和训练的内容,帮助学生将所学的分散知识系统化。

注意从学生的认识出发,通过学生解题的体验,挖掘提升数学方法和知识;注意细节和纠错,及时反馈作业中的问题。

学生错误得到点评纠正,学生的思维和创造性得到提高。

《等差数列》 说课稿

《等差数列》 说课稿

《等差数列》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《等差数列》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析本节课选自人教版必修 5 第二章第二节。

数列是高中数学的重要内容之一,它不仅有着广泛的实际应用,而且是培养学生逻辑思维能力和数学素养的良好素材。

等差数列作为数列的一种特殊形式,是研究数列的基础,也为后续学习等比数列等内容奠定了基础。

通过本节课的学习,学生将掌握等差数列的定义、通项公式以及前n 项和公式,体会从特殊到一般、从具体到抽象的数学思维方法,提高观察、分析和解决问题的能力。

二、学情分析在学习本节课之前,学生已经掌握了数列的基本概念和函数的相关知识,具备了一定的抽象思维能力和逻辑推理能力。

但对于等差数列的概念和性质的理解还需要进一步的引导和深化。

此外,学生在学习过程中可能会遇到以下困难:一是对于等差数列通项公式的推导过程较难理解;二是在运用通项公式和前 n 项和公式解决实际问题时,不能灵活选择合适的公式进行计算。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式和前 n 项和公式。

(2)能够运用等差数列的通项公式和前 n 项和公式解决简单的实际问题。

2、过程与方法目标(1)通过观察、分析、归纳等数学活动,培养学生的抽象思维能力和逻辑推理能力。

(2)让学生经历等差数列通项公式的推导过程,体会从特殊到一般的数学思维方法。

3、情感态度与价值观目标(1)激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

(2)通过等差数列在实际生活中的应用,让学生感受数学与生活的密切联系,提高学生的数学应用意识。

四、教学重难点1、教学重点(1)等差数列的定义、通项公式和前 n 项和公式。

(2)等差数列通项公式和前 n 项和公式的应用。

2、教学难点(1)等差数列通项公式的推导过程。

等差数列前n项和公式评课稿

等差数列前n项和公式评课稿

等差数列前n项和公式评课稿
听取了焦梦老师的汇报课.高二数学组全体成员和部分高一数学教师积极参加了本次教学活动.
 这节课讲得是等差数列前n项和公式(一) .从整体看来,焦老师能够认真备课,虚心求教,对教学内容做到正确的理解,对教学的各个环节有较好的把握,对教学方法上能有所探究。

课堂教学设计新颖,教学过程反映了新课改的基本思路,学生的活动性、探究性得到了较好体现。

比较符合学校对高二数学教学的要求:高标准,精讲析,高容量,适难度.
 当然美中也有不足之处.比如等差数列前n项和公式可以类比梯形面积公式以便于学生记忆,而不能说成是等差数列前n项和公式的几何意义;对于奇数项和与偶数项和的性质的推导,则应该把重点放在对数列项数的判断上.作为一个青年教师,焦梦老师具有很好的扎实功底,驾驭课堂的能力也比较娴熟,课前能认真准备,课后能虚心求教,这是十分难能可贵的,相信在多数老师诚意的帮助下,她一定能迅速成长为一名优秀的实高教师.
 通过观课评课,我深刻的认识到学习的重要性,多听课绝对是提高业务水平的不二捷径.正所谓以人为镜可以明得失”,听课特别是评课,不仅能帮助我认识授课老师的不足,更重要的是可以看到自己的很多不足之处. 三人行必有吾师”,以后我要积极参加观评课活动,通过学习,努力提升自己的业务水平,做一个高标准的实高教师.。

等差数列及其通项公式教学设计及点评

等差数列及其通项公式教学设计及点评

等差数列及其通项公式教学设计及点评《等差数列(第1课时)》教学设计——等差数列及其通项公式【内容分析】本节课是《普通高中课程标准实验教科书·数学5》(人教A版)第二章数列第二节等差数列第一课时.数列是高中数学重要内容之一,它不但有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的相关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.【教学目标】1.知识目标:理解等差数列定义,掌握等差数列的通项公式.2.水平目标:培养学生观察、归纳水平,在学习过程中,体会归纳思想和化归思想并加深理解;通过概念的引入与通项公式的推导,培养学生分析探索水平,增强使用公式解决实际问题的水平.3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,增强理论联系实际,激发学生的学习兴趣.【教学重点】①等差数列的概念;②等差数列的通项公式的推导过程及应用.【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【学情分析】我所教学的学生是我校高一(10)班的学生(平行班学生),经过快一年的高中数学学习,绝大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维水平和演绎推理水平,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促动思维水平的进一步发展.【设计思路】1.教法①诱导思维法:这种方法有利于学生对知识实行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生实行交流,即时发现问题,解决问题,调动学生的积极性.③讲练结合法:能够即时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;能够对各种水平的同学引导理解多元的推导思维方法.用多种方法对等差数列的通项公式实行推导.在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清.【教学过程】本节课中,蒋老师精心准备,创设了丰富、生动的教学情境,设计了新颖、有效的数学问题,成功地激发了学生的学习兴趣.这位老师的课堂教学风格和教育教学理念,深深地震撼着我.下面从“导”和“学”二字,谈谈我的看法:“导”­­­:创设有效的教学情境,激发学生的学习兴趣.《课标》指出:“数学教学,要紧紧联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境.”这节课体现了这一特点.这节课中,教师依据本课的内容和要求,设计数数、水库水位和储蓄的本息计算的三个数列模型,创设的教学情境关注了学生的实际,达到了调动学生学习主动性,激发了学生学习兴趣的目的,促成了课堂教学向学生自主探究学习方式的转化.“学”:探究有效的教学过程,挖掘学生的学习潜能.《课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式.”这节课也体现了这一特点.这节课中,教师设计了有效的数学问题,引导学生发现等差数列的共同特点,并归纳出等差数列定义.又如,通项公式的学习,教师通过问题引导学生从等差数列的定义出发,运用数学思想方法,导出其通项公式.整堂课,学生情绪高昂,课堂气氛热烈、融洽.总之,在这节课中,教师能创设有效的教学情境,引导学生多角度思考问题,解决问题.让学生真正成为学习的主人,教师真正成为组织者、引导者和参与者.让整个课堂焕发出生命活力!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A 版高中数学五《等差数列》评课稿 王老师上的是必修5第二章第二节«2.2.1等差数列»第一课时的内容,是学生学习了数列的有关概念的基础上,对数列知识的进一步深入和拓展。

同时等差数列的学习也为今后学习等比数列和研究其它特殊数列提供了学习对比的依据,所以本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

王老师围绕〝数列是特殊的函数〞这一中心,抓住研究函数的步骤为主线设计本节课。

课堂开始王老师复习了数列的有关概念,并凸显了函数在数列中的地位,然后以生活实例〝创设情景〞,内容生动、学生熟悉、感兴趣,符合课堂所追求的〝让学生真正成为主体,拥有学习主动权〞,在预设好的情境和师生的共同努力下得以落实,让学生初步认识等差数列这一特殊数列,并引出定义,得到等差数列的递推关系式,有意识地培养学生的抽象概括和直观想象能力。

当学生能初步认识等差数列的基础上,让学生求某一等差数列中的第20项,此时学生认为单纯的定义通过列表可以解决,但必须依次递推得到,更难去求更大项,使之与已有知识产生思维碰撞,迫使学生去寻求等差数列的通项公式,即函数解析式。

在探寻过程中,王老师以〝活动〞为基础,充分为学生创设操作和实践的机会,让学生在探索中体验〝迭代〞法和〝累加〞法在数列中的使用,这一环节学生情绪高昂、气氛热烈、融洽。

学生的手、脑、眼、口等多种感官直接参与了学习活动,不仅解决了数学知识高度抽象性与青少年思维发展具体形象性的矛盾,经历了通项公式的形成过程,培养了学生〝数学建模〞能力和逻辑推理能力。

并且让学生感受通项公式的实用性,进一步强调〝n a n d a ,,,1〞知三求一的特点,同时提出
〝d a ,1〞是等差数列的两个基本量,从而有联系到定义中的递推关系,为今后数学归纳法的学习埋下了伏笔。

最后王老师不忘函数的第三种表达形式——函数图像,从图象上让学生感知等差数列各项在平面直角坐标系中是一次函数上一群离散的孤立点。

整节课王老师始终围绕着培养学生数学核心素养,从一定程度上有意培养学生的数学抽象、直观想象、逻辑推理和数学建模能力。

徐云燕。

相关文档
最新文档