(人教版A版最新)高中数学必修第一册 第五章综合测试02

合集下载

(人教版B版)高中数学必修第二册 第五章综合测试试卷01及答案

(人教版B版)高中数学必修第二册 第五章综合测试试卷01及答案

第五章综合测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是容量为100的样本数据质量的频率分布直方图,已知样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A.10B.20C.30D.402.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.83.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对4.根据某跑步团体每月跑步的平均里程(单位:公里)的数据绘制了如图所示的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳5.在掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一U发生的概率为()次试验中,事件A BA .13B .12C .23D .566.某示范农场的鱼塘放养鱼苗8万条,根据这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,估计这时鱼塘中鱼的总质量为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg7.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A .①③B .①④C .②③D .②④8.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A .100,10B .100,20C .200,10D .200,209.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A .25B .715C .1130D .1610.如图所示,小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为A X 和B X ,方差分别为2A s 和2B s ,则()A .AB X X <,22A B s s >B .A B X X <,22A Bs s <C .A B X X >,22A B s s >D .A B X X >,22A Bs s <11.袋子中有四个小球,分别写有“美”“丽”“中”“国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到时停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中”“国”“美”“丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232321230023123021132220001231131133231031320122130233由此可以估计,恰好第三次停止的概率为( )A .19B .318C .29D .51812.有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个人能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p ,录用到能力中等的人的概率为q ,则(),p q =()A .11,66æöç÷èøB .11,26æöç÷èøC .11,24æöç÷èøD .11,23æöç÷èø二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.某单位青年、中年、老年职员的人数之比为11: 8: 6,从中抽取200名职员作为样本,则应抽取青年职员的人数为__________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.15.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值为__________.16.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为1白1黑的概率等于__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.[10分]为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图所示.(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12x x -的值.18.[12分]为了调查某市市民对出行的满意程度,研究人员随机抽取了1 000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中4a b =.(1)求a,b的值;(2)求被调查的市民的满意程度的平均数、众数、中位数;(3)若按照分层抽样从[50,60),[60,70)中随机抽取8人,应如何抽取?19.[12分]某地区有小学21所,中学14所,大学7所。

2022-2023学年高一数学必修第一册第五章《三角函数》测试卷及答案解析

2022-2023学年高一数学必修第一册第五章《三角函数》测试卷及答案解析

=sin(2x )
∴g(x)=sin(2x )
对于 A:令
2x
,解得
b
t
,∴在区间[ , ]上单调递增;则 A 正
确. 对于 B:当 x b 时,可得函数值 f(x)=1,所以图象关于直线 x b 对称;则 B 正确.
对于 C:令
2x
,解得
t ,∴在区间[ , ]上不是单调递减;
则 C 不正确.
对于 D:令 x ,可得函数值 f(x)=0,∴图象关于点( ,0)对称;则 D 正确;
第 5 页 共 16 页
22.已知函数 Sth ሻ 已mS t hSሻ> , > ,图 图< h的部分图象如图所示. (1)求 A,ω,φ的值; (2)先将函数 y=f(x)的图象向右平移 个单位长度后,得到函数 y=g(x)的图象, 若函数 h(x)=f(x)+g(x)在[0,m]上单调递增,求 m 的取值范围.
第 6 页 共 16 页
2022-2023 学年高一数学必修第一册第五章《三角函数》测试卷
参考答案与试题解析
一.单项选择题(共 8 小题,每小题 5 分,共 40 分) 1.若 imS th ,则 sin2x=( )
A.
B.
C.
D.
解:∵ imS th ,
imt ∴
imt
,整理可得 tanx=3,
对 B,由 2x
可得, t
,故 f(x)在区间[ , ]上单调递减,B 正确;
对 C,因为 f( )=0,得到函数图象的一个对称中心为S , h,C 正确.
对 D,因为 已mS t h
t
由 t由
S由 h,D 正确.
故选:BCD.
10.将函数 f(x)=sin(2x )的图象向右平移 个单位长度得到 g(x)图象,则下列判

第五章 三角函数 综合测评卷(B卷)—高一上学期数学人教A版(2019)必修第一册含答案

第五章 三角函数 综合测评卷(B卷)—高一上学期数学人教A版(2019)必修第一册含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第五章 三角函数 综合测评B 卷一、单选题1.使函数()sin(2))f x x x q q =++为奇函数,且在区间0,4éùêëûp 上是减函数的q 的一个值是()A .3p-B .6p-C .23p D .56p 2.若函数sin()0,||2y A x A p w j j æö=+><ç÷èø图象 的一个最高点为(2,2),由这个点到相邻最低点的一段图象与x 轴相交于点(6,0),则这个函数的解析式是()A .2sin 44y x pp æö=+ç÷èøB .32sin 84y x pp æö=-ç÷èøC .2sin 84y x pp æö=+ç÷èøD .32sin 84y x pp æö=+ç÷èø3.为了得到sin()3y x p=-的图象,只需把函数sin y x =的图象上的所有点()A .向右平行移动3p个单位长度B .向左平行移动3p个单位长度C .向右平行移动6p个单位长度D .向左平行移动6p个单位长度4.中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S,当扇形的圆心角的弧度数为(3p 时,扇面看上去形状较为美观,那么此时12S S 的值为( )ABCD.35)ABCD6.已知点(P 是角a 终边上一点,则cos 6p a æö-ç÷èø等于()ABC.D7.已知221304a c +-=,则2c a +的最大值是( )A .B .C .D .8.已知函数()()sin ,04f x x x R p w w æö=+Î>ç÷èø的最小正周期为p ,将()y f x =的图象向左平移()0j j >个单位长度,所得图象关于y 轴对称,则j 的一个值是( )A .2pB .38p C .4pD .8p二、多选题9.设函数()sin 26f x x p æö=+ç÷èø的图象为C ,则下列结论错误的是()A .函数()f x 的最小正周期是pB .图象C 关于直线6x p=对称C .图象C 可由函数()sin 2g x x =的图象向左平移3p个单位长度得到D .函数()f x 在区间(12p-,2p上是增函数10.已知函数()sin()0,||2f x x p w j w j æö=+><ç÷èø的部分图象如图所示,将()f x 的图象向右平移(0)a a >个单位长度,得到函数()g x ,若()g x 满足(2)()g x g x p -=,则下列结论正确的是()A .2w =B .6π=j C .sin 213a p æö-=±ç÷èøD .a 的最小值为512p 11.如图,摩天轮的半径为40m ,其中心O 点距离地面的高度为50m ,摩天轮按逆时针方向匀速转动,且20min 转一圈,若摩天轮上点P 的起始位置在最高点处,则摩天轮转动过程中( )A .转动10min 后点P 距离地面10mB .若摩天轮转速减半,则转动一圈所需的时间变为原来的12C .第17min 和第43min 点P 距离地面的高度相同D .摩天轮转动一圈,点P 距离地面的高度不低于70m 的时间为5min12.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t w =,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()|cos |sin |f x x x =,则下列结论正确的是( )A .()f x 是偶函数B .()f x 的最小正周期为2pC .()f x 在区间0,2p éùêúëû上单调递增D .()f x 的最小值为1三、填空题13.若02pa <<,02pb -<<,1cos()43p a +=,sin()24b p +cos(2)a b +=__.14.下列关于函数51()2sin 62f x x p æö=-ç÷èø的说法中,错误的是______________.①函数()f x 的图象关于直线43x p=-对称;②函数()f x 的图象关于点,06pæöç÷èø对称;③函数()f x 在区间28,33p p éùêúëû上单调递增;④函数()()g x f x q =+是一个偶函数,则223k pq p =+,k Z Î.15.如图是由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的内角为q ,大正方形的面积是1,小正方形的面积是125,则22sin cos q q -的值是______.16.已知函数()()211(sin )sin 20,22f x x x R w w w w =+->Î,若()f x 在区间(),2p p 内没有零点,则w 的取值范围是_____.四、解答题17.我们知道如果点(),P x y 是角a 终边OP 上任意一点(0OP r =>),则根据三角比的定义:sin y ra =,cos xra =,因此点P 的坐标也可以表示为()cos ,sin P r r a a .(1)将OP 绕坐标原点O 逆时针旋转3p至'OP ,求点P'的坐标()','x y .(即分别把'x 、'y 用x 、y 表示出来)(2)将OP 绕坐标原点O 逆时针旋转j 角度至'OP ,求点P'的坐标()','x y .(即分别把'x 、'y 用x 、y 、j 表示出来)(3)把函数()10y x x =>的图像绕坐标原点逆时针旋转4p 后,可以得到函数___________的图像.(写出解析式和定义域)18.已知函数()2sin sin cos a x b x y f x x =+=,且满足3262f f p p æöæö==ç÷ç÷èøèø.(1)求实数a 、b 的值;(2)记()y f x t =+,若函数()f x t +是偶函数,求实数t 的值.19.如图所示,摩天轮的半径为40 m ,O 点距地面的高度为50 m ,摩天轮作匀速转动,每2 min 转一圈,摩天轮上点P 的起始位置在最高点.(1)试确定在时刻t min 时P 点距离地面的高度;(2)在摩天轮转动一圈内,有多长时间P 点距离地面超过70 m.20.如图,已知O PQ 是半径为1,圆心角为3p的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记COP a Ð=,矩形ABCD 的面积为S .(1)求S 与a 之间的函数关系式;(2)当a 取何值时,S 最大?并求出S 的最大值.21.已知函数221()sin cos 22f x x x x =++.(1)求()f x 的周期;(2)求()f x 的严格减区间;(3)解方程()1f x =;(4)当0,4x p éùÎêúëû时,求函数()f x 的值域.22.已知函数2()2tan 1,[,22f x x x x p p q q æö=+×-Î-Î-ç÷èø.(1)当6pq =-时,求函数()f x 的最大值与最小值;(2)求q 的取值范围,使()y f x =在区间[-上是单调函数.参考答案1.C【解析】由()sin(2))2sin(23f x x x x pq q q =++=++为奇函数,所以,,33k k k Z ppq p q p +==-Î,故A ,C 符合范围,当3pq =-时,()2sin 2f x x =,不符题意,当23p q =时,()2sin 2f x x =-,在0,4éùêúëûp 上为减函数,符合题意,故选:C 2.C【解析】根据题意可得2A =,由函数的解析式函数sin()y A x w j =+,易知最高点和相邻最低点的中点在x 轴上,也为函数sin()y A x w j =+的零点,故该最低点坐标为(10,2)-,所以10282T=-=,所以16T =,所以22168T p p p w ===,所以2sin()8y x pj =+,再由最高点为(2,2),所以sin()14pj +=,由||2j p <,所以4p j =,所以这个函数的解析式是2sin 84y x pp æö=+ç÷èø,故选:C 3.A【解析】解:由已知中平移前函数解析式为sin y x =,平移后函数解析式为:sin()3y x p=-,可得平移量为向右平行移动3p个单位长度,故选:A .4.A【解析】由扇形的圆心角的弧度数为(3p ,()231p p p -=,故12S S ==故选:A.5.A【解析】设底角为θ,则θ∈(0,)2p,顶角为180°-2θ.∵sin θ∴cos θ23,∴sin(180°-2θ)=sin 2θ=2sin θcos θ=23=故选:A 6.A【解析】解析:由题意可得sin α,cos αcos 6p a æö-ç÷èø=cos 6p cos α+sin 6p sin α12=.故选:A 7.B【解析】解:221304a c +-=,可得22111312a c +=,令aa ,c a =.a ÎR ,可得2)4c a pa a a +=+=+…则2c a +的最大值是:故选:B .8.D【解析】()f x Q 最小正周期为p ,2pp w \=,解得:2w =,()sin 24f x x p æö\=+ç÷èø;()y f x =图象向左平移j 个单位长度得:()sin 224f x x p j j æö+=++ç÷èø,()f x j +Q 图象关于y 轴对称,()242k k Z ppj p \+=+Î,解得:()82k k Z ppj =+Î,则当0k =时,8p j =.故选:D.9.CD【解析】解:A .由()sin 26f x x p æö=+ç÷èø知,()f x 的最小正周期为22p p =,故A 正确;B .当6x p=时,()1f x =取得最大值,故图象C 关于直线6x p=,故B 正确;C .将()g x 向左平移3p个单位得2sin 2sin 2()33y x x f x éùæöæö=+=+¹ç÷ç÷êúèøèøëûp p ,故C 不正确;D .函数()f x 的单调递增区间是,()36k k k Z p p p p éù-++Îêúëû,单调递减区间是2,()63k k k Z p p p p éù++Îêúëû,取0k =,得函数()f x 的一个单调递增区间是,36p p éù-êúëû,一个单调递减区间是2,63p p éùêúëû,故在区间,122p p æö-ç÷èø上()f x 不是单调递增的,而是先递增后递减,故D 不正确.故选:CD .10.ACD【解析】由图象可得,函数()f x 的图象过点,112p æöç÷èø,,03p æöç÷èø,所以4312T p p=-,可得T p =,因为2||T p w =,0>w ,可得2w =,由图象过点,03p æöç÷èø,且在单调递减区间内,可得sin 203p j æö´+=ç÷èø,解得22()3k k Z pj p p ´+=+Î,即2()3k k Z pj p =+Î,因为||2j p <,所以3pj =,可得()sin 23f x x p æö=+ç÷èø,所以()sin 2()sin 2233g x x a x a p p éùæö=-+=-+ç÷êúëûèø,故A 正确,B 错误;由(2)()g x g x p -=,可得()g x 的图象关于直线x p =对称,所以()sin 22sin 2133g a a p p p p æöæö=-+=--=±ç÷ç÷èøèø,C 正确;由2()32a k k Z ppp -=+Î,解得5()122k a k Z p p=+Î,又由0a >,所以min 512a p=,故D 正确.故选ACD .11.AC【解析】解:Q 摩天轮20min 转一圈,\在(min)t 内转过的角度为22010t t p p=,建立平面直角坐标系,如图,设(02)j j p ……是以x 轴正半轴为始边,00(OP P 表示点P 的起始位置)为终边的角,以x 轴正半轴为始边,OP 为终边的角为()10t pj +,即点P 的纵坐标为40sin()10t pj +,又由题知,P 点起始位置在最高点处,\2j p =P \点距地面高度h 关于旋转时间t 的函数关系式为:5040sin()102h t pp=++即5040cos10h tp=+当10min t =时,10h =,故A 正确;若摩天轮转速减半,40T =,则其周期变为原来的2倍,故B 错误;第17min P 点距安地面的高度为173(17)40cos5040cos 501010h p p=+=+第20min P 点距离地面的高度为433(43)40cos5040cos 501010h p p=+=+第17min 和第43min 时P 点距离地面的高度相同,故C 正确;摩天轮转动一圈,P 点距离地面的高度不低于70m ,即40cos 507010t p+…,即1cos 102tp ,020t Q ……,得0210tp p ……,\0103tp p……或52310t p p p ……,解得1003t ……或50203t ……,共20min 3,故D 错误.故选:AC .12.AD【解析】因为R x Î,()()f x f x -=,所以()f x 是偶函数,A 正确;()f x 显然是周期函数,因为()|cos()||sin()||cos ||sin |()f x x x x x f x p p p +=++==,所以B 错误;因为当0,2x p éùÎêúëû时,()|cos ||sin |cos 2sin 6f x x x x x x p æö===+ç÷èø,所以()f x 在区间0,3p éùêúëû上单调递增,在,32p p æùçúèû上单调递减,C 错误;因为2sin ,0,,62()2sin ,,,62x x f x x x p p p p p ìæöéù+Îç÷ïêúïèøëû=íæöæùï-Îç÷çúïèøèûî当0,2x p éùÎêúëû时,设6t x p =+,则2,63t p p éùÎêúëû,∴1sin ,12t éùÎêúëû,∴min ()1f x =,同理:当,2x p æùÎp çúèû时,min ()1f x =,由B 中解答知,p 是()f x 的周期,所以()f x 的最小值为1,D 正确.故选:AD.13.2327【解析】解:1cos()sin )43pa a a +-=Q,可得:cos sin a a -=①\两边平方可得,21sin 29a -=,解得:7sin 29a =,02p a <<Q,可得:4cos sin 3a a +==,②\由①②解得:cos 2(cos sin )(cos sin )a a a a a =-+=又sin(24b p +Qcos 22b b +,两边平方,可得:1sin 3b =-,cos b =,7123cos(2)cos 2cos sin 2sin (9327a b a b a b \+=--´-=.故答案为:2327.14.②③【解析】对于①,451432sin 2sin 236232f p p p p éùæöæö-=-´-==-ç÷ç÷êúèøèøëû,故①正确;对于②,5132sin 2sin 066264f p p p p æöæö=-´==¹ç÷ç÷èøèø,故②错误;对于③,5115()2sin 2sin 6226f x x x p p æöæö=-=--ç÷ç÷èøèø,当28,33x p p éùÎêúëû时,15,2622x p p p éù-Î-êúëû,函数()f x 单调递减,故③错误;对于④,()()5151()2sin 2sin 62622g x f x x x p p q q q éùæö=+=-´+=--ç÷êúëûèø,函数()g x 是偶函数,所以5622k p q p p -=-+,k Z Î,即223k p q p =+,k Z Î,故④正确.故答案为:②③.15.725-【解析】Q 大正方形的面积是1,即大正方形的边长为1,则由题可得每个直角三角形的长直角边为cos q ,短直角边为sin q ,所以小正方形的边长为cos sin q q -,Q 小正方形的面积是125,()21cos sin 25q q \-=,1cos sin 5q q \-=,()21cos sin 12sin cos 25q q q q -=-=Q ,则12sin cos 25q q =,()249cos sin 12sin cos 25q q q q \+=+=,则7cos sin 5q q +=,()()22177sin cos sin cos sin cos 5525q q q q q q \-=-+=-´=-.故答案为:725-.16.115(0,][,16816U 【解析】()2111cos 211(sin )sin 2sin 222222x f x x x x w w w w -=+-=+-4x p w =-.由()0f x =,可得24k x pw p -=,解得82k x p p w w=+,k Z Î.因为()f x 在区间(),2p p 内没有零点,所以()2,28k x p p w w p p =+Ï,且2T ³p ,即()2,28k x p p w w p p =+Ï且102w <≤,因为0>w ,分别取0k =,1,2,3¼,11599115(,)(,)(,)(,)(,)168168168168165w \ÏÈÈȼ=È+¥,115(0,][,]16816w \ÎU ∴w 的取值范围是115(0,][,16816U ,故答案为:115(0,[,]16816U .17.(1)1'2x x y =;1'2y x y =+;(2)co in 's s x x y j j =-;'cossin y y x j j =+;(3))y x R =Î.【解析】'OP OP r ==,(1)'cos 3x r pa æö=+ç÷èø11cos sin '22r x xy a a =Þ=;同理,1'sin 32y r y p a æö=+=+ç÷èø;(2)'cos()cos cos sin sin x r r r a j a j a j =+=-,故co in 's s x x y j j =-;同理,'sin()cos sin y r y x a j j j =+=+;(3)在(2)中令4p j =得'cos sin44x x y pp =-,可得1')x x y x xö=-=-÷ø,同理,1'y x x ö=+÷ø,因此,22''1y x -=,所以,函数为)y x R =Î.18.(1)2a =,b =(2)3πt ,k ÎZ .【解析】(1)由题意264322a f f a p p ìæö==ïç÷ïèøíæöï==ç÷ïèøî,所以2,a b ==.(2)由(1)()22sin cos 1cos 222sin(2)16πx x x x x f x x =+=-=-+所以()2sin(2216f x t x t p +=+-+,因为()f x t +是偶函数,所以2()62t k k Z ppp -=+Î,所以()32k t k Z pp =+Î19.(1)5040cos t p +;(2)有2min 3P 点距离地面超过70 m.【解析】建立如图所示的平面直角坐标系,(1)设()02j j p ££是以Ox 为始边,0OP 为终边的角,OP 在t min 内转过的角为22t p ,即t p ,∴以Ox 为始边,OP 为终边的角为t p j +,即P 点纵坐标为()40sin t p j +,∴P 点距地面的高度为()()5040sin 02z t p j j p =++££,由题可知,2j p =,∴5040cos z t p =+.(2)当5040cos 70t p +³时,解之得,1122,33k t k k Z -££+Î,持续时间为2min 3即在摩天轮转动一圈内,有2min 3点距离地面超过70 m.20.(1)2063S p p a a æöæö=+<<ç÷ç÷èøèø;(2)6p a =时,S 最大【解析】(1)在Rt OBC △中,cos OB a =,sin BC a =,在Rt OAD △中,tan 60DA OA =°=∴OA BC a ===,∴cos AB OB OA a a =-=,∴2cos sin sin cos AB BC S a a a a a a æö×==ç÷ç÷èø=1sin 2cos 2)2a a =-1sin 222a a =12cos 22a a ö=+÷÷ø2063p p a a æöæö=+<<ç÷ç÷èøèø.(2)由03pa <<得52666ppp a <+<,所以当262p p a +=,即6p a =时,S ==最大21.(1)T p =;(2)2,,63k k k p p p p éù++ÎêúëûZ ;(3),,3x k k k p p p =+ÎZ ;(4)51,4éùêúëû.【解析】221()sin cos 22f x x x x =+11cos 21cos 22222x x x -+=+3cos 2244x x =+13sin(2)264x p =++,(1)周期为:22p p =;(2)令3222,262k x k k Z ppp p p +<+<+Î,解得2,63k x k k p p p p +<<+ÎZ ,所以()f x 的严格减区间为2,,63k k k p p p p éù++ÎêúëûZ ;(3)由()1f x =,得1sin(262x p +=,所以2266x k ppp +=+,或52266x k pp p +=+,解得x k p =或,3k k pp +ÎZ ;(4)当0,4x p éùÎêúëû,则22,663x p p p éù+Îêúëû,此时1sin(2),162x p éù+Îêúëû,所以函数()f x 的值域为51,4éùêúëû22.(1)max min 4()()3f x f x ==-;(2),,2342p p p p q æùéöÎ--ç÷êèûëøU .【解析】(1)当6p q =-时,2224()2tan()11(63f x x x x x x p =+×--=-=-,[x Î-Q ,当x =时,()f x 取最小值为43- ,当1x =- 时,()f x ;(2)222()2tan 1=(+tan )1tan f x x x x q q q =+×---的图像的对称轴为tan x q =- ,要使()y f x =在区间[-上单调,那么tan 1q -£-,或tan q -³tan 1q ³或tan θ£,又,22p p q æöÎ-ç÷èø,所以,,2342p p p p q æùéöÎ--ç÷úêèûëøU .。

2021年人教版高中数学必修第一册随堂练习:第5章《5.4.2第2课时单调性与最值》(含答案详解)

2021年人教版高中数学必修第一册随堂练习:第5章《5.4.2第2课时单调性与最值》(含答案详解)

2021年人教版高中数学必修第一册随堂练习:第5章《5.4.2第2课时单调性与最值》(含答案详解)1、第2课时单调性与最值学习目标核心素养1.把握y=sinx,y=cosx的最大值与最小值,并会求简洁三角函数的值域和最值.(重点、难点)2.把握y=sinx,y=cosx的单调性,并能利用单调性比较大小.(重点)3.会求函数y=Asin(ωx+φ)及y=Acos(ωx+φ)的单调区间.(重点、易混点)1.通过单调性与最值的计算,提升数学运算素养.2.结合函数图象,培育直观想象素养.解析式y=sinxy=cosx 图象值域[-1,1][-1,1]单调性在+2kπ,k∈Z上单调递增,在+2kπ,k∈Z上单调递减在[-π+2kπ,2kπ],k∈Z上单调递增,在[2kπ,π+2kπ],k∈Z上单调递减最值x=+2kπ,k∈Z时,ymax=1;x=-+2kπ,k∈Z时,ym2、in=-1x=2kπ,k∈Z时,ymax=1;x=π+2kπ,k∈Z时,ymin=-1思索:y=sinx和y=cosx在区间(m,n)(其中0<m<n<2π)上都是减函数,9n你能确定m的最小值、n的最大值吗?提示:由正弦函数和余弦函数的单调性可知m=,n=π.1.函数y=-cosx 在区间上是( )A.增函数B.减函数C.先减后增函数D.先增后减函数C [因为y=cosx在区间上先增后减,所以y=-cosx 在区间上先减后增.]2.函数y=sinx的值域为________.[因为≤x≤,所以≤sinx≤1,即所求的值域为.]3.函数y=2-sinx取得最大值时x的取值集合为________.[当sinx=-1时,ymax=2-(-1)=3,此时x=23、kπ-,k∈Z.]4.若cosx=m-1有意义,则m的取值范围是________.[0,2] [因为-1≤cosx≤1,要使cosx=m-1有意义,须有-1≤m-1≤1,所以0≤m≤2.]正弦函数、余弦函数的单调性【例1】(1)函数y=cosx在区间[-π,a]上为增函数,则a的取值范围是________.(2)已知函数f(x)=sin+1,求函数f(x)的单调递增区间.9n[思路点拨] (1)确定a的范围→y=cosx在区间[-π,a]上为增函数→y=cosx在区间[-π,0]上是增函数,在区间[0,π]上是减函数→a的范围.(2)确定增区间→令u=+2x→y=sinu的单调递增区间.(1)(-π,0] [(1)因为y=cosx在[-π,0]上是增函数,在4、[0,π]上是减函数,所以只有-π<a≤0时满足条件,故a∈(-π,0].](2)[解] 令u=+2x,函数y=sinu的单调递增区间为,k∈Z,由-+2kπ≤+2x≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z.所以函数f(x)=sin+1的单调递增区间是,k∈Z.1.求形如y=Asin(ωx+φ)+b或形如y=Acos(ωx+φ)+b(其中A≠0,ω0,b为常数)的函数的单调区间,可以借助于正弦函数、余弦函数的单调区间,通过解不等式求得.2.具体求解时留意两点:①要把ωx+φ看作一个整体,若ω0,先用诱导公式将式子变形,将x的系数化为正;②在A0,ω0时,将“ωx+φ”代入正弦(或余弦)函数的单调区间,可以解得与之单调性一5、致的单调区间;当A0,ω0时同样方法可以求得与正弦(余弦)函数单调性相反的单调区间.提示:复合函数的单调性遵循“同增异减”的规律.1.(1)函数y=sin,x∈的单调递减区间为________.(2)已知函数y=cos,则它的单调减区间为________.(1),(2)(k∈Z) [(1)由+2kπ≤3x+9n≤+2kπ(k∈Z),得+≤x≤+(k∈Z).又x∈,所以函数y=sin,x∈的单调递减区间为-,-,,.(2)y=cos=cos,由2kπ≤2x-≤2kπ+π,k∈Z,得kπ+≤x≤kπ+,k∈Z,∴单调递减区间是(k∈Z).]利用三角函数的单调性比较大小【例2】利用三角函数的单调性,比较以下各组数的大小.(1)sin与sin;(2 6、)sin196°与cos156°;(3)cos与cos.[思路点拨] →[解] (1)∵-<-<-<,∴sin>sin.(2)sin196°=sin(180°+16°)=-sin16°,cos156°=cos(180°-24°)=-cos24°=-sin66°,9n∵0°<16°<66°<90°,∴sin16°<sin66°,从而-sin16°>-sin66°,即sin196°>cos156°.(3)cos=cosπ=cos=cosπ,cos=cosπ=cos=cos.∵0<<π<π,且y=cosx在[0,π]上是减函数,∴cosπ<cos,即cos<cos.三角函数值大小比较的策略(1)利用诱导公式,对于正弦函数来说,一般将两个角转化到内;对于余弦函数来说,7、一般将两个角转化到[-π,0]或[0,π]内.(2)不同名的函数化为同名的函数.(3)自变量不在同一单调区间化至同一单调区间内,借助正弦、余弦函数的单调性来比较大小.2.(1)已知α,β为锐角三角形的两个内角,则以下结论正确的选项是( )A.sinα<sinβB.cosα<sinβC.cosα<cosβD.cosα>cosβ9n(2)比较以下各组数的大小:①cos,cos;②cos1,sin1.(1)B [α,β为锐角三角形的两个内角,α+β>,α>-β,α∈,-β∈,所以cosα<cos=sinβ.](2)[解] ①cos=cos,cos=cos,因为0<<<π,而y=cosx在[0,π]上单调递减,所以cos>cos,即cos >cos.②因为cos1=s8、in,而0<-1<1<且y=sinx在上单调递增,所以sin<sin1,即cos1<sin1.正弦函数、余弦函数的最值问题[探究问题]1.函数y =sin在x∈[0,π]上最小值是多少?提示:因为x∈[0,π],所以x+∈,由正弦函数图象可知函数的最小值为-.2.函数y=Asinx +b,x∈R的最大值肯定是A+b吗?提示:不是.因为A0时最大值为A+b,若A0时最大值应为-A+b.9n【例3】(1)函数y=cos2x +2sinx-2,x∈R的值域为________.(2)已知函数f(x)=asin+b(a >0).当x∈时,f(x)的最大值为,最小值是-2,求a和b的值.[思路点拨] (1)先用平方关系转化,即cos2x=1-sin2x,再将si9、nx看作整体,转化为二次函数的值域问题.(2)先由x∈求2x-的取值范围,再求sin2x的取值范围,最终求f(x)min,f(x)max,列方程组求解.(1)[-4,0] [y=cos2x+2sinx-2=-sin2x+2sinx-1=-(sinx-1)2.因为-1≤sinx≤1,所以-4≤y≤0,所以函数y=cos2x+2sinx-2,x∈R的值域为[-4,0].](2)[解] ∵0≤x≤,∴-≤2x-≤,∴-≤sin≤1,∴f(x)max=a+b=,f(x)min=-a+b=-2.由得1.求本例(1)中函数取得最小值时x的取值集合.[解] 因为y=cos2x+2sinx-2=-sin2x+2sinx-1=-(sinx-1)2,所以当sinx=-1时,ymin10、=-4,此时x的取值集合为.2.将本例(1)中函数改为y=cos2x+sinx,x∈R结果又如何?[解] y=cos2x+sinx=1-sin2x +sinx=-2+.9n因为-1≤sinx≤1,所以-1≤y≤,所以函数y =cos2x+sinx,x∈R的值域为.三角函数最值问题的常见类型及求解方法:(1)y=asin2x+bsinx+c(a≠0),利用换元思想设t=sinx,转化为二次函数y=at2+bt+c求最值,t的范围需要依据定义域来确定.(2)y=Asin(ωx+φ)+b,可先由定义域求得ωx+φ的范围,然后求得sin(ωx+φ)的范围,最终得最值.1.确定三角函数单调区间的方法有多种,如换元法、列表法、图象法等,解题时需适当选取,同时要留意,求函数的单11、调区间必需在这个函数的定义域内进行.2.函数单调性最基本的应用是比较大小与求值域,求三角函数值域的方法许多,假如函数式中含有多个三角函数式,往往要先将函数式进行变形.1.思索辨析(1)y=sinx在(0,π)上是增函数.( )(2)cos1>cos2>cos3.( )(3)函数y=-sinx,x∈的最大值为0.( )[提示] (1)错误.y=sinx在上是增函数,在上是减函数.(2)正确.y=cosx 在(0,π)上是减函数,且0<1<2<3<π,所以cos1>cos2>cos3.(3)正确.函数y=-sinx在x∈上为减函数,故当x=0时,取最大值0.9n[答案] (1)×(2)√(3)√2.y=2cosx2的值域是( )A.[-2,2] B12、.[0,2]C.[-2,0]D.RA [因为x∈R,所以x2≥0,所以y =2cosx2∈[-2,2].]3.sin________sin(填“>”或“<”).>[sin=sin=sin,因为0<<<,y=sinx在上是增函数,所以sin <sin,即sin>sin.]4.函数y=1-sin2x的单调递增区间.[解] 求函数y=1-sin2x的单调递增区间,转化为求函数y=sin2x的单调递减区间,由+2kπ≤2x≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,即函数的单调递增区间是(k∈Z).9。

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷含答案解析(35)

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷含答案解析(35)

人教A 版高一数学必修第一册第五章《三角函数》单元练习题卷5(共22题)一、选择题(共10题)1. 函数 f(x)=sin (2x −π4)−2√2sin 2x ( ) A .在区间 [−3π8,π8] 上单调递增B .在区间 [π8,5π8] 上单调递增 C .在区间 [−3π8,π8] 上单调递减D .在区间 [−π4,π4] 上单调递减2. 已知 sin (α+π6)=45,则 sin (2α+5π6) 等于 ( )A . 35B . 2425C . 725D . −7253. ∘√1−sin20∘等于 ( ) A .√32B .√33C . √2D .√224. 已知 ω>13,函数 f (x )=sin (2ωx −π3) 在区间 (π,2π) 内没有最值,给出下列四个结论: ① f (x ) 在 (π,2π) 上单调递增; ② ω∈[512,1124];③ f (x ) 在 [0,π] 上没有零点; ④ f (x ) 在 [0,π] 上只有一个零点. 其中所有正确结论的序号是 ( ) A .②④ B .①③ C .②③ D .①②④5. 设函数 y =x 3与 y =(12)x−2的图象的交点为 (x 0,y 0),则 x 0 所在的区间是 ( )A . (0,1)B . (1,2)C . (2,3)D . (3,4)6. 下列命题中,错误的是 ( ) A .度与弧度是度量角的两种不同的度量单位 B . 1 度的角是周角的1360,1 弧度的角是周角的12πC .根据弧度的定义,180∘ 一定等于 π 弧度D .不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关7. 已知 a =log 0.32,b =20.1,c =sin789∘,则 a ,b ,c 的大小关系是 ( ) A . a <b <c B . a <c <b C . c <a <b D . b <c <a8. 函数 f (x )=Asin (ωx +φ)(A >0,ω>0,0<φ<π) 的部分图象如图所示,函数 g (x )=f (x +π8),则下列结论正确的是 ( )A . f (x )=2sin (x +π4)B .函数 f (x ) 与 g (x ) 的图象均关于直线 x =−π4x 对称C .函数 f (x ) 与 g (x ) 的图象均关于点 (−π4,0) 对称 D .函数 f (x ) 与 g (x ) 在区间 (−π3,0) 上均单调递增9. 已知曲线 C 1:y =cosx ,C 2:y =sin (2x +2π3),则下面结论正确的是 ( )A .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 π6个单位长度,得到曲线 C 2B .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 π12 个单位长度,得到曲线 C 2C .把 C 1 上各点的横坐标缩短到原来的 12 倍,纵坐标不变,再把得到的曲线向右平移 π6 个单位长度,得到曲线 C 2D .把 C 1 上各点的横坐标缩短到原来的 12 倍,纵坐标不变,再把得到的曲线向左平移 π12 个单位长度,得到曲线 C 210. 已知函数 y =tanωx 在区间 (−π2,π2) 内单调递减,则 ( ) A . 0<ω≤1 B . −1≤ω<0 C . ω≥1 D . ω≤−1二、填空题(共6题)11. 已知函数 f (x )=sin (3x +φ)(−π2<φ<π2) 的图象关于直线 x =π4 对称,则 φ= .12. 如图,在平面直角坐标系 xOy 中,一单位圆的圆心的初始位置在 (0,1),此时圆上一点 P 的位置在 (0,0),圆在 x 轴上沿正向滚动.当圆滚动到圆心位于 (2,1) 时,P 的坐标为 .13. 若 sinα=13,且 α 为第二象限,则 cos (π2+α)= ,tan (π−α)= .14. 形如 ∣∣∣ab cd ∣∣∣ 的式子叫做行列式,其运算法则为 ∣∣∣a b c d ∣∣∣=ad −bc ,则行列式 ∣∣∣sin15∘√2cos15∘√2∣∣∣ 的值是 .15. 11−tan15∘−11+tan15∘= .16. 已知 tan (α+β)=23,tan (β−π4)=−1,则 tan (α+π4)= .三、解答题(共6题)17. 已知函数 f (x )=(2+2tanx )cos 2x .(1) 求函数 f (x ) 的定义域及最小正周期; (2) 求函数 f (x ) 的单调增区间.18.已知函数f(x)=√3cos(π2−x)cos(2π−x)−cos2x.(1) 求函数f(x)的单调递增区间.(2) 若θ∈[0,π2],f(θ2+π3)=310,求tan(θ+π4)的值.19.用五点法作出函数y=2sin(12x+π6)在一个周期上的大致图象.20.已知函数y=f(x)的定义域D,值域为A.(1) 下列哪个函数满足值域为R,且单调递增?(不必说明理由)① f(x)=tan[(x−12)π],x∈(0,1),② g(x)=lg(1x−1),x∈(0,1).(2) 已知f(x)=log12(2x+1),g(x)=sin2x,函数f[g(x)]的值域A=[−1,0],试求出满足条件的函数f[g(x)]一个定义域D;(3) 若D=A=R,且对任意的x,y∈R,有∣f(x−y)∣=∣f(x)−f(y)∣,证明:f(x+y)=f(x)+f(y).21.已知f(x)=2cosx(sinx−√3cosx)+√3.(1) 求函数f(x)的最小正周期及单调递减区间;(2) 求函数f(x)在区间[−π2,0]的取值范围.22.函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性、对称性等,请选择适当的探究顺序,研究函数f(x)=√1−sinx+√1+sinx的性质,并在此基础上填写下表,作出f(x)在区间[−π,2π]上的图象.答案一、选择题(共10题)1. 【答案】A【解析】因为f(x)=sin(2x−π4)−2√2sin2x=√22sin2x−√22cos2x−2√2⋅1−cos2x2=√22sin2x+√22cos2x−√2=sin(2x+π4)−√2.所以当2x+π4∈[−π2,π2]时,即x∈[−3π8,π8]时,f(x)单调递增.【知识点】Asin(ωx+ψ)形式函数的性质2. 【答案】D【解析】因为sin(2α+5π6)=sin(2α+π3+π2)=cos(2α+π3)=cos[2(α+π6)]=1−2sin2(α+π6),所以sin(2α+5π6)=1−2×(45)2=−725.【知识点】二倍角公式3. 【答案】D【解析】∘√1−sin20∘=∘√1−cos70∘=∘√2sin235∘=∘√2sin35∘=∘√2sin35∘=√22.【知识点】二倍角公式4. 【答案】A【解析】因为函数f(x)=sin(2ωx−π3)在区间(π,2π)内没有最值,所以 2kπ−π2≤2ωπ−π3<4ωπ−π3≤2kπ+π2 或 2kπ+π2≤2ωπ−π3<4ωπ−π3≤2kπ+3π2,k ∈Z ,解得 k −112≤ω≤k2+524 或 k +512≤ω≤k2+1124,k ∈Z . 又 T =2πω≥2π,且 ω>13,所以 13<ω≤1.令 k =0 可得 ω∈[512,1124],且 f (x ) 在 (π,2π) 上单调递减. 所以①错误,②正确.当 x ∈[0,π] 时,2ωx −π3∈[−π3,2πω−π3],且 2πω−π3∈[π2,7π12],所以 f (x ) 在 [0,π] 上只有一个零点, 所以③错误,④正确. 所以正确结论的序号是②④. 【知识点】Asin(ωx+ψ)形式函数的性质5. 【答案】B【解析】 y =x 3与 y =(12)x−2的图象的交点的横坐标 x 0 即方程 x 3=(12)x−2的根,即函数f (x )=x 3−(12)x−2的零点.又 f (1)=1−(12)−1=−1<0,f (2)=23−(12)0=7>0,所以 f (x ) 的零点在 (1,2) 内,即 x 0∈(1,2). 【知识点】指数函数及其性质6. 【答案】D【解析】根据角度制和弧度制的定义,可知无论是角度制还是弧度制,角的大小与圆的半径长短无关.故选D . 【知识点】弧度制7. 【答案】B【解析】 a =log 0.32<0,b =20.1>1,c =sin789∘=sin69∘⇒0<c <1. 所以 b >c >a .【知识点】对数函数及其性质、指数函数及其性质8. 【答案】D【解析】由函数 f (x )=Asin (ωx +φ)(A >0,ω>0,0<φ<π) 的部分图象可得 A =2,T2=5π8−π8,即 T =π,则 ω=2πT=2,又函数图象过点 (π8,2),则 2×π8+φ=2kπ+π2, 即 φ=2kπ+π4,k ∈Z ,又 0<φ<π,即 φ=π4,即 f (x )=2sin (2x +π4),则 g (x )=2sin [2(x +π8)+π4]=2cos2x . 对于选项A ,显然错误;对于选项B ,函数 g (x ) 的图象关于直线 x =kπ2,k ∈Z 对称,即B 错误;对于选项C ,函数 f (x ) 的图象关于点 (kπ2−π8,0),k ∈Z 对称,即C 错误; 对于选项D ,函数 f (x ) 的增区间为 [kπ−3π8,kπ+π8],k ∈Z ,函数 g (x ) 的增区间为 [kπ−π2,kπ],k ∈Z , 又 (−π3,0)⊆[kπ−3π8,kπ+π8],k ∈Z ,(−π3,0)⊆[kπ−π2,kπ],k ∈Z ,即D 正确. 【知识点】Asin(ωx+ψ)形式函数的性质9. 【答案】D【解析】易知 C 1:y =cosx =sin (x +π2),把曲线 C 1 上的各点的横坐标缩短到原来的 12 倍,纵坐标不变,得到函数 y =sin (2x +π2) 的图象,再把所得函数的图象向左平移 π12 个单位长度,可得函数 y =sin [2(x +π12)+π2]=sin (2x +2π3) 的图象,即曲线 C 2,故选D .【知识点】三角函数的图象变换10. 【答案】B【知识点】正切函数的性质二、填空题(共6题) 11. 【答案】 −π4【知识点】Asin(ωx+ψ)形式函数的性质12. 【答案】 (2−sin2,1−cos2)【解析】根据题意可知圆滚动了 2 单位个弧长,点 P 旋转 了 21=2 弧度,此时点 P 的坐标为x P =2−cos (2−π2)=2−sin2,y P =1+sin (2−π2)=1−cos2,所以 P (2−sin2,1−cos2).另解 1:根据题意可知滚动制圆心为 (2,1) 时的圆的参数方程为 {x =2+cosθ,y =1+sinθ, 且 ∠PCD =2,θ=3π2−2,则点 P 的坐标为 {x =2+cos (3π2−2)=2−sin2,y =1+sin (3π2−2)=1−cos2,即 P (2−sin2,1−cos2).【知识点】弧度制13. 【答案】 −13 ;√24【解析】由诱导公式可知,cos (π2+α)=−sinα, 因为 sinα=13,所以 cos (π2+α)=−sinα=−13, 由 sin 2α+cos 2α=1,sinα=13,且 α 为第二象限, 所以 cosα=−2√23, tan (π−α)=−tanα=−sinαcosα=√24. 【知识点】同角三角函数的基本关系、诱导公式14. 【答案】 −1【知识点】两角和与差的正弦15. 【答案】√33【解析】原式=2tan15∘(1−tan15∘)(1+tan15∘)=2tan15∘1−tan215∘=tan30∘=√33.【知识点】二倍角公式16. 【答案】5【解析】tan(α+π4)=tan[(α+β)−(β−π4)]=tan(α+β)−tan(β−π4)1+tan(α+β)tan(β−π4)=23+11+23×(−1)=5.【知识点】两角和与差的正切三、解答题(共6题)17. 【答案】(1) 因为f(x)=2cos2x+2⋅sinxcosx⋅cos2x,所以f(x)=2⋅1+cos2x2+2sinxcosx,所以f(x)=1+cos2x+sin2x=√2sin(2x+π4)+1,所以f(x)的最小正周期为T=2π2=π.要使tanx有意义,则x≠kπ+π2,k∈Z,所以f(x)的定义域为{x∣∣ x≠kπ+π2,k∈Z}.(2) 令2kπ−π2≤2x+π4≤2kπ+π2,k∈Z,得2kπ−3π4≤2x≤2kπ+π4,k∈Z,所以kπ−3π8≤x≤kπ+π8,k∈Z.所以f(x)单调递增区间是[kπ−3π8,kπ+π8](k∈Z)【知识点】Asin(ωx+ψ)形式函数的性质18. 【答案】(1) 由题设可知:f (x )=√3cos (π2−x)cos (2π−x )−cos 2x=√3sinxcosx −1+cos2x 2=√32sin2x −12cos2x −12=sin (2x −π6)−12, 令 2kπ−π2≤2x −π6≤2kπ+π2,k ∈Z ,即 2kπ−π3≤2x ≤2kπ+2π3,k ∈Z , 解得 kπ−π6≤x ≤kπ+π3,k ∈Z ,故函数 f (x ) 的单调递增区间为 [kπ−π6,kπ+π3],k ∈Z .(2) 故 f (θ2+π3)=sin (θ+2π3−π6)−12=cosθ−12=310, 所以 cosθ=45,又 θ∈[0,π2],故 sinθ=√1−cos 2θ=35,tanθ=sinθcosθ=34, 故 tan (θ+π4)=1+tanθ1−tanθ=7.【知识点】两角和与差的正切、Asin(ωx+ψ)形式函数的性质19. 【答案】略【知识点】Asin(ωx+ψ)形式函数的性质20. 【答案】(1) f (x )=tan [(x −12)π],x ∈(0,1) 满足; g (x )=lg (1x −1),x ∈(0,1) 不满足. (2) 因为 f [g (x )]=log 12(2sin2x +1)∈[−1,0], 所以 2sin2x +1∈[1,2],即 sin2x ∈[0,12],所以 2x ∈[2kπ,kπ+π6]∪[2kπ+5π6,2kπ+π],k ∈Z .所以 x ∈[kπ,kπ+π12]∪[kπ+5π12,kπ+π2],k ∈Z , 满足条件的 D =[0,π12](答案不唯一).(3) 假设存在 a ,b 使得 f (a +b )≠f (a )+f (b ).又有 ∣f (a )∣=∣f (a +b )−f (b )∣,∣f (b )∣=∣f (a +b )−f (a )∣,所以 −f (a )=f (a +b )−f (b ),−f (b )=f (a +b )−f (a ),结合两式:f (a )=f (b ),f (a +b )=0,所以 ∣f (b )−f (−a )∣=∣f (a +b )∣=0,故 f (−a )=f (b )=f (a ). 由于 f (a +b )≠f (a )+f (b ) 知:f (a )≠0.又 ∣∣f (a 2)∣∣=∣∣f (a )−f (a 2)∣∣⇒f (a 2)=12f (a ). 类似地,由于 f (−a )≠0,∣∣f (−a 2)∣∣=∣∣f (−a )−f (−a 2)∣∣, 得 f (−a 2)=12f (−a )=12f (a ). 所以 ∣f (a )∣=∣∣f (a 2)−f (−a 2)∣∣=0,与 f (a )≠0 矛盾,所以原命题成立. 【知识点】Asin(ωx+ψ)形式函数的性质、函数的单调性、抽象函数21. 【答案】(1) 由题意,化简得f (x )=2cosxsinx −√3(2cos 2x −1)=sin2x −√3cos2x=2sin (2x −π3).所以函数 f (x ) 的最小正周期为 π,因为 y =sinx 的减区间为 [2kπ+π2,2kπ+3π2],k ∈Z , 由 2kπ+π2≤2x −π3≤2kπ+3π2,得 kπ+5π12≤x ≤kπ+11π12, 所以函数 f (x ) 的单调递减区间为 [kπ+5π12,kπ+11π12],k ∈Z .(2) 因为 x ∈[−π2,0], 所以 2x −π3∈[−4π3,−π3], 所以 −2≤2sin (2x −π3)≤√3, 所以函数 f (x ) 在区间 [−π2,0] 上的取值范围是 [−2,√3].【知识点】Asin(ωx+ψ)形式函数的性质22. 【答案】因为1−sinx≥0且1+sinx≥0在R上恒成立,所以函数的定义域为R;因为f2(x)=(√1−sinx+√1+sinx)2=2+2∣cosx∣,所以由∣cosx∣∈[0,1],f2(x)∈[2,4]可得函数的值域为[√2,2];因为f(x+π)=√1+sinx+√1−sinx=f(x),所以函数的最小正周期为π.因为当x∈[0,π2]时,f(x)=√1−sinx+√1+sinx=2cos x2,在[0,π2]上为减函数;当x∈[π2,π]时,f(x)=√1−sinx+√1+sinx=2sin x2,在[π2,π]上为增函数.所以f(x)在[kπ−π2,kπ]上递增,在[kπ,kπ+π2]上递减(k∈Z).因为f(−x)=f(x)且f(π2−x)=f(π2+x),所以f(x)在其定义域上为偶函数,结合周期为π得到图象关于直线x=kπ2对称.因此,可得如下表格:【知识点】Asin(ωx+ψ)形式函数的性质。

(人教版A版最新)高中数学必修第一册 第五章综合测试01-答案

(人教版A版最新)高中数学必修第一册 第五章综合测试01-答案

第五章综合测试答案解析一、 1.【答案】C【解析】π3cos 25ϕ⎛⎫+= ⎪⎝⎭,3sin 5ϕ∴-=,3sin 5ϕ=-.又π2ϕ<,4cos 5ϕ∴=,sin 3tan cos 4ϕϕϕ∴==-.2.【答案】B 【解析】()()sin πcos πsin cos tan 1312ππcos sin 1tan 13sin cos 22αααααααααα-+-------====---⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭.3.【答案】A【解析】2πcos21sin cos π.32yrα====-4.【答案】D【解析】因为()0πx ∈,,sin cos πn 4x x x ⎛⎫+=+ ⎪⎝⎭,且0sin cos 1x x +=<,所以π3ππ44x ⎛⎫+∈ ⎪⎝⎭,,π3π24x ⎛⎫∈ ⎪⎝⎭,,由sin cos x x +,两边平方得2sin cos x x =,即sin 2x=,所以2π3x =,tan x =故选D .5.【答案】B【解析】由题意得2π5ππ244126T ωω==-⇒=,又πsin 13ϕ⎛⎫+= ⎪⎝⎭,π2ϕ<,所以π6ϕ=,因为πππsin 636n n f ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,该函数的周期为6,一个周期的和为零,所以20161π06n n f =⎛⎫= ⎪⎝⎭∑,故选B . 6.【答案】D【解析】22π2πππ:sin 2cos 2cos 23326C y x x x ⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则把1C 上各点的横坐标缩短到原来的12倍得到曲线cos2y x =,再将所得曲线向左平移π12个单位长度得到曲线2C . 7.【答案】D【解析】函数的最小正周期为2π2π1T ==,则函数的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 令()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =可得()y f x =的图象关于直线83x π=对称,选项B 正确; ()ππcos πcos 33f x x x π⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数的零点满足()πππ+32x k k +=∈Z ,即()ππ+k 6x k =∈Z ,取0k =可得()πf x +的一个零点为π6x =,选项C 正确; 当ππ2x ⎛⎫∈ ⎪⎝⎭,时,π5π4π363x ⎛⎫+∈ ⎪⎝⎭,,函数在该区间不单调,选项D 错误.8.【答案】B【解析】由题意可知()πsin 2cos 6f x x x x ⎛⎫=-=+ ⎪⎝⎭,将()f x 的图象向左平移n 个单位长度后得到π2cos 6y x n ⎛⎫=++ ⎪⎝⎭的图象,π2cos 6y x n ⎛⎫=++ ⎪⎝⎭为偶函数,ππ6n k ∴+=,又0n >,n ∴的最小值为5π6. 9.【答案】D【解析】由()πsin 2sin 13f x x x x ⎛⎫==+ ⎪⎝⎭≥及[]0πx ∈,,得π02x ⎡⎤∈⎢⎥⎣⎦,,所以所求概率为π12π2P ==,故选D . 10.【答案】A【解析】由题意125ππ2π,8211ππ,8k k ωϕωϕ⎧+=+⎪⎪⎨⎪+=⎪⎩其中1k ,2k ∈Z ,所以()2142233k k ω=--,又2π2πT ω=>,所以01ω<<,所以23ω=,112π+π12k ϕ=,由πϕ<,得π=12ϕ,故选A .11.【答案】B【解析】π02αβ⎛⎫∈ ⎪⎝⎭,,,πππ00024242αββ∴--<<,<<,-<-<,ππππ422224βααβ∴----<<,<<.又1sin 0cos 0222αββα⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭<,,ππ02222αββα∴--<-<0,<<,1cos sin 2222αββα⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭,coscos 222αββααβ⎡⎤+⎛⎫⎛⎫∴=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 2222βαβααβαβ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111222⎛⎫=⨯-=- ⎪⎝⎭, ()21cos 2cos 122αβαβ+∴+=-=-.12.【答案】B 【解析】()sin tan cos cot f x x x x x =+()()()22233sin cos sin cos 3sin cos sin cos sin cos cos sin sin cos sin cos x x x x x x x x x xf x x x x xx x⎡⎤++-+⎣⎦∴=+==设2π1sin cos sin cos 42t t x x x x x -⎛⎫=++⇒= ⎪⎝⎭.(πππ3ππ0sin 124444xx x t ⎤⎛⎫⎛⎫⎛⎫∈∴+∈⇒+∈⇒∈⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎦,,,, ()(223221323112t t t t t f t tt t ⎛⎫--⨯ ⎪-⎝⎭∴==∈--,, ()()422301t f t t--'∴=-<,()f t ∴在区间(上单调递减,()()32min 1f x f==-二、13.【答案】79-【解析】因为α和β关于y 轴对称,所以()π+2πk k αβ+=∈Z ,所以1sin sin 3βα==,cos cos αβ=-.则()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-.14.【答案】1【解析】()222311cos cos cos 144f x x x x x x ⎛=-+-=-+=-+ ⎝⎭,由π02x ⎡⎤∈⎢⎥⎣⎦,可得[]cos 01x ∈,,当cos x =时,函数()f x 取得最大值1. 15.【答案】1590434⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦,∪,【解析】因为3π0π4x ω>且≤≤,所以π3ππππ4444x ωωω+++≤≤,结合正弦函数的图象可知ππ0π42ω+<≤或π3π3π442π5ππ42ωω⎧+⎪⎪⎨⎪+⎪⎩≥,≤,解之得104ω<≤或5934ω≤≤.16.【答案】1【解析】函数()2222π22sin 42cos 2cos tx x x x tx x xf x x x x x ⎫⎛⎫+⎪++ ⎪⎝⎭⎝⎭==++()()2222cos sin sin 2cos 2cos t x x t x x t x x t x xx x ++++==+++.令()2sin 2cos t x x g x x x +=+,则()()2sin 2cos t x xg x g x x x+-=-=-+.设()g x 的最大值为M ,最小值为N ,则0M N +=,即有t M a +=,t N b +=,222a b t M N t +=++==,解得1t =. 三、17.【答案】因为锐角α的终边与单位圆交于A ,且点A,所以,由任意角的三角函数的定义可知cos α,从而sin a ==(2分) 因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是,所以sin β=,从而cos β==(4分) (1)()cos cos cos sin sin αβαβαβ⎛-=+== ⎝⎭.(6分) (2)()sin sin cos cos sin αβαβαβ⎛+=+=+= ⎝⎭(8分)因为α为锐角,β为钝角,故π3π22αβ⎛⎫+∈ ⎪⎝⎭,,所以3π4αβ+=.(10分)18.【答案】(1)直线π8x =是函数()y f x =的图象的一条对称轴, πππsin 2 1.π842k k ϕϕ⎛⎫∴⨯+=±∴+=+∈ ⎪⎝⎭Z ,.3ππ04ϕϕ--∴=<<,.(3分) (2)由(1)知3π4ϕ=-,因此3πsin 24y x ⎛⎫=- ⎪⎝⎭.令π3ππ2π22π242k x k k --+∈Z ≤≤,. 解得函数3πsin 24y x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5πππ88k k k ⎡⎤∈⎢⎣+⎥⎦+Z ,,.(7分)(3)由3πsin 24y x ⎛⎫=- ⎪⎝⎭知(10分)故函数()y f x =在区间[]0π,上的图象如图.(12分)19.【答案】(1)因为()ππsin sin 62f x x x ωω⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,所以()1cos cos 23cos 21sin 2π.3f x x x x x x x x x ωωωωωωωω=--=-⎫=⎪⎪⎭⎛⎫=- ⎪⎝⎭(3分)由题设知π06f ⎛⎫= ⎪⎝⎭,所以πππ63k k ω-=∈Z ,.故62k k ω=+∈Z ,, 又03ω<<,所以2ω=.(5分)(2)由(1)得()π23f x x ⎛⎫=- ⎪⎝⎭,所以()πππ4312g x x x ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭.因为π3π44x ⎡⎤∈-⎢⎥⎣⎦,,所以ππ2π1233x ⎡⎤-∈-⎢⎥⎣⎦,,当ππ123x -=-,即π4x =-时,()g x 取得最小值32-.(12分) 20.【答案】(1)()22212tan 11tan 11sin 2cos211 1.21tan 21tan 26f m m ααααααα--=--=⋅-⋅-=-++又()31131262626f α-=---=-,.即2m =.(4分)故()1π2cos 21sin 2126f x x x x ⎛⎫=--=-- ⎪⎝⎭, ∴函数()f x 的最小正周期2ππ2T ==.(6分) (2)()f x 的递增区间是πππ2π22π262k x k k --+∈Z ≤≤,,ππππ63k x k k ∴-+∈Z ≤≤,,∴函数()f x 在[]0π,上的递增区间是π03⎡⎤⎢⎥⎣⎦,,5ππ6⎡⎤⎢⎥⎣⎦,.(12分)21.【答案】(1)()1cos 23π2sin 22226x f x x x +⎛⎫++=++ ⎪⎝⎭.(2分) ππ63x ⎡⎤∈-⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴+∈-⎢⎥⎣⎦,,1πsin 2126x ⎛⎫∴-+ ⎪⎝⎭≤≤,∴函数()y f x =的值域为332⎡⎤⎢⎥⎣⎦,.(4分) (2)()ππsin 22123x g x f x ωω⎛⎫⎛⎫=+=++⎪ ⎪⎝⎭⎝⎭, 当2ππ36x ⎡⎤∈-⎢⎥⎣⎦,时,π2ππππ33363x ωωω⎡⎤+∈-++⎢⎥⎣⎦,.(6分) ()g x 在2ππ36⎡⎤-⎢⎥⎣⎦,上是增函数,且0ω>,2ππππππ2π2π336322k k k ωω⎡⎤⎡⎤∴-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦Z ,,,,即2πππ2π332πππ2π632k k k k ωω⎧-+-+∈⎪⎪⎨⎪++∈⎪⎩Z Z ≥,,≤,,化简得534112k k k k ωω⎧-∈⎪⎨⎪+∈⎩Z Z ≤,,≤,,(10分) 0ω>,151212k ∴-<<,k ∈Z , 0k ∴=,解得1ω≤,因此ω的最大值为1.(12分) 22.【答案】(1)由题意知,11π5ππ212122T =-=,2ππω∴=,2ω∴=. 又5πsin 2112ϕ⎛⎫⨯+= ⎪⎝⎭,π2ϕ<.3πϕ∴=-, ()f x ∴的解析式为()sin 2π3f x x ⎛⎫=- ⎪⎝⎭.(4分)(2)将()y f x =的图象先向右平移π6个单位长度,得到2πsin 23y x ⎛⎫=- ⎪⎝⎭的图象,再将图象上所有点的横坐标变为原来的12倍后,得到函数2πsin 43y x ⎛⎫=- ⎪⎝⎭的图象,()2πsin 43g x x ⎛⎫∴=- ⎪⎝⎭,(6分) π3π88x ⎡⎤∈⎢⎥⎣⎦,,π2π5π4636x ∴--≤≤,∴函数()g x 在π3π88⎡⎤⎢⎥⎣⎦,上的最大值为1,最小值为12-.当π3π88x ⎡⎤∈⎢⎥⎣⎦,时,不等式()1g x m -<恒成立,即()11m g x m -+<<恒成立,即()()maxmin11g x m g x m ⎧+⎪⎨-⎪⎩<,>,11112m m +⎧⎪∴⎨--⎪⎩<,>,102m ∴<<.(12分)。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

(人教版A版)高中数学必修第一册第五章综合测试01(含答案)

(人教版A版)高中数学必修第一册第五章综合测试01(含答案)

第五章综合测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知π3cos 25ϕ⎛⎫+= ⎪⎝⎭,且π2ϕ<,则tan ϕ为( )A .43-B .43C .34-D .342.设tan 3α=,则()()sin π+cos π=ππsin cos 22αααα--⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭( )A .3B .2C .1D .1-3.若点2π2πsin cos 33⎛⎫ ⎪⎝⎭在角α的终边上,则sin α的值为( ) A .12-B .C .12D4.已知sin cos x x +=,()0πx ∈,,则tan x =( )A .BCD .5.已知函数()()πsin 02f x x ωϕωϕ⎛⎫=+ ⎪⎝⎭>,<的部分图象如图,则20161π6n n f =⎛⎫= ⎪⎝⎭∑( )A .1-B .0C .12D .16.已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C7.设函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .()πf x +的一个零点为π6x =D .()f x 在ππ2⎛⎫⎪⎝⎭,上单调递减8.定义行列式运算12142334a a a a a a a a =-.将函数()sin cos xf x x 的图象向左平移()0n n >个单位长度,所得图象对应的函数为偶函数,则n 的最小值为( ). A .π6B .5π6C .π3D .2π39.已知函数()sin f x x x =,当[]0πx ∈,时,()1f x ≥的概率为( )A .13B .14C .15D .1210.设函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,πϕ<.若5π28f ⎛⎫= ⎪⎝⎭,11π08f ⎛⎫= ⎪⎝⎭,且()f x 的最小正周期大于2π,则( )A .23ω=,π12ϕ= B .23ω=,11π12ϕ=- C .13ω=,11π24ϕ=-D .13ω=,7π24ϕ=11.若π02αβ⎛⎫∈ ⎪⎝⎭,,,cos 2βα⎛⎫-= ⎪⎝⎭1sin 22αβ⎛⎫-=- ⎪⎝⎭,则()cos αβ+的值为( )A.B .12-C .12D12.已知π02x ⎛⎫∈ ⎪⎝⎭,,则函数()sin tan cos cot f x x x x x =+的值域为( )A .[)12,B.)+∞C.(D .[)1+∞,二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则()cos αβ-=________.14.函数()23πsin 042f x x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,的最大值是________.15.已知函数()πsin 04y x ωω⎛⎫=+ ⎪⎝⎭>是区间3ππ4⎡⎤⎢⎥⎣⎦,上的增函数,则ω的取值范围是________.16.已知关于x 的函数()22π2sin 42cos tx x xf x x x⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则实数t 的值为________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B ,若点A,点B.(1)求()cos αβ-的值;(2)求αβ+的值.18.(本小题满分12分)设函数()()()sin 2π0f x x ϕϕ=+-<<,()y f x =的图象的一条对称轴是直线π8x =.(1)求ϕ的值;(2)求函数()y f x =的单调递增区间;(3)在图中画出函数()y f x =在区间[]0π,上的图象.19.(本小题满分12分)设函数()ππsin sin 62f x x x ωω⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其中03ω<<.已知π06f ⎛⎫= ⎪⎝⎭. (1)求ω;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度,得到函数()y g x =的图象,求()g x 在π3π44⎡⎤-⎢⎥⎣⎦,上的最小值.20.(本小题满分12分)已知函数()()21sin 2co 3tan s 262f x m x x x f αα==--∈=-R ,若.(1)求实数m 的值及函数()f x 的最小正周期;(2)求函数()f x 在[]0π,上的递增区间.21.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当ππ63x ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()π212x g x f ω⎛⎫=+⎪⎝⎭,若函数()g x 在区间2ππ36⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.22.(本小题满分12分)函数()()πsin 02f x x ωϕωϕ⎛⎫=+ ⎪⎝⎭>,<在它的某一个周期内的单调减区间是5π11π1212⎡⎤⎢⎥⎣⎦,. (1)求()f x 的解析式;(2)将()y f x =的图象先向右平移π6个单位长度,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),所得到的图象对应的函数记为()g x ,若对于任意的π3π88x ⎡⎤∈⎢⎥⎣⎦,,不等式()1g x m -<恒成立,求实数m 的取值范围.第五章综合测试答案解析一、 1.【答案】C【解析】π3cos 25ϕ⎛⎫+= ⎪⎝⎭ ,3sin 5ϕ∴-=,3sin 5ϕ=-.又π2ϕ<,4cos 5ϕ∴=,sin 3tan cos 4ϕϕϕ∴==-. 2.【答案】B 【解析】()()sin πcos πsin cos tan 1312ππcos sin 1tan 13sin cos 22αααααααααα-+-------====---⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭.3.【答案】A【解析】2πcos21sin cos π.32yrα===-4.【答案】D【解析】因为()0πx∈,,sin cos πn 4x x x ⎛⎫+=+ ⎪⎝⎭,且0sin cos 1x x +=<,所以π3ππ44x ⎛⎫+∈ ⎪⎝⎭,,π3π24x ⎛⎫∈ ⎪⎝⎭,,由sin cos x x +=,两边平方得2sin cos x x=,即sin 2x =,所以2π3x =,tan x =.故选D .5.【答案】B【解析】由题意得2π5ππ244126T ωω==-⇒=,又πsin 13ϕ⎛⎫+= ⎪⎝⎭,π2ϕ<,所以π6ϕ=,因为πππsin 636n n f ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,该函数的周期为6,一个周期的和为零,所以20161π06n n f =⎛⎫= ⎪⎝⎭∑,故选B . 6.【答案】D【解析】22π2πππ:sin 2cos 2cos 23326C y x x x ⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则把1C 上各点的横坐标缩短到原来的12倍得到曲线cos 2y x =,再将所得曲线向左平移π12个单位长度得到曲线2C . 7.【答案】D【解析】函数的最小正周期为2π2π1T ==,则函数的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 令()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =可得()y f x =的图象关于直线83x π=对称,选项B 正确; ()ππcos πcos 33f x x x π⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数的零点满足()πππ+32x k k +=∈Z ,即()ππ+k 6x k =∈Z ,取0k =可得()πf x +的一个零点为π6x =,选项C 正确; 当ππ2x ⎛⎫∈ ⎪⎝⎭,时,π5π4π363x ⎛⎫+∈ ⎪⎝⎭,,函数在该区间不单调,选项D 错误.8.【答案】B【解析】由题意可知()πsin 2cos 6f x x x x ⎛⎫-=+ ⎪⎝⎭,将()f x 的图象向左平移n 个单位长度后得到π2cos 6y x n ⎛⎫=++ ⎪⎝⎭的图象,π2cos 6y x n ⎛⎫=++ ⎪⎝⎭ 为偶函数,ππ6n k ∴+=,又0n >,n ∴的最小值为5π6. 9.【答案】D【解析】由()πsin 2sin 13f x x x x ⎛⎫==+ ⎪⎝⎭≥及[]0πx ∈,,得π02x ⎡⎤∈⎢⎥⎣⎦,,所以所求概率为π12π2P ==,故选D . 10.【答案】A【解析】由题意125ππ2π,8211ππ,8k k ωϕωϕ⎧+=+⎪⎪⎨⎪+=⎪⎩其中1k ,2k ∈Z ,所以()2142233k k ω=--,又2π2πT ω=,所以01ω<<,所以23ω=,112π+π12k ϕ=,由πϕ<,得π=12ϕ,故选A . 11.【答案】B【解析】π02αβ⎛⎫∈ ⎪⎝⎭,,,πππ00024242αββ∴--<<,<<,-<-,ππππ422224βααβ∴----<,<<.又1sin 0cos 0222αββα⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭ ,,ππ02222αββα∴--<-<0,<<,1cos sin 222αββα⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭,coscos 222αββααβ⎡⎤+⎛⎫⎛⎫∴=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 2222βαβααβαβ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111222⎛⎫=+⨯-=- ⎪⎝⎭, ()21cos 2cos 122αβαβ+∴+=-=-.12.【答案】B【解析】()sin tan cos cot f x x x x x =+()()()22233sin cos sin cos 3sin cos sin cos sin cos cos sin sin cos sin cos x x x x x x x x x xf x x x x xx x⎡⎤++-+⎣⎦∴=+==设2π1sin cos sin cos 42t t x x x x x -⎛⎫=++⇒= ⎪⎝⎭.(πππ3ππ0sin 124444x x x t ⎤⎛⎫⎛⎫⎛⎫∈∴+∈⇒+∈⇒∈⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎦,,,, ()(2232213231112t t t t t f t t t t ⎛⎫--⨯ ⎪-⎝⎭∴==∈--, ()()422301t f t t--'∴=-,()f t ∴在区间(上单调递减,()3min f x f-===.二、13.【答案】79-【解析】因为α和β关于y 轴对称,所以()π+2πk k αβ+=∈Z ,所以1sin sin 3βα==,cos cos αβ=-.则()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-.14.【答案】1【解析】()222311cos cos cos 144f x x x x x x ⎛=--=-+=-+ ⎝⎭,由π02x ⎡⎤∈⎢⎥⎣⎦,可得[]cos 01x ∈,,当cos x =时,函数()f x 取得最大值1. 15.【答案】1590434⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦,∪,【解析】因为3π0π4x ω>且≤≤,所以π3ππππ4444x ωωω+++≤,结合正弦函数的图象可知ππ0π42ω+<或π3π3π442π5ππ42ωω⎧+⎪⎪⎨⎪+⎪⎩≥,,解之得104ω<≤或5934ω≤≤.16.【答案】1【解析】函数()2222π22sin 42cos 2cos tx x x x tx x xf x x x x x ⎫⎛⎫+⎪++ ⎪⎝⎭⎝⎭==++()()2222cos sin sin 2cos 2cos t x x t x x t x x t x xx x++++==+++.令()2sin 2cos t x x g x x x +=+,则()()2sin 2cos t x xg x g x x x +-=-=-+.设()g x 的最大值为M ,最小值为N ,则0M N +=,即有t M a +=,t N b +=,222a b t M N t +=++==,解得1t =. 三、17.【答案】因为锐角α的终边与单位圆交于A ,且点A,所以,由任意角的三角函数的定义可知cos α=,从而sin a ==.(2分) 因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是,所以sin β=,从而cos β==4分) (1)()cos cos cos sin sin αβαβαβ⎛-=+=+= ⎝⎭.(6分) (2)()sin sin cos cos sin αβαβαβ⎛+=+== ⎝⎭.(8分)因为α为锐角,β为钝角,故π3π22αβ⎛⎫+∈ ⎪⎝⎭,,所以3π4αβ+=.(10分) 18.【答案】(1) 直线π8x =是函数()y f x =的图象的一条对称轴, πππsin 2 1.π842k k ϕϕ⎛⎫∴⨯+=±∴+=+∈ ⎪⎝⎭Z . 3ππ04ϕϕ--∴= <<,.(3分) (2)由(1)知3π4ϕ=-,因此3πsin 24y x ⎛⎫=- ⎪⎝⎭. 令π3ππ2π22π242k x k k --+∈Z ≤≤. 解得函数3πsin 24y x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5πππ88k k k ⎡⎤∈⎢⎣+⎥⎦+Z ,,.(7分) (3)由3πsin 24y x ⎛⎫=- ⎪⎝⎭知(10分)故函数()y f x =在区间[]0π,上的图象如图.(12分)19.【答案】(1)因为()ππsin sin 62f x x x ωω⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,所以()1cos cos 23cos 21sin 2π.3f x x x x x x x x x ωωωωωωωω=--=-⎫=-⎪⎪⎭⎛⎫=- ⎪⎝⎭(3分) 由题设知π06f ⎛⎫= ⎪⎝⎭, 所以πππ63k k ω-=∈Z ,.故62k k ω=+∈Z ,, 又03ω<<,所以2ω=.(5分)(2)由(1)得()π23f x x ⎛⎫- ⎪⎝⎭, 所以()πππ4312g x x x ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 因为π3π44x ⎡⎤∈-⎢⎥⎣⎦,,所以ππ2π1233x ⎡⎤-∈-⎢⎥⎣⎦,, 当ππ123x -=-,即π4x =-时,()g x 取得最小值32-.(12分) 20.【答案】(1)()22212tan 11tan 11sin 2cos 211 1.21tan 21tan 26f m m ααααααα--=--=⋅-⋅-=--++ 又()31131262626f α-=--=- ,.即m =.(4分) 故()1π2cos 21sin 2126f x x x x ⎛⎫=--=-- ⎪⎝⎭, ∴函数()f x 的最小正周期2ππ2T ==.(6分) (2)()f x 的递增区间是πππ2π22π262k x k k --+∈Z ≤≤,, ππππ63k x k k ∴-+∈Z ≤,, ∴函数()f x 在[]0π,上的递增区间是π03⎡⎤⎢⎥⎣⎦,,5ππ6⎡⎤⎢⎥⎣⎦.(12分)21.【答案】(1)()1cos 23π2sin 22226x f x x x +⎛⎫=++=++ ⎪⎝⎭.(2分) ππ63x ⎡⎤∈-⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴+∈-⎢⎥⎣⎦,, 1πsin 2126x ⎛⎫∴-+ ⎪⎝⎭≤, ∴函数()y f x =的值域为332⎡⎤⎢⎥⎣⎦,.(4分) (2)()ππsin 22123x g x f x ωω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭, 当2ππ36x ⎡⎤∈-⎢⎥⎣⎦,时,π2ππππ33363x ωωω⎡⎤+∈-++⎢⎥⎣⎦,.(6分) ()g x 在2ππ36⎡⎤-⎢⎥⎣⎦,上是增函数,且0ω>, 2ππππππ2π2π336322k k k ωω⎡⎤⎡⎤∴-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦Z ,,,, 即2πππ2π332πππ2π632k k k k ωω⎧-+-+∈⎪⎪⎨⎪++∈⎪⎩Z Z ,,≤,, 化简得534112k k k k ωω⎧-∈⎪⎨⎪+∈⎩Z Z ≤,,≤,,(10分) 0ω >,151212k ∴-<<,k ∈Z , 0k ∴=,解得1ω≤,因此ω的最大值为1.(12分) 22.【答案】(1)由题意知,11π5ππ212122T =-=,2ππω∴=,2ω∴=. 又5πsin 2112ϕ⎛⎫⨯+= ⎪⎝⎭,π2ϕ<.3πϕ∴=-, ()f x ∴的解析式为()sin 2π3f x x ⎛⎫=- ⎪⎝⎭.(4分)(2)将()y f x =的图象先向右平移π6个单位长度,得到2πsin 23y x ⎛⎫=- ⎪⎝⎭的图象,再将图象上所有点的横坐标变为原来的12倍后,得到函数2πsin 43y x ⎛⎫=- ⎪⎝⎭的图象, ()2πsin 43g x x ⎛⎫∴=- ⎪⎝⎭,(6分) π3π88x ⎡⎤∈⎢⎥⎣⎦ ,,π2π5π4636x ∴--≤,∴函数()g x 在π3π88⎡⎤⎢⎥⎣⎦,上的最大值为1,最小值为12-. 当π3π88x ⎡⎤∈⎢⎥⎣⎦,时,不等式()1g x m -<恒成立,即()11m g x m -+<<恒成立, 即()()max min 11g x m g x m ⎧+⎪⎨-⎪⎩<,>,11112m m +⎧⎪∴⎨--⎪⎩<,>, 102m ∴<<.(12分)。

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b >C .若a b >,0c <,则a c b c++<D .a b<2.若++,则a ,b 必须满足的条件是( )A .0a b >>B .0a b <<C .a b>D .0a ≥,0b ≥,且a b≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ÎR 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +”的充分不必要条件,则k 的取值范围是( )A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( )A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( )A .22ac bc <B .11a b<C .baab>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( )A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( )A .1c a>B .02c a<C .13c a <<D .03c a<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x $ÎR ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1B C .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________.14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题.16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ÎR ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ì-+íî,324x üýþ≤≤,{}2=|1B x x m +≥.p x A Î:,q x B Î:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ÎR .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+.(1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D .2.【答案】D【解析】2=()=a b +-+-((.++Q a \,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ÎR 恒成立,需22=36480k k k D -+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A .4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +ìí-î´,,解得=4=3a b ìí-î,,所以4=3=81a b -().故选B .6.【答案】D【解析】选项A ,c Q 为实数,\取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a \->,0ab >,0b a ab -\,即11a b>,故选项B 不成立;选项C ,0a b Q <<,\取=2a -,=1b -,则11==22b a --,2==21a b --,\此时b aa b<,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b \--()>,2=0ab b b a b --()>,22a ab b \>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a \--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D .8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x\--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a \-≥,\实数a 的最小值是2-.故选B .9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A .10.【答案】C【解析】2x Q >,20x \->.11==222=422y x x x x \+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a \.11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +ìï+íï+î<≤,>,>,即1311b ca abc a a c b a aì+ïïï+íïï+ïî<≤,>,>,1311b c a ac b a a ì+ïï\íï--ïî<≤,<<,两式相加得024c a ´<.c a \的取值范围为02ca<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a \>,且=440ab D -≤,1ab \≥.又0x $ÎR ,使2002=0ax x b ++成立,则=0D ,=1ab \,又a b >,0a b \->.22222==a b a b ab a b a b a b a b +-+\-+---()()当且仅当a b -时等号成立.22a b a b+\-的最小值为故选D .二、13.【答案】111a a-+【解析】由1a <,得11a -<<.10a \+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a \-,111a a\-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a D -´´≤,解得a ,\实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则c dab ab a b--()<(),即bc ad --<,bc ad \>,即③成立;若①③成立,则bc ad ab ab ,即c d a b >,c d a b \--<,即②成立;若②③成立,则由②得c d a b >,即0bc ad ab -,Q ③成立,0bc ad \->,0ab \>,即①成立.故可组成3个正确命题.16.【答案】42x -<<【解析】不等式2162a b x x ba ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++m i n <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<.三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a D -,9=4a .所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94.若=A Æ,则=940a D -<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分)18.【答案】(1)2560x x --+Q <,2560x x \+->,160x x \-+()()>,解得6x -<或1x >,\不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x \--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x \--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<;当=0a 时,原不等式的解集是Æ;当02a <<时,原不等式的解集是{|x x a <或}2x >;当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+,配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ìüíýîþ≤≤.(6分)由21x m +≥,得21x m -≥,所以{}2=|1B x x m -≥.(8分)因为p 是q 的充分条件,所以A B Í.所以27116m -≤,(10分)解得实数m 的取值范围是34m ≥或34m -≤.(12分)20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤,则{}=|23A B x x I ≤≤.(3分)(2)因为=A B A U ,所以B A Í.①当=B Æ,即23a a +>,3a >时,B A Í成立,符合题意.(8分)②当=B Æ,即23a a +≤,3a ≤时,由B A Í,有0233a a ìí+î≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+.11a b \+=a b 时等号成立),即12ab ≥.(3分)2221122=a b ab +´Q ≥≥(当且仅当=a b 时等号成立),22a b \+的最小值为1.(6分)(2)11a b+Q,a b \+.234a b ab -Q ()≥(),2344a b ab ab \+-()≥(),即2344ab ab -()≥(),2210ab ab -+()≤,210ab -()≤,a Q 、b 为正实数,=1ab \.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ÎR .当0a <时,解得1a x a +>.当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ;当0a <时,原不等式的解集为1|a x x a +ìüíýîþ>;当0a >时,原不等式的解集为1|a x x a +ìüíýîþ<.(6分)(2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤,因为2y x x a --≤在0+¥(,)上恒成立,所以11a x x+-≤在0+¥(,)上恒成立.令1=1t x x+-,只需min a t ≤,因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立.所以a 的取值范围是1a ≤.(12分)。

最新人教A版高中数学必修第一册综合测试题及答案

最新人教A版高中数学必修第一册综合测试题及答案

最新人教A版高中数学必修第一册综合测试题及答案模块综合测评(满分:150分,时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}A[在数轴上表示出集合A,B,如图所示.由图知A∩B={x|-2<x<-1}.]2.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[若x为自然数,则它必为整数,即p⇒q.但x为整数不一定是自然数,如x=-2,即q p.故p是q的充分不必要条件.]3.若cos α=-1010,sin 2α>0,则tan(π-α)等于()A.-3B.3 C.-34 D.34A[∵sin 2α=2sin αcos α>0,cos α=-10 10,∴sin α=-31010,∴tan α=sin αcos α=3,∴tan(π-α)=-tan α=-3,故选A.]4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3 C.4D.8C[根据题意,满足条件的集合B可以为{3},{1,3},{2,3},{1,2,3}中的任意一个.] 5.若a<b<0,则下列不等式不能成立的是()A.1a-b>1a B.1a>1bC .|a |>|b |D .a 2>b 2 A [取a =-2,b =-1,则1a -b>1a 不成立.] 6.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4]D .[0,4]D [当a =0时,满足条件;当a ≠0时,由题意知a >0且Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.]7.已知x >0,y >0,且x +2y =2,则xy ( ) A .有最大值为1 B .有最小值为1 C .有最大值为12D .有最小值为12C [因为x >0,y >0,x +2y =2,所以x +2y ≥2x ·2y ,即2≥22xy ,xy ≤12, 当且仅当x =2y ,即x =1,y =12时,等号成立. 所以xy 有最大值,且最大值为12.] 8.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是( )A .0B .1C .2D .3B [函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是方程x 12-⎝ ⎛⎭⎪⎫12x =0的解的个数,即方程x 12=⎝ ⎛⎭⎪⎫12x的解的个数,也就是函数y =x 12与y =⎝ ⎛⎭⎪⎫12x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.]9.若函数y =a +sin bx (b >0且b ≠1)的图象如图所示,则函数y =log b (x -a )的图象可能是( )C [由题图可得a >1,且y =a +sin bx 的最小正周期T =2πb <π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]10.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >aB [a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226, 因为函数y =log 2x 在(0,+∞)上是增函数, 且27>33>26,所以b >a >c .]11.已知函数①y =sin x +cos x ,②y =22sin x cos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝ ⎛⎭⎪⎫-π4,0成中心对称图形B .两个函数的图象均关于直线x =-π4成轴对称图形 C .两个函数在区间⎝ ⎛⎭⎪⎫-π4,π4上都是单调递增函数D .两个函数的最小正周期相同C [①y =2sin ⎝ ⎛⎭⎪⎫x +π4,图象的对称中心为⎝ ⎛⎭⎪⎫-π4+k π,0,k ∈Z ,对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π,k ∈Z ,最小正周期为2π;②y =2sin 2x 图象的对称中心为⎝ ⎛⎭⎪⎫12k π,0,k ∈Z ,对称轴为x =π4+12k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π,k ∈Z ,最小正周期为π.故选C.]12.函数y =sin x 与y =tan x 的图象在[-2π,2π]上的交点个数为( ) A .3 B .5 C .7 D .9 B [由⎩⎨⎧y =sin x ,y =tan x ,得sin x =tan x ,即sin x ⎝ ⎛⎭⎪⎫1-1cos x =0.∴sin x =0或1-1cos x =0, 即x =k π(k ∈Z ),又-2π≤x ≤2π,∴x =-2π,-π,0,π,2π, 从而图象的交点个数为5.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题p :“∀x ∈{x |x 是三角形},x 的内角和是180°”的﹁p 是________. ∃x 0∈{x |x 是三角形},x 0的内角和不是180° [因为p 是全称量词命题,则﹁p 为存在量词命题.]14.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},∁U B ∩A ={9},则A =________.{3,9} [由题意画出Venn 图,如图所示.由图可知,A ={3,9}.]15.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则经过5小时,1个病毒能繁殖为________个.1 024 [当t =0.5时,y =2,所以2=e k 2, 所以k =2ln 2,所以y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024.] 16.已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k的取值范围是________.⎝ ⎛⎦⎥⎤-1,-13 [∵f (f (x ))-2=0,∴f (f (x ))=2, ∴f (x )=-1或f (x )=-1k (k ≠0).① ② ③(1)当k =0时,作出函数f (x )的图象如图①所示, 由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出函数f (x )的图象如图②所示, 由图象可知f (x )=-1无解且f (x )=-1k 无解, 即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示, 由图象可知f (x )=-1有1个实根, ∵f ((x ))-2=0有3个实根, ∴f (x )=-1k 有2个实根, ∴1<-1k ≤3,解得-1<k ≤-13. 综上,k 的取值范围是⎝ ⎛⎦⎥⎤-1,-13.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=x +mx ,且f (1)=3. (1)求m 的值;(2)判断函数f (x )的奇偶性.[解] (1)∵f (1)=3,即1+m =3,∴m =2.(2)由(1)知,f (x )=x +2x ,其定义域是{x |x ≠0},关于坐标原点对称,又f (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ),∴函数f (x )是奇函数.18.(本小题满分12分)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若﹁q 是p 的必要条件,求实数m 的取值范围. [解] (1)A ={x |-1≤x ≤3,x ∈R }, B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R }, ∵A ∩B =[1,3],∴m =4. (2)∵﹁q 是p 的必要条件 ∴p 是﹁q 的充分条件, ∴A ⊆∁R B ,∴m >6或m <-4.19.(本小题满分12分)设α,β是锐角,sin α=437,cos(α+β)=-1114,求证:β=π3. [证明] 由0<α<π2,0<β<π2,知0<α+β<π,又cos(α+β)=-1114, 故sin(α+β)=1-cos 2(α+β) =1-⎝ ⎛⎭⎪⎫-11142=5314. 由sin α=437,可知 cos α=1-sin 2α=1-⎝⎛⎭⎪⎫4372=17, ∴sin β=sin [(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝ ⎛⎭⎪⎫-1114×437=32,∴β=π3.20.(本小题满分12分)已知函数f (x )=ax 2+2x +c (a ∈N *,c ∈N *)满足: ①f (1)=5;②6<f (2)<11. (1)求函数f (x )的解析式;(2)若对任意x ∈[1,2],都有f (x )≥2mx +1成立,求实数m 的取值范围. [解] (1)∵f (1)=5,∴5=a +c +2,∴c =3-a .又6<f (2)<11,∴6<4a +c +4<11,∴-13<a <43. 又a ∈N *,∴a =1,c =2,∴f (x )=x 2+2x +2.(2)设g (x )=f (x )-2mx -1=x 2-2(m -1)x +1,x ∈[1,2],则由已知得 当m -1≤1,即m ≤2时,g (x )min =g (1)=4-2m ≥0,此时m ≤2.当1<m -1<2,即2<m <3时,g (x )min =g (m -1)=1-(m -1)2≥0,此时无解. 当m -1≥2,即m ≥3时,g (x )min =g (2)=9-4m ≥0,此时无解. 综上所述,实数m 的取值范围是(-∞,2].21.(本小题满分12分)已知函数f (x )=cos(πx +φ)⎝ ⎛⎭⎪⎫0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.[解] (1)由题图得f (0)=32,所以cos φ=32, 因为0<φ<π2,故φ=π6. 由于f (x )的最小正周期等于2, 所以由题图可知1<x 0<2, 故7π6<πx 0+π6<13π6.由f (x 0)=32,得cos ⎝ ⎛⎭⎪⎫πx 0+π6=32,所以πx 0+π6=11π6,x 0=53.(2)因为f ⎝ ⎛⎭⎪⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝⎛⎭⎪⎫x +13+π6=cosπx +π2=-sin πx , 所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx=32cos πx -32sin πx =3sin ⎝ ⎛⎭⎪⎫π6-πx .当x ∈⎣⎢⎡⎦⎥⎤-12,13时,-π6≤π6-πx ≤2π3.所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故π6-πx =π2,即x =-13时,g (x )取得最大值3; 当π6-πx =-π6,即x =13时,g (x )取得最小值-3222.(本小题满分12分)已知f (x )=log 4(4x +1)+kx (k ∈R )为偶函数. (1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. [解] (1)∵f (x )是偶函数,∴f (-x )=f (x ), 即log 4(4-x +1)-kx =log 4(4x +1)+kx ,化简得log 44-x +14x +1=2kx ,log 44-x =-x =2kx ,则有(2k +1)x =0.对任意的x ∈R 恒成立,于是有2k +1=0,k =-12.(2)∵f (x )=log 4(4x +1)-12x ,f (x )=log 4(a ·2x -a )有且只有一个根, ∴log 4(4x +1)-12x =log 4(a ·2x -a ), 即(1-a )(2x )2+a ·2x +1=0有唯一实根.令t =2x ,则关于t 的方程(1-a )t 2+at +1=0有唯一的正根.①当1-a =0即a =1时,方程(1-a )t 2+at +1=0,则t +1=0,即t =-1,不符合题意.②当1-a ≠0即a ≠1时,Δ=a 2-4(1-a )=a 2+4a -4=(a +2)2-8. 若Δ=0,则a =-2±22, 此时,t =a2(a -1).当a =-2+22时,则有t =a2(a -1)<0,方程(1-a )t 2+at +1=0无正根,不符合题意;当a =-2-22时,则有t =a 2(a -1)>0,且a ·2x-a =a (t -1)=a ·⎣⎢⎡⎦⎥⎤a 2(a -1)-1=a (2-a )2(a -1)>0,方程(1-a )t 2+at +1=0有两个相等的正根,符合题意.若Δ>0,则方程(1-a )t 2+at +1=0有两个不相等的实根,则只需其中有一正根即可满足题意.于是有⎩⎪⎨⎪⎧Δ>0,11-a <0,由此解得a >1.综上所述,a >1或a =-2-2 2.。

人教版高中数学选择性必修第一册-综合检测卷(含解析)

人教版高中数学选择性必修第一册-综合检测卷(含解析)

人教版高中数学选择性必修第一册综合检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π32.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +cD .-12a +b -12c4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 26.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =07.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427B.77C.33D.638.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya=1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为111.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为25512.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)15.已知点F2为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=23,则双曲线C的虚轴长为________.16.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤3,则e的取值范围为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知三角形的顶点A(2,3),B(0,-1),C(-2,1).(1)求直线AC的方程;(2)从①,②这两个问题中选择一个作答.①求点B关于直线AC的对称点D的坐标.②若直线l过点B且与直线AC交于点E,|BE|=3,求直线l的方程.18.(12分)已知圆C经过三点O(0,0),A(1,3),B(4,0).(1)求圆C的方程;(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.19.(12分)(2019·课标全国Ⅱ,文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>0,b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.20.(12分)如图,在四棱锥P-ABCD中,平面PCD⊥平面ABCD,且△PCD是边长为2的等边三角形,四边形ABCD是矩形,BC=22,M为BC的中点.(1)求证:AM⊥PM;(2)求二面角P-AM-D的大小;(3)求点D到平面AMP的距离.21.(12分)如图,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1;(2)设点E是直线B1C1上一点,且DE∥平面AA1B1B,求平面EBD与平面ABC1夹角的余弦值.22.(12分)已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.1.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为()A.54B.52C.32D.542.已知四面体顶点A (2,3,1),B (4,1,-2),C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为()A .8B .9C .10D .113.如图,在四棱锥S -ABCD 中,底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2.下列结论中正确的是()A.SA →+SB →+SC →+SD →=0B.SA →-SB →+SC →-SD →=0C.SA →·SB →+SC →·SD →=0D.SA →·SC →=04.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .56.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .167.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .228.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为411.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π312.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足|PA||PB|=12.设点P的轨迹为C,下列结论正确的是()A.轨迹C的方程为(x+4)2+y2=9B.在x轴上存在异于A,B的两点D,E使得|PD||PE|=1 2C.当A,B,P三点不共线时,射线PO是∠APB的平分线D.在C上存在点M,使得|MO|=2|MA|13.已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m的值为________,动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为________.14.已知M(-2,0),N(2,0),点P(x,y)为坐标平面内的动点,满足|MN→|·|MP→|+MN→·NP→=0,则动点P的轨迹方程为________.15.已知直线l:4x-3y+6=0,抛物线C:y2=4x上一动点P到直线l与到y轴距离之和的最小值为________,P到直线l距离的最小值为________.16.已知直线l:y=-x+1与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l的对称点在圆x2+y2=5上,求此椭圆的方程.17.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成的,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22318.如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的正切值大小.19.如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC ∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.(1)求二面角O1-BC-D的大小;(2)求点E到平面O1BC的距离.20.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,若|PM|=|PO|,求|PM|的最小值及使得|PM|取得最小值的点P的坐标.21.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求△OMN的面积.22.如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的短轴长为2,椭圆C上的点到右焦点距离的最大值为2+ 3.过点P(m,0)作斜率为k的直线l交椭圆C于A,B两点,其中m>0,k>0,D是线段AB的中点,直线OD交椭圆C于M,N两点.(1)求椭圆C的标准方程;(2)若m=1,OM→+3OD→=0,求k的值;(3)若存在直线l,使得四边形OANB为平行四边形,求m的取值范围.人教版高中数学选择性必修第一册综合检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π3答案A解析设直线的倾斜角为α,则tan α=3+3-34-1=33,∴α=π6.故选A.2.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案B 解析椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2.故选B.3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +c D .-12a +b -12c答案A解析OD →=OA →+AD →=OA →+12AC →=OA →+12(OC →-OA →)=12OA →+12OC →,因此BD →=OD →-OB →=12OA→-OB →+12OC →=12a -b +12c .4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)答案B解析设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).将y =x -1代入y 2=4x ,整理得x 2-6x +1=0.由根与系数的关系得x 1+x 2=6,则x 1+x 22=3,y 1+y 22=x 1+x 2-22=6-22=2,所以所求点的坐标为(3,2).故选B.5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 2答案B解析在正四面体ABCD 中,点E ,F 分别是BC ,AD 的中点,AE →=AB →+BE →,AF →=12AD →,所以AE →·AF →=(AB →+BE →)·12→=12AB →·AD →+12BE →·AD →.因为ABCD 是正四面体,所以BE ⊥AD ,∠BAD =π3,即BE →·AD →=0,AB →·AD →=|AB →|·|AD →|cos π3=12a 2,所以AE →·AF →=14a 2.故选B.6.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0答案D解析由题意设圆心坐标为C (a ,0)(a >0),∵圆C 与直线3x +4y +4=0相切,∴|3a +0+4|9+16=2,解得a =2.∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选D.7.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427 B.77C.33D.63答案B解析建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,3,0).PB →=(2,0,-2),CD →=(-2,1,0),PD →=(0,3,-2).设平面PCD 的一个法向量为n =(x ,y ,z ),2x +y =0,y -2z =0.取x =1得n =(1,2,3).cos 〈PB →,n 〉=PB →·n |PB →||n |=-422×14=-77,可得PB 与平面PCD 所成角的正弦值为77.故选B.8.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5答案A解析如图,由题意知以OF +y 2=c 24①,将x 2+y 2=a 2记为②式,①-②得x =a 2c ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=由|PQ |=|OF |,得c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e = 2.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya =1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)答案BD 解析对于A ,若直线过原点,则在两坐标轴上的截距都为零,故不能用方程x a +ya=1表示,所以A 错误;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,故不能用y -1=tan θ(x -1)表示,所以C 错误;对于D y =x +1上,且(0,2),(1,1)连线的斜率为-1,所以D 正确.故选BD.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为1答案AC解析对于A ,因为E ,F 分别是A 1D 1和C 1D 1的中点,所以EF ∥A 1C 1,且EF ⊂平面CEF ,故A 1C 1∥平面CEF 成立,A 正确;对于B ,以点D 为坐标原点,DA →,DC →,DD 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),设正方形ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),C (0,2,0),A (2,0,0,),B 1(2,2,2),D 1(0,0,2),E (1,0,2),F (0,1,2),B 1D →=(-2,-2,-2),FC →=(0,1,-2),因为B 1D →·FC →=0-2+4=2≠0,所以B 1D →与FC →不垂直,又CF ⊂平面CEF ,所以B 1D 与平面CEF 不垂直,B 错误;对于C ,12DA →+DD 1→-DC →=12(2,0,0)+(0,0,2)-(0,2,0)=(1,-2,2),又CE →=(1,-2,2),所以CE →=12DA→+DD 1→-DC →成立,C 正确;对于D ,连接B 1E ,EF →=(-1,1,0),EC →=(-1,2,-2),设平面EFC 的法向量为n =(x ,y ,z )·n =0,·n =0,x +y =0,x +2y -2z =0,令x =2,得n =(2,2,1),又B 1E →=(-1,-2,0),所以点B 1到平面CEF 的距离d =|B 1E →·n ||n |=63=2,D 错误.故选AC.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为255答案BC解析∵x 26+y 2=1,∴a =6,b =1,∴c =a 2-b 2=6-1=5,则C 的焦距为25,e =ca=56=306.设P (x ,y )(-6≤x ≤6),则|PD |2=(x +1)2+y 2=(x +1)2+1-x 26=+45≥45>15,可知圆D 在C 的内部,且|PQ |的最小值为45-15=55.故选BC.12.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内答案BCD解析设点P 的坐标为(x ,y ),由题意可得(x +2)2+y 2·(x -2)2+y 2=16.对于A ,将原点坐标(0,0)代入方程得2×2=4≠16,故A 错误;对于B ,设点P 关于x 轴、y 轴的对称点分别为P 1(x ,-y ),P 2(-x ,y ),因为(x +2)2+(-y )2·(x -2)2+(-y )2=(x +2)2+y 2·(x -2)2+y 2=16,(-x +2)2+y 2·(-x -2)2+y 2=(x -2)2+y 2·(x +2)2+y 2=16,所以点P 1,P 2都在曲线C 上,所以曲线C 关于x 轴、y 轴对称,故B 正确;对于C ,设|PM |=a ,|PN |=b ,∠MPN =θ(0<θ<π),则ab =16,由余弦定理得cos θ=a 2+b 2-162ab =a 2+b 2-1632≥2ab -1632=12,当且仅当a =b =4时等号成立,则θ,π3,所以sin θ≤32,则△MPN 的面积S △MPN =12ab sin θ≤12×16×32=43,故C正确;对于D ,由16=(x +2)2+y 2·(x -2)2+y 2≥(x +2)2·(x -2)2=|x 2-4|,可得-16≤x 2-4≤16,得0≤x 2≤20,解得-25≤x ≤25,由C 知,S △MPN =12|MN |·|y |=12×4×|y |≤43,得|y |≤23,因为45×43=1615<64,所以曲线C 在一个面积为64的矩形内,故D 正确.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.答案23a -13b +23c 解析PG →=PB →+BG→=PB →+23BD→=PB →+23(BA →+BC →)=PB →+23[(PA →-PB →)+(PC →-PB →)]=PB →+23(PA →-2PB →+PC →)=23PA →-13PB →+23PC →=23a -13b +23c .14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)答案(x -2)2+(y -1)2=12x +y -4=0解析设M (x ,y ),P (x 1,y 1),=x 1+42,=y 1+22,1=2x -4,1=2y -2.因为x 12+y 12=4,所以(2x -4)2+(2y -2)2=4.整理得(x -2)2+(y -1)2=1.①又圆C :x 2+y 2=4,②由①-②得2x +y -4=0,即为所求直线方程.15.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交双曲线C 于A ,B两点,若∠AF 2B =2π3,S △AF 2B =23,则双曲线C 的虚轴长为________.答案22解析由题意知点B 与点A 关于原点对称,设双曲线的左焦点为F 1,连接AF 1,BF 1,由对称性可知四边形AF 1BF 2是平行四边形,所以∠F 1AF 2=π3,设|AF 2|=m ,不妨设点A 在点B 右侧,则|AF 1|=2a +m .在△AF 1F 2中,由余弦定理可得4c 2=m 2+(m +2a )2-m (m +2a ),化简得4c 2-4a 2=m 2+2ma ,即4b 2=m (m +2a ).又S △AF 2B =12m (m +2a )·32=23,所以b 2=2,所以2b =2 2.16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 1(1,0),离心率为e .设A ,B 为椭圆上关于原点对称的两点,AF 1的中点为M ,BF 1的中点为N ,原点O 在以线段MN 为直径的圆上.设直线AB 的斜率为k ,若0<k ≤3,则e 的取值范围为________.答案[3-1,1)解析设A (m ,n ),则B (-m ,-n ),则k =nm,因为原点O 在以线段MN 为直径的圆上,所以OM ⊥ON ,又因为M 为AF 1的中点,所以OM ∥BF 1,同理ON ∥AF 1,所以四边形OMF 1N 是矩形,即AF 1⊥BF 1,而AF 1→=(1-m ,-n ),BF 1→=(1+m ,n ),所以(1-m )(1+m )-n 2=0,即m 2+n 2=1,又m 2a 2+n 2b 2=1,于是有m 2a 2+n 2b 2=m 2+n 2,从而1a 2-11-1b 2=n 2m 2=k 2≤3,即1a 2+3b2≥4,将b 2=a 2-1代入上式,整理得4a 4-8a 2+1≤0,解得2-32≤a 2≤2+32,又a >c =1,所以4-23≤1a2<1,即3-1≤e <1.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知三角形的顶点A (2,3),B (0,-1),C (-2,1).(1)求直线AC 的方程;(2)从①,②这两个问题中选择一个作答.①求点B 关于直线AC 的对称点D 的坐标.②若直线l 过点B 且与直线AC 交于点E ,|BE |=3,求直线l 的方程.思路分析(1)由A (2,3),C (-2,1),可求出直线AC 的斜率,由点斜式即可写出直线的方程;(2)选①由对称点的性质即可求出;选②设出E ,12t +t 的值,根据B ,E 两点的坐标即可求出直线的方程.解析(1)因为直线AC 的斜率为k AC =12,所以直线AC 的方程为y -3=12(x -2),即直线AC 的方程为x -2y +4=0.(2)选择问题①:设D 的坐标为(m ,n ),·12=-1,2·n -12+4=0,=-125,=195.所以点D -125,选择问题②:设E,12t +|BE |=33,解得t =0或t =-125.所以E 的坐标为(0,2)-125,所以直线l 的方程为x =0或3x +4y +4=0.18.(12分)已知圆C 经过三点O (0,0),A (1,3),B (4,0).(1)求圆C 的方程;(2)求过点P (3,6)且被圆C 截得弦长为4的直线的方程.解析(1)由题意,设圆C 的方程为x 2+y 2+Dx +Ey +F =0,=0,+9+D +3E +F =0+4D +F =0,=-4,=-2,=0.所以圆C 的方程为x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.(2)由(1)知圆心坐标为C (2,1),半径为5,弦长为4时,圆心C 到直线的距离为1.①若直线斜率不存在,则直线方程为x =3,经检验符合题意;②若直线斜率存在,设直线斜率为k ,则直线方程为y -6=k (x -3),即kx -y -3k +6=0,则|5-k |1+k 2=1,解得k =125,所以直线方程为y -6=125(x -3),即12x -5y -6=0.综上可知,直线方程为x =3或12x -5y -6=0.19.(12分)(2019·课标全国Ⅱ,文)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.解析(1)若△POF 2为等边三角形,则P ,±32c ,代入方程x 2a 2+y 2b 2=1,可得c 24a2+3c 24b2=1,解得e 2=4±23,所以e =3-1(3+1已舍去).(2)由题意可得|PF 1→|+|PF 2→|=2a ,因为PF 1⊥PF 2,所以|PF 1→|2+|PF 2→|2=4c 2,所以(|PF 1→|+|PF 2→|)2-2|PF 1→|·|PF 2→|=4c 2,所以2|PF 1→|·|PF 2→|=4a 2-4c 2=4b 2,所以|PF 1→|·|PF 2→|=2b 2,所以S △PF 1F 2=12|PF 1→|·|PF 2→|=b 2=16,解得b =4.因为(|PF 1→|+|PF 2→|)2≥4|PF 1→|·|PF 2→|,即(2a )2≥4|PF 1→|·|PF 2→|,即a 2≥|PF 1→|·|PF 2→|,所以a 2≥32,所以a ≥42,即a 的取值范围为[42,+∞).20.(12分)如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,且△PCD 是边长为2的等边三角形,四边形ABCD 是矩形,BC =22,M 为BC 的中点.(1)求证:AM ⊥PM ;(2)求二面角P -AM -D 的大小;(3)求点D 到平面AMP 的距离.解析以点D 为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),A (22,0,0),M (2,2,0),PM →=(2,1,-3),AM →=(-2,2,0).(1)证明:∵PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量,·PM →=0,·AM →=0,y -3z =0,+2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∵cos 〈n ,p 〉=n ·p |n ||p |=36=22,∴二面角P -AM -D 的大小为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)为平面AMP 的一个法向量,∴d =|DA →·n ||n |=|22×2|2+1+3=263,即点D 到平面AMP 的距离为263.21.(12分)如图,三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1;(2)设点E 是直线B 1C 1上一点,且DE ∥平面AA 1B 1B ,求平面EBD 与平面ABC 1夹角的余弦值.解析(1)证明:由已知得侧面AA 1C 1C 是菱形,D 是AC 1的中点.∵BA =BC 1,∴BD ⊥AC 1.∵平面ABC 1⊥平面AA 1C 1C ,且BD ⊂平面ABC 1,平面ABC 1∩平面AA 1C 1C =AC 1,∴BD ⊥平面AA 1C 1C .(2)设点F 是A 1C 1的中点,连接DF ,EF ,∵点D 是AC 1的中点,∴DF ∥平面AA 1B 1B .又∵DE ∥平面AA 1B 1B ,∴平面DEF ∥平面AA 1B 1B .又∵平面DEF ∩平面A 1B 1C 1=EF ,平面AA 1B 1B ∩平面A 1B 1C 1=A 1B 1,∴EF ∥A 1B 1.∴点E 是B 1C 1的中点.如图,以D 为原点,以DA 1,DA ,DB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得AC 1=2,AD =1,BD =A 1D =DC =3,BC =6,∴D (0,0,0),A (0,1,0),A 1(3,0,0),B (0,0,3),C 1(0,-1,0).设平面EBD 的法向量是m =(x ,y ,z ),由m ⊥DB →,得3z =0⇒z =0.又DE →=12(DC 1→+DB 1→)=12(DC 1→+DB →+AA 1→)1由m ⊥DE →,得(x ,y ,z10⇒32x -y =0.令x =1,得y =32,∴m ,32,∵平面ABC 1⊥平面AA 1C 1C ,DA 1⊥AC 1,∴DA 1⊥平面ABC 1.∴DA 1→是平面ABC 1的一个法向量,DA 1→=(3,0,0).∴cos 〈m ,DA 1→〉=31+34×3=277,∴平面EBD 与平面ABC 1夹角的余弦值是277.22.(12分)已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.解析(1)由题意知P 为线段MN 的中点,设N (x ,y ),则M (-x ,0),由PM →·PF →=0x,∴(-x )·10,∴y 2=4x (x >0),∴点N 的轨迹方程为y 2=4x (x >0).(2)设l 与抛物线交于点A (x 1,y 1),B (x 2,y 2).当l 与x 轴垂直时,则由OA →·OB →=-4,得y 1=22,y 2=-22,|AB |=42<46,不合题意.故l 与x 轴不垂直.可设直线l 的方程为y =kx +b (k ≠0),则由OA →·OB →=-4,得x 1x 2+y 1y 2=-4.由点A ,B 在抛物线y 2=4x (x >0)上有y 12=4x 1,y 22=4x 2,故y 1y 2=-8.又2=4x ,=kx +b ,联立消x ,得ky 2-4y +4b =0.∴4bk =-8,b =-2k.∴Δ=16(1+2k 2),|AB |2y1-y 2)2∵46≤|AB |≤430,∴96480.解得直线l的斜率取值范围为-1,-12∪12,1.1.若椭圆x2a2+y2b2=1(a>b>0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为()A.54B.52C.32D.54答案B2.已知四面体顶点A(2,3,1),B(4,1,-2),C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC的距离为()A.8B.9C.10D.11答案D解析设平面ABC的一个法向量为n=(x,y,z),则·AB→=0,·AC→=0,x,y,z)·(2,-2,-3)=0,x,y,z)·(4,0,6)=0.x-2y-3z=0,x+6z=0=2x,=-23x,令x=1,则n,2AD→=(-7,-7,7),故所求距离为|AD→·n||n|=|-7-14-143|1+4+49=11.3.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SA=SB=SC=SD=2.下列结论中正确的是()A.SA→+SB→+SC→+SD→=0B.SA→-SB→+SC→-SD→=0C.SA→·SB→+SC→·SD→=0D.SA→·SC→=0答案B解析本题考查空间向量的加减运算和数量积.由题意易知A错误;因为SA→-SB→+SC→-SD→=BA→+DC→=0,所以B正确;因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以SA →·SB →=2×2×cos ∠ASB ,SC →·SD →=2×2×cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →≠0,所以C 错误;连接AC ,在△SAC 中,SA =SC =2,AC =2,所以∠ASC ≠90°,所以cos ∠ASC ≠0,又SA →·SC →=2×2×cos ∠ASC ,所以SA →·SC →≠0,所以D 错误.故选B.4.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)答案B解析由题意得,A (-a ,0),F (-2a ,0),不妨设0,ba x AP →⊥FP →,得AP →·FP →=0⇒0+a ,b a x 0+2a ,ba x 0⇒c 2a 2x 02+3ax 0+2a 2=0.因为在双曲线E 的渐近线上存在点P ,所以Δ≥0,即9a 2-4×2a 2×c 2a 2≥0,9a 2≥8c 2⇒e 2≤98⇒-324≤e ≤324,又因为E 为双曲线,所以1<e ≤324.故选B.5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .5答案C解析连接AC 交BD 于点O ,以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系.设PA =AB =2,则A (2,0,0),D (0,-2,0),P (0,0,2),0B (0,2,0),∴BD →=(0,-22,0),设N (0,b ,0),则BN →=(0,b -2,0).∵BD=λBN →,∴-22=λ(b -2),∴b =2λ-22λ,∴N,2λ-22λ,,→-22,2λ-22λ,-AD →=(-2,-2,0),∵AD ⊥MN ,∴AD →·MN →=1-2λ-4λ=0,解得λ=4.故选C.6.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .16答案B解析设MN 的中点为D ,椭圆C 的左、右焦点分别为F 1,F 2,如图,连接DF 1,DF 2.∵F 1是MA 的中点,D 是MN 的中点,∴F 1D 是△MAN 的中位线,∴|DF 1|=12|AN |,同理|DF 2|=12|BN |,∴|AN |+|BN |=2(|DF 1|+|DF 2|).∵点D 在椭圆上,根据椭圆的标准方程及椭圆的定义知,|DF 1|+|DF 2|=4,∴|AN |+|BN |=8.故选B.7.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .22答案A解析设点P (x 0,y 0),则x 02+y 02=2,所以|PB |2|PA |2=(x 0-1)2+(y 0+1)2x 02+(y 0+2)2=x 02+y 02-2x 0+2y 0+2x 02+y 02+4y 0+4=-2x 0+2y 0+44y 0+6=-x 0+y 0+22y 0+3,令λ=-x 0+y 0+22y 0+3,则λ≠0,x 0+(2λ-1)y 0+3λ-2=0,由题意,知直线x +(2λ-1)y +3λ-2=0与圆x 2+y 2=2有公共点,所以|3λ-2|1+(2λ-1)2≤2,得λ2-4λ≤0,得0<λ≤4,所以|PB ||PA |的最大值为2.8.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面答案BCD解析易知b +c ,b -c ,a 不共面;因为2b =(b +c )+(b -c ),所以b +c ,b -c ,2b 共面;因为a +b +c =(b +c )+a ,所以b +c ,a ,a +b +c 共面;因为a +c =(a -2c )+3c ,所以a +c ,a -2c ,c 共面.故选BCD.9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP答案ACD解析在长方体ABCD -A 1B 1C 1D 1中,连接AC ,以点D 为坐标原点,建立如图所示的空间直角坐标系,因为AB =3AD =3AA 1=3,所以AD =AA 1=1,则A (1,0,0),A 1(1,0,1),C (0,3,0),C 1(0,3,1),D 1(0,0,1),D (0,0,0),B (1,3,0),则A 1C →=(-1,3,-1),D 1A →=(1,0,-1),DC 1→=(0,3,1),DB →=(1,3,0),A 1D 1→=(-1,0,0).当A 1C →=2A 1P →时,P 为A 1C 的中点,根据长方体结构特征,可知P 为体对角线的中点,因此P 也为B 1D 的中点,所以B 1,P ,D 三点共线,故A 正确;当AP →⊥A 1C →时,AP ⊥A 1C ,由题意可得A 1C =1+1+3=5,AC =1+3=2,因为S △A 1AC =12AA 1·AC =12A 1C ·AP ,所以AP =255,所以A 1P =55,即点P 为靠近点A 1的五等分点,所以,35,D 1P →,35,-AP →=-15,35,D 1P →·AP →=-425+325-425=-15≠0,所以AP →与D 1P →不垂直,故B 错误;当A 1C →=3A 1P →时,A 1P →=13A 1C →-13,33,-BDC 1的一个法向量为n =(x ,y ,z ),·DC 1→=0,·DB →=0,+z =0,+3y =0,令y =1,可得n =(-3,1,-3),又D 1P →=A 1P →-A 1D 1→=,33,-D 1P →·n =0,因此D 1P →⊥n ,所以D 1P →∥平面BDC 1,故C 正确;当A 1C →=5A 1P →时,A 1P →=15A 1C →-15,35,-所以D 1P →=A 1P →-A 1D 1→,35,-所以A 1C →·D 1P →=0,A 1C →·D 1A →=0,因此A 1C ⊥D 1P ,A 1C ⊥D 1A ,又D 1P ∩D 1A =D 1,所以A 1C ⊥平面D 1AP ,故D 正确.故选ACD.10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为4答案AC解析如图,过点M 向准线l 作垂线,垂足为N ,F (1,0),设A (x 1,y 1),B (x 2,y 2),因为|AF |=|AC |,所以∠AFC =∠ACF ,又因为∠OFC =∠ACF ,所以∠OFC =∠AFC ,所以FC 平分∠OFA ,同理可知FD 平分∠OFB ,所以∠CFD =90°,故A 正确;假设△CMD 为等腰直角三角形,则∠CFD =∠CMD =90°,则C ,D ,F ,M 四点共圆且圆的半径为12|CD |=|MN |,又因为|AF |=3|BF |,所以|AB |=|AF |+|BF |=|AC |+|BD |=2|MN |=4|BF |,所以|MN |=2|BF |,所以|CD |=2|MN |=4|BF |,所以|CD |=|AB |,显然不成立,故B 错误;设直线AB的方程为x =my +12=4x ,+1,所以y 2-4my -4=01+y 2=4m ,1y 2=-4,又因为|AF |=3|BF |,所以y 1=-3y 22y 2=4m ,3y 22=-4,所以m 2=13,所以1m =±3,所以直线AB 的斜率为±3,故C 正确;取m =331+y 2=433,1y 2=-4,所以|y 1-y 2|=833,所以S △AOB =12·|OF |·|y 1-y 2|=12×1×833=433D 错误.故选AC.11.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π3答案AD解析由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,BC 长为半径的圆,设CB 旋转到直线a 上时为CE ,旋转到直线b 上时为CD ,以C 为坐标原点,以CD 所在直线为x 轴,CE 所在直线为y 轴,CA 所在直线为z 轴,建立空间直角坐标系,则D (1,0,0),A (0,0,1),设B 点在运动过程中的坐标为(cos θ,sin θ,0),其中θ为射线CD 绕端点C 旋转到CB 形成的角,θ∈[0,2π),∴AB 在运动过程中对应的向量AB →=(cos θ,sin θ,-1),|AB →|=2,设AB 与a 所成的角为α,α∈0,π2,则cos α=22|sin θ|∈0,22,∴α∈π4,π2,故A 正确,B错误;设AB 与b 所成的角为β,β∈0,π2,则cos β=22|cos θ|,当AB 与a 所成的角为π3,即α=π3时,|sin θ|=2cos α=2cos π3=22,∵cos 2θ+sin 2θ=1,∴cos β=22|cos θ|=12,∵β∈0,π2,∴β=π3,此时AB 与b所成的角为π3,故D 正确,C 错误.故选AD.12.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足|PA ||PB |=12.设点P 的轨迹为C ,下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得|MO |=2|MA |答案BC解析设P (x ,y ),则(x +2)2+y 2(x -4)2+y 2=12,化简得(x +4)2+y 2=16,所以A 错误;假设在x轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12,设D (m ,0),E (n ,0),则(x -n )2+y 2=2(x -m )2+y 2,化简得3x 2+3y 2-(8m -2n )x +4m 2-n 2=0,由轨迹C 的方程为x 2+y 2+8x =0,可得8m -2n =-24,4m 2-n 2=0,解得m =-6,n =-12或m =-2,n =4(舍去),即在x 轴上存在异于A ,B 的两点D ,E 使|PD ||PE |=12,所以B 正确;当A ,B ,P 三点不共线时,由|OA ||OB |=12=|PA ||PB |,可得射线PO 是∠APB 的平分线,所以C 正确;假设在C 上存在点M ,使得|MO |=2|MA |,可设M (x ,y ),则有x 2+y 2=2(x +2)2+y 2,化简得x 2+y 2+163x +163=0,与x 2+y 2+8x =0联立,得x =2,不合题意,故不存在点M ,所以D 错误.故选BC.13.已知直线l :mx -y =1,若直线l 与直线x -my -1=0平行,则实数m 的值为________,动直线l 被圆C :x 2+y 2+2x -24=0截得弦长的最小值为________.答案-1223解析由题得m ×(-m )-(-1)×1=0,所以m =±1.当m =1时,两直线重合,舍去,故m =-1.因为圆C 的方程x 2+y 2+2x -24=0可化为(x +1)2+y 2=25,所以圆心为C (-1,0),半径为5.由于直线l :mx -y -1=0过定点P (0,-1),所以过点P 且与PC 垂直的弦的弦长最短,且最短弦长为2×52-(2)2=223.14.已知M (-2,0),N (2,0),点P (x ,y )为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P 的轨迹方程为________.答案y 2=-8x 解析由题意,知MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ).由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理,得y 2=-8x .15.已知直线l :4x -3y +6=0,抛物线C :y 2=4x 上一动点P 到直线l 与到y 轴距离之和的最小值为________,P 到直线l 距离的最小值为________.答案134解析设抛物线C :y 2=4x 上的点P 到直线4x -3y +6=0的距离为d 1,到准线的距离为d 2,到y 轴的距离为d 3,由抛物线方程可得焦点坐标为F (1,0),准线方程为x =-1,则d 3=d 2-1,|PF |=d 2,因此d 1+d 3=d 1+d 2-1=d 1+|PF |-1,因为d 1+|PF |的最小值是焦点F 到直线4x -3y +6=0的距离,即|4+6|42+(-3)2=2,所以d 1+d 3=d 1+|PF |-1的最小值为2-1=1;设平行于直线l 且与抛物线C :y 2=4x 相切的直线方程为4x -3y +m =0,由x -3y +m =0,2=4x ,得y 2-3y +m =0,因为直线4x -3y +m =0与抛物线C :y 2=4x 相切,所以Δ=(-3)2-4m =0,解得m =94,因此该切线方程为4x -3y +94=0,所以两平行线间的距离为6-9442+(-3)2=34,即P 到直线l 距离的最小值为34.16.已知直线l :y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且线段AB 的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l 的对称点在圆x 2+y 2=5上,求此椭圆的方程.解析(1)x +1,+y 2b 2=1,得(b 2+a 2)x 2-2a 2x +a 2-a 2b 2=0,∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0⇒a 2+b 2>1.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2a 2b 2+a 2.∵线段AB ,∴2a 2b 2+a 2=43,得a 2=2b 2.又a 2=b 2+c 2,∴a 2=2c 2,∴e =22.(2)设椭圆的右焦点为F (c ,0),则点F 关于直线l :y =-x +1的对称点为P (1,1-c ).∵点P 在圆x 2+y 2=5上,∴1+(1-c )2=5,即c 2-2c -3=0.∵c >0,∴c =3,又a 2=2c 2且a 2=b 2+c 2,∴a =32,b =3,∴椭圆的方程为x 218+y 29=1.17.如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 组合而成的,AD ⊥AF ,AE =AD =2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是223解析(1)证明:在直三棱柱ADE -BCF 中,AB ⊥平面ADE ,AD ⊂平面ADE ,所以AB ⊥AD .又AD ⊥AF ,AB ∩AF =A ,AB ⊂平面ABFE ,AF ⊂平面ABFE ,所以AD ⊥平面ABFE .因为AD ⊂平面PAD ,所以平面PAD ⊥平面ABFE .(2)由(1)知AD ⊥平面ABFE ,以A 为原点,AB ,AE ,AD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图,则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h ,1),AF →=(2,2,0),AC →=(2,0,2),AP →=(1,-h ,1).设平面AFC 的一个法向量为m =(x 1,y 1,z 1),·AF →=2x 1+2y 1=0,·AC →=2x 1+2z 1=0,取x 1=1,则y 1=z 1=-1,所以m =(1,-1,-1).设平面AFP 的一个法向量为n =(x 2,y 2,z 2),·AF →=2x 2+2y 2=0,·AP →=x 2-hy 2+z 2=0,取x 2=1,则y 2=-1,z 2=-1-h ,所以n =(1,-1,-1-h ).因为二面角C -AF -P 的余弦值为223,所以|cos 〈m ·n 〉|=|m ·n ||m |·|n |=|1+1+1+h |3×2+(h +1)2=223,解得h =1或h =-35(舍),所以正四棱锥P -ABCD 的高h =1.18.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.。

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷含答案解析(43)

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷含答案解析(43)

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷8(共22题)一、选择题(共10题)1.已知函数f(x)=2cos2x2+sinx,则f(x)的最大值为( )A.√2+1B.√2−1C.−√2+1D.−√2−12.若点(sin5π6,cos5π6)在角α的终边上,则sinα的值为( )A.−12B.12C.−√32D.√323.在△ABC中,若2cosBsinA=sinC,则△ABC的形状定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形4.函数y=(sinx−cosx)2的最小正周期为( )A.2πB.3π2C.πD.π25.在0到2π范围内,与角−4π3终边相同的角是( )A.π6B.π3C.2π3D.4π36.已知sinα+cosα=23,则sin2α的值为( )A.59B.±59C.−59D.07.下列各角中,与126∘角终边相同的角是( )A.−126∘B.486∘C.−244∘D.574∘8.若α=45∘+k⋅180∘(k∈Z),则α的终边在( )A.第一或第三象限B.第二或第三象限C.第二或第四象限D.第三或第四象限9. 已知顶点在原点的锐角 α 绕原点逆时针转过 π6后,终边交单位圆于 P (−13,y),则 sinα 的值为( ) A .2√2−√36B .2√2+√36C .2√6−16D .2√6+1610. cos210∘= ( ) A . 12B .√32C . −12D . −√32二、填空题(共6题)11. 若角 A 是三角形 ABC 的内角,且 tanA =−13,则 sinA +cosA = .12. 已知函数 f (x )=sin (ωx +π6)cos (ωx +π6)(ω>0),若 f (x ) 在区间 (π12,π4) 上单调递减,且函数图象关于 x =π3 对称,则 ω 的值是 .13. 已知 tanα=√22,则 cosα−sinαcosα+sinα= ;cos2α= .14. 直线 y =a (a 为常数)与正切曲线 y =tanωx (ω>0) 相交的相邻两点间的距离为 .15. 函数 y =sin (πx +3) 的最小正周期是 .16. 函数 f (x )=tan (2x −π3) 的最小正周期为 .三、解答题(共6题)17. 求 y =2sinx +1 的单调递增区间.18. 写出与下列各角终边相同的角的集合,并找出集合中适合不等式 −360∘≤β<360∘ 的元素 β:(1) 60∘; (2) −75∘; (3) −824∘30ʹ; (4) 475∘; (5) 90∘;(6) 270∘;(7) 180∘;(8) 0∘.19.设函数f(x)=sinωx+sin(ωx−π2),x∈R.若ω=12,求f(x)的最大值及相应的x的集合20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,−π2<φ<π2)的部分图象如图所示.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递增区间.21.已知tan2θ=−2√2,2θ∈(π2,π),求2cos2θ2−sinθ−1√2sin(π4+θ)的值.22.已知角α=1200∘.(1) 将α改写成β+2kπ(k∈Z,0≤β<2π)的形式,并指出α是第几象限的角;(2) 在区间[−4π,0]上找出与α终边相同的角.答案一、选择题(共10题)1. 【答案】A【解析】f(x)=2cos2x2+sinx=1+cosx+sinx=√2sin(x+π4)+1,当x+π4=2kπ+π2,即x=2kπ+π4,k∈Z时,f(x)的最大值为√2+1.【知识点】Asin(ωx+ψ)形式函数的性质2. 【答案】C【解析】因为点(sin5π6,cos5π6)在角α的终边上,即点(12,−√32)在角α的终边上,则sinα=−√32.【知识点】任意角的三角函数定义3. 【答案】C【解析】因为在△ABC中,2cosBsinA=sinC=sin(A+B)=sinAcosB+cosAsinB,所以sinAcosB−cosAsinB=0,即sin(A−B)=0,所以A=B.【知识点】判断三角形的形状4. 【答案】C【解析】化简可得y=(sinx−cosx)2=1−sin2x,所以由周期公式可得T=2π2=π.【知识点】Asin(ωx+ψ)形式函数的性质5. 【答案】C【解析】因−4π3=2π−4π3=2π3.故选C.【知识点】弧度制6. 【答案】C【解析】因为sinα+cosα=23,平方可得1+2sinαcosα=1+sin2α=49,则sin2α=−59.【知识点】二倍角公式7. 【答案】B【解析】与126∘角终边相同的角的集合为{α∣ α=126∘+k⋅360∘,k∈Z}.取k=1,可得α=486∘,所以与126∘角终边相同的角是486∘.【知识点】任意角的概念8. 【答案】A【解析】当k=2n,n∈Z时,α=45∘+n⋅360∘(n∈Z),α在第一象限;当k=2n+1,n∈Z时,α=225∘+n⋅360∘(n∈Z),α在第三象限.【知识点】任意角的概念9. 【答案】D【知识点】任意角的三角函数定义10. 【答案】D【解析】cos210∘=−cos30∘=−√32,故选D.【知识点】诱导公式二、填空题(共6题)11. 【答案】−√105【解析】由题意得{sin2A+cos2A=1, sinAcosA=−13,π2<A<π,解得{sinA=√1010,cosA=−3√1010,所以sinA+cosA=−√105.【知识点】同角三角函数的基本关系12. 【答案】74【解析】f(x)=sin(ωx+π6)cos(ωx+π6)=12sin(2ωx+π3).因为x=π3是f(x)的对称轴,所以2ω×π3+π3=π2+kπ(k∈Z)2 3ωπ=π6+kπ(k∈Z),ω=14+32k(k∈Z),又因为f(x)在(π12,π4)上单减,所以π4−π12≤T2,所以π6≤T2,所以T≥π3,所以2πω≥π3,所以ω≤6,又因为ω>0,所以ω=14或74或134或194,当ω=14时,f(x)=12sin(12x+π3),因为x∈(π12,π4 ),所以12x∈(π24,π8),所以12x+π3∈(924π,1124π),单增,舍,当ω=74时,f(x)=12sin(72x+π3),因为x∈(π12,π4 ),7 2x∈(7π24,7π8),7 2x+π3∈(1524π,2924π),单减,当ω=134时,f(x)=12sin(132x+π3),因为x∈(π12,π4 ),13 2x∈(3π24,13π8),13 2x+π3∈(2124π,4724π),不是单减,同理ω=194时,也不是单减,所以ω=74.【知识点】Asin(ωx+ψ)形式函数的性质13. 【答案】3−2√2;13【知识点】二倍角公式14. 【答案】πω【知识点】Asin(ωx+ψ)形式函数的性质15. 【答案】2【知识点】Asin(ωx+ψ)形式函数的性质16. 【答案】π2【解析】利用正切型函数的最小正周期公式可知:函数f(x)=tan(2x−π3)的最小正周期为T=π2.【知识点】Asin(ωx+ψ)形式函数的性质三、解答题(共6题)17. 【答案】[−π2+2kπ,π2+2kπ](k∈Z).【知识点】Asin(ωx+ψ)形式函数的性质18. 【答案】(1) {β∣ β=60∘+k⋅360∘,k∈Z},−300∘,60∘.(2) {β∣ β=−75∘+k⋅360∘,k∈Z},−75∘,285∘.(3) {β∣β=−824∘30ʹ+k⋅360∘,k∈Z),−104∘30ʹ,255∘30ʹ.(4) {β∣ β=475∘+k⋅360∘,k∈Z},−245∘,115∘.(5) {β∣ β=90∘+k⋅360∘,k∈Z},−270∘,90∘.(6) {β∣ β=270∘+k⋅360∘,k∈Z},−90∘,270∘.(7) {β∣ β=180∘+k⋅360∘,k∈Z},−180∘,180∘.(8) {β∣ β=k⋅360∘,k∈Z},−360∘,0∘.【知识点】任意角的概念19. 【答案】f(x)=sinωx+sin(ωx−π2)=sinωx−cosωx,当ω=12时,f(x)=sin x2−cos x2=√2sin(x2−π4),而−1≤sin(x2−π4)≤1,所以f(x)的最大值为√2,此时x2−π4=2kπ+π2,k∈Z,即x=4kπ+3π2,k∈Z,相应的x的集合为{x∣∣x=4kπ+3π2,k∈Z}.【知识点】Asin(ωx+ψ)形式函数的性质20. 【答案】(1) 设f(x)的最小正周期为T.由题图可知A=2,T4=5π12−π6=π4,所以T=π,ω=2πT=2,所以f(x)=2sin(2x+φ).因为函数f(x)的图象过点(π6,0),所以2sin(π3+φ)=0,φ=kπ−π3,k∈Z.因为−π2<φ<π2,所以取k=0,则φ=−π3.所以f(x)=2sin(2x−π3).(2) 由2kπ−π2≤2x−π3≤2kπ+π2,k∈Z,得kπ−π12≤x≤kπ+5π12,k∈Z,故函数f(x)的单调递增区间为[kπ−π12,kπ+5π12],k∈Z.【知识点】Asin(ωx+ψ)形式函数的性质21. 【答案】2√2−3.【知识点】二倍角公式22. 【答案】(1) 因为α=1200∘=1200×π180=20π3=3×2π+2π3,所以角α与2π3的终边相同,又π2<2π3<π,所以角α是第二象限的角.(2) 因为与角α终边相同的角(含角α在内)为2kπ+2π3,k∈Z,所以由−4π≤2kπ+2π3≤0,得−73≤k≤−13.因为k∈Z,所以k=−2或k=−1.故在区间[−4π,0]上与角α终边相同的角是−10π3,−4π3.【知识点】弧度制。

人教版高中数学必修第一册第五单元《三角函数》测试(答案解析)(2)

人教版高中数学必修第一册第五单元《三角函数》测试(答案解析)(2)

一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两条对称轴之间的距离为2π,且该函数图象关于点()0,0x 成中心对称,00,2x π⎡⎤∈⎢⎥⎣⎦,则0x 等于( ) A .512π B .4π C .3π D .6π3.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( ) A .2425-B .725-C .7-D .17-4.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7255.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦πC .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦6.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=7.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭ 8.sin15cos15+=( ) A .12B .22C .32D .629.已知函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .410.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭11.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=-12.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 二、填空题13.已知()0,απ∈且tan 3α=,则cos α=______. 14.已知()tan 3πα+=,则2tan 2sin αα-的值为_______.15.已知α、β均为锐角,且sin 10α=,()cos 5αβ+=,则cos 2β=_______________16.下列函数中,以π2为周期且在区间ππ,42⎛⎫⎪⎝⎭单调递增的是______.①()cos2f x x =;②()sin 2f x x =;③()cos f x x =;④()sin f x x = 17.若函数()|2cos |f x a x =+的最小正周期为π,则实数a 的值为____.18.方程21sin cos 2x x x =在[0,]4π上的解为___________19.已知函数()cos 2f x x =,若12,x x 满足12|()()|2f x f x -=,则12||x x -的一个取值为________. 20.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 三、解答题21.已知函数()()0,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 22.已知向量2(cos ,sin )m x a x =,(3,cos )n x =-,函数3()f x m n =⋅-. (1)若1a =,当[0,]2x π∈时,求()f x 的值域; (2)若()f x 为偶函数,求方程3()4f x =-在区间[,]-ππ上的解.23.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭求sin()αβ+,cos()αβ-,tan2α的值. 24.已知函数25()23sin cos()2cos (0)32f x wx wx wx w π=+-+>的图像上相邻的两个最低点的距离为π. (1)求w 的值;(2)求函数()f x 的单调递增区间.25.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间.26.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=-⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.A解析:A 【分析】由已知条件求得函数()f x 的最小正周期T ,可求得ω的值,再由已知可得()026x k k Z ππ+=∈,结合00,2x π⎡⎤∈⎢⎥⎣⎦可求得0x 的值. 【详解】由题意可知,函数()f x 的最小正周期T 满足22T π=,T π∴=,22T πω∴==,()sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,由于函数()f x 的图象关于点()0,0x 成中心对称,则()026x k k Z ππ+=∈,解得()0212k x k Z ππ=-∈, 由于00,2x π⎡⎤∈⎢⎥⎣⎦,解得0512x π=. 故选:A. 【点睛】结论点睛:利用正弦型函数的对称性求参数,可利用以下原则来进行: (1)函数()()sin f x A x =+ωϕ关于直线0x x =对称()02x k k Z πωϕπ⇔+=+∈;(2)函数()()sin f x A x =+ωϕ关于点()0,0x 对称()0x k k Z ωϕπ⇔+=∈.3.D解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.4.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.5.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x x x π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.6.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题7.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.8.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.9.B解析:B【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.10.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, ∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 11.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出.【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误; 对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C 错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 二、填空题13.【分析】本题考查同角三角函数及其关系借助公式求解即可求解时需要判定符号的正负【详解】解:法一:由可得代入解得因为所以所以法二:由且可取终边上的一点坐标为根据三角函数终边定义公式故答案为:【点睛】方法解析:10【分析】本题考查同角三角函数及其关系,借助公式sin tan cos ααα=,22sin +cos =1αα求解即可,求解时需要判定符号的正负. 【详解】解:法一:由sin tan =3cos ααα=可得sin =3cos αα,代入22sin +cos =1αα解得cos α= 因为()0,tan 30απα∈=>,,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=. 法二:由()0,απ∈且tan 3α=可取α终边上的一点坐标为(1,3),根据三角函数终边定义公式cos 10α===.【点睛】方法点睛:同角三角函数基本关系的3个应用技巧: (1)弦切互化利用公式sin tan ()cos 2k απααπα=≠+实现角α的弦切互化; (2)和(差)积转换利用2(sin cos )=1sin 2ααα±±进行变形、转化;(3)巧用“1”的变换22222211sin+cos =cos (tan 1)sin (1)tan αααααα=+=+. 14.【分析】利用诱导公式求出再利用二倍角公式求出以及同角三角函数的基本关系求出即可得解;【详解】解:由题意所以所以所以故答案为: 解析:3320-【分析】利用诱导公式求出tan α,再利用二倍角公式求出tan2α,以及同角三角函数的基本关系求出2sin α,即可得解; 【详解】解:由题意()tan 3πα+=,所以tan 3α=,所以22tan 3tan 21tan 4ααα==--,222222sin tan 9sin sin cos tan 110αααααα===++,所以23933tan 2sin 41020αα-=--=-.故答案为:3320-15.【分析】先由题意得到求出根据由两角差的余弦公式求出再由二倍角公式即可求出结果【详解】因为均为锐角所以又所以所以则故答案为:解析:45【分析】先由题意得到,0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,()0,αβπ+∈,求出sin 10α=,()cos 5αβ+=,根据()cos cos βαβα=+-,由两角差的余弦公式,求出cos β,再由二倍角公式,即可求出结果. 【详解】因为α、β均为锐角,所以0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,()0,αβπ+∈,又sin 10α=,()cos 5αβ+=,所以cos 10α==,()sin 5αβ+==, 所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++==, 则294cos 22cos 1155ββ=-=-=. 故答案为:45. 16.①【分析】利用与的关系确定①②的周期在给定区间上去掉绝对值符号后确定单调性化简和后可得其性质从而判断③④【详解】周期是时是增函数①满足题意;周期是时是减函数②不满足题意;周期是③不满足题意;不是周期解析:① 【分析】利用()f x 与()f x 的关系确定①②的周期,在给定区间上去掉绝对值符号后确定单调性,化简cos x 和sin x 后可得其性质,从而判断③④【详解】()cos2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()cos2cos2f x x x ==-是增函数,①满足题意;()sin 2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()sin 2sin 2f x x x ==是减函数,②不满足题意;()cos cos f x x x ==,周期是2π,③不满足题意; sin ,0()sin sin ,0x x f x x x x ≥⎧==⎨-<⎩不是周期函数,④不满足题意.故答案为:①. 【点睛】结论点睛:本题考查三角函数的周期性与单调性,解题时可利用如下结论:①()sin()f x A x ωϕ=+(或cos()A x ωϕ+,函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.17.【分析】利用来求解【详解】因为函数的最小正周期为所以都有成立故则故答案为: 解析:0【分析】利用()()f x f x π=+来求解. 【详解】因为函数()f x 的最小正周期为π,所以x R ∀∈,都有()()f x f x π=+成立, 故()2cos 2cos 2cos a x a x a x π+=++=-,则0a =. 故答案为:0.18.【分析】由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论【详解】由得得∴又∴故答案为:【点睛】方法点睛:本题考查求解三角方程解题方法:(1)利用三角函数的恒等变换公式化方程为的形式然后解析:12π 【分析】 由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论. 【详解】由21sin cos 2x x x =得1cos 21222x x -+=,得sin 206x π⎛⎫-= ⎪⎝⎭,∴26x k ππ-=,,212k x k Z ππ=+∈,又0,4x π⎡⎤∈⎢⎥⎣⎦,∴12x π=. 故答案为:12π.【点睛】方法点睛:本题考查求解三角方程,解题方法:(1)利用三角函数的恒等变换公式化方程为sin()x k ωϕ+=的形式,然后由正弦函数的定义得出结论.(2)用换元法,如设sin x t =,先求得方程()0f t =的解0t ,然后再解方程0sin x t =.19.(答案不唯一)【分析】根据的值域为可知若满足则必有的值分别为再根据三角函数的性质分析即可【详解】因为的值域为故若满足则必有的值分别为故的最小值当且仅当为相邻的两个最值点取得此时为的半个周期即故答案为解析:π2(答案不唯一) 【分析】根据()cos2f x x =的值域为[]1,1-可知若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,再根据三角函数的性质分析即可.【详解】因为()cos2f x x =的值域为[]1,1-,故若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,故12x x -的最小值当且仅当12,x x 为()cos2f x x =相邻的两个最值点取得.此时12x x -为()cos2f x x =的半个周期,即12222ππ⨯=. 故答案为:2π【点睛】关键点点睛:相邻的两个最值点的横坐标的距离为半个周期是解题的突破点.20.【分析】根据三角函数的性质求得的最大值进而可求出结果【详解】因为由可得所以则因为恒成立所以只需故答案为:解析:)+∞【分析】根据三角函数的性质,求得sin cos x x +的最大值,进而可求出结果. 【详解】因为sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,由0,2x π⎛⎫∈ ⎪⎝⎭可得3,444x πππ⎛⎫+∈ ⎪⎝⎭,所以sin 42x π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,则(sin cos 4x x x π⎛⎫+=+∈ ⎪⎝⎭,因为0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,所以只需m ≥故答案为:)+∞.三、解答题21.(1)2ω=,6πϕ=-;(2)max ()f x =min ()2f x =-. 【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()f x =. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题.22.(1)[-;(2)75,1212x ππ=±±. 【分析】(1)将()f x 化为()cos(2)6f x x π=+,然后可得答案; (2)由()f x 为偶函数可求出0a =,然后可得答案. 【详解】(1)2()sin cos 2sin 2222a f x x a x x x x =--=-当1a =,1()cos 2sin 2cos(2)226f x x x x π=-=+由7[0,],2[,],cos(2)[1,266662x x x πππππ∈∴+∈∴+∈-所以()f x 的值域为[-(2)若()f x 为偶函数,则()()f x f x -=恒成立2sin 22sin 222a a x x x x +=-成立,整理得sin 20,0a x a =∴=所以由3()24f x x ==-得cos 22x =-又752[2,2],,1212x x ππππ∈-∴=±± 23.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解.【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos 5α===-,因为3,2πβπ⎛⎫∈ ⎪⎝⎭,12cos 13,所以5sin13β===-,所以3124516 sin()sin cos cos sin51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4123533cos()cos cos sin sin51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为sin3tancos4ααα==-,所以22322tan244tan21tan7314ααα⎛⎫⨯-⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan27α=-.24.(1)1;(2)()36k k k Zππππ⎡⎤-++∈⎢⎥⎣⎦,.【分析】本题考查三角函数的图像和性质、三角恒等变换,根据三角恒等变换公式()f x化简函数解析式,根据图像和性质求单调递增区间.【详解】(1)5()(cos cos sin sin)(1cos2)332f x wx wx wx wxππ=--++23sin23sin cos222wx wx wx=--+1cos2323cos222wxwx wx-=-⨯-+12cos22wx wx=+sin(2)6wxπ=+又因为()f x图象上相邻的两个最低点间的距离为π,0w>,所以22w,解得1w=.(2)据(1)求解知,()sin(2)6f x xπ=+令222()262k x k k Zπππππ-+≤+≤+∈,所以()36k x k k Zππππ-+≤≤+∈,所以所求的单调递增区间是()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【点睛】思路点睛:三角恒等变换综合应用的解题思路:(1)利用降幂、升幂公式将()f x 化为sin cos a x b x 的形式;(2)构造())f x x x +;(3)和差公式逆用,得())f x x ϕ=+ (其中ϕ为辅助角,tan b aϕ=);(4)利用())f x x ϕ=+研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范. 25.(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,(1)由[]0,x α∈,得到2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,根据由正弦函数图像,即可求解; (2)根据函数正弦函数的形式,求得36k x k ππππ-+≤≤+,k Z ∈,进而得出函数的单调递增区间. 【详解】 方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=, 所以()()sin 2f x x ϕ=+,又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 2222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.26.(1)2+(千米);(2). 【分析】(1)根据P 位于弧BC 的中点,则P 位于BAC ∠的角平分线上,然后分别在,,Rt APQ Rt APR 正AQR 中求解.(2)设PAB θ∠=,060θ<<︒,然后分别在,Rt APQ Rt APR 表示 PQ ,PR ,在AQR 中由余弦定理表RQ ,再由300200400W PQ PR RQ =⨯+⨯+⨯求解.【详解】(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上, 则1||||||sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,||cos 22AQ PA PAB =∠=⨯= 由60BAC ∠=︒,且AQ AR =,∴QAR 为等边三角形,则||RQ AQ ==三条街道的总长||||||112l PQ PR RQ =++=++ ; (2)设PAB θ∠=,060θ︒<<︒, 则sin 2sin PQ AP θθ==,PR AP =()()sin 602sin 603cos sin θθθθ-=-=-, cos 2cos AQ AP θθ==,||||cos(60)2cos(60)cos AR AP θθθθ=-=-=+,由余弦定理可知:2222cos60RQ AQ AR AQ AR =+-,22(2cos )(cos )22cos (cos )cos 603θθθθθθ=+-⨯+=,则|RQ =设三条街道每年能产生的经济总效益W , 300200400W PQ PR RQ =⨯+⨯+⨯,3002sin sin )200θθθ=⨯+-⨯+,400sin θθ=++200(2sin )θθ=++)θϕ=++tan 2ϕ=,当()sin 1θϕ+=时,W 取最大值,最大值为【点睛】方法点睛:解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.。

人教版高中数学必修第一册第五单元《三角函数》测试题(有答案解析)(2)

人教版高中数学必修第一册第五单元《三角函数》测试题(有答案解析)(2)

一、选择题1.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .B .19-C .3D .192.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-3.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( )A .362k -,k ∈N B .362k +,k ∈N C .32D .34.计算cos 20cos80sin160cos10+=( ).A .12B C .12-D . 5.已知3sin 7a π=,4cos 7b π=,3tan()7c π=-,则a ,b ,c 的大小关系为( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<6.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.sin 20cos10cos160sin10-=( )A .B .12C .12-D .28.若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+ ⎪⎝⎭等于( ).A .79-B .13-C .13D .799.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫-⎪⎝⎭C .,012π⎛⎫⎪⎝⎭D .,03π⎛⎫⎪⎝⎭10.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A .0.00873B .0.01745C .0.02618D .0.0349111.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .3512.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-79二、填空题13.已知()sin()cos()1f x a x b x παπβ=++-+,其中α,β,a ,b 均为非零实数,若()20202f =,则()2021f =________.14.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.15.已知锐角α满足1cos()35πα+=,则sin α=______. 16.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.17.已知1tan()3πα+=-,则sin 2cos 5cos sin αααα+=-______. 18.已知tan 2α=,则cos2=α__. 19.已知tan 2α=,则cos 22πα⎛⎫-= ⎪⎝⎭___________.20.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 三、解答题21.已知函数2()2sin 23sin cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 22.已知函数()cos f x x =.(1)已知α,β为锐角,()5f αβ+=-,4tan 3α=,求cos2α及()tan βα-的值;(2)函数()()321g x f x =+,若关于x 的不等式()()()2133g x a g x a ≥+++有解,求实数a 的最大值.23.如图为一个观览车示意图,该观览车圆半径为4.8m ,圆上最低点与地面距离为0.8m ,60秒转动一圈.图中OA 与地面垂直,以OA 为始边,逆时针转动θ到OB .设B 点与地面的距离为h .(1)求h 与θ的函数关系式;(2)设从OA 开始转动,经过10秒到达OB ,求h . 24.已知函数25()23cos()2cos (0)32f x wx wx wx w π=+-+>的图像上相邻的两个最低点的距离为π. (1)求w 的值;(2)求函数()f x 的单调递增区间. 25.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.26.已知α∈(0,)2π,tan α=12,求tan 2α和sin ()4πα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算. 【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 2.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .3.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.4.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .5.C解析:C 【分析】3sin07a π=>,4cos 07b π=<,a b >且均属于()1,1-,而1c <-,大小关系即可确定. 【详解】 解:3sin7a π=>;427πππ<<, 4cos coscos 72πππ∴<<,即10b -<<. 又正切函数在(0,)2π上单调递增,347ππ<; 3tantan 174ππ∴>=;33tan()tan 177c ππ∴=-=-<-, 01a b c ∴>>>->,故选:C. 6.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.B解析:B 【分析】利用诱导公式cos160cos 20=-,再利用两角和的正弦公式即可求解. 【详解】sin 20cos10cos160sin10-()sin 20cos10cos 18020sin10=-- sin 20cos10cos 20sin10=+()sin 2010=+sin30=12=故选:B8.A解析:A 【分析】 根据1sin 63πα⎛⎫-=⎪⎝⎭,利用诱导公式得到cos 3πα⎛⎫+ ⎪⎝⎭,再由2cos 2cos 233ππαα⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用二倍角公式求解. 【详解】 因为1sin sin 6233πππαα⎛⎫⎛⎫⎛⎫-=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1cos 33πα⎛⎫+=⎪⎝⎭, 所以227cos 2cos 22cos 13339πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=+=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选:A9.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A10.B解析:B 【分析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解. 【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈, 故选:B11.B解析:B【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.0【分析】由题设条件结合周期性及诱导公式运算即可得解【详解】由题意所以所以故答案为:0解析:0 【分析】由题设条件结合周期性及诱导公式运算即可得解. 【详解】由题意,()sin(2020)cos(2020)1sin cos()12020a b a b f παπβαβ++-++-=+=sin cos 12a b αβ=++=,所以sin cos 1αβ+=a b ,所以()sin(2021)cos(202)201211f a b παπβ++-+=sin()cos()1sin cos 1110a b a b παπβαβ==++-+-+=-+=-.故答案为:0.14.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为:解析:4π-【分析】函数4y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-15.【分析】利用余弦的两角和公式展开结合代入计算即可【详解】解得根据代入计算解得故答案为:【分析】利用余弦的两角和公式展开,结合22sin cos 1αα+=,代入计算即可. 【详解】1cos cos 2513πααα⎛⎫+=⋅= ⎪⎝⎭,解得2cos 5αα=+,根据22sin cos 1αα+=,代入计算,解得sin α=. 16.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为:解析:8π 【分析】 先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+ ⎪⎝⎭的最小正周期为8T π=故答案为:8π 17.【分析】由已知条件求出再根据同角公式弦化切可解得结果【详解】故答案为:【点睛】关键点点睛:弦化切求解是解题关键 解析:516【分析】由已知条件求出1tan 3α=-,再根据同角公式弦化切可解得结果. 【详解】1tan()3πα+=-,1tan 3α∴=-,sin 2cos tan 25cos sin 5tan αααααα++∴=--123153-+=⎛⎫-- ⎪⎝⎭516=. 故答案为:516【点睛】关键点点睛:弦化切求解是解题关键.18.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为: 解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解. 【详解】由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 19.【分析】本题首先可通过三角恒等变换将转化为然后代入即可得出结果【详解】因为所以故答案为:【点睛】关键点点睛:本题考查给值求值问题能否合理利用同角三角函数关系诱导公式二倍角公式是解决本题的关键考查计算解析:45【分析】本题首先可通过三角恒等变换将cos 22πα⎛⎫- ⎪⎝⎭转化为22tan tan 1αα+,然后代入tan 2α=即可得出结果. 【详解】 因为tan 2α=, 所以2222sin cos 2tan 4cos 2sin 22sin cos tan 15παααααααα⎛⎫-==== ⎪++⎝⎭, 故答案为:45. 【点睛】关键点点睛:本题考查给值求值问题,能否合理利用同角三角函数关系、诱导公式、二倍角公式是解决本题的关键,考查计算能力,是中档题.20.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19-【分析】 由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-三、解答题21.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 22.(1)7cos 225α=-,()2tan 11βα-=;(2)a 的最大值为3. 【分析】(1)利用二倍角公式,求出cos2α,然后分别求出()cos αβ+,sin()αβ+,进而求出()tan αβ+,最后,利用()()tan tan 2βααβα-=+-求解即可(2)由()()[]3213cos212,4g x f x x =+=+∈-,得关于x 的不等式()()()2133g x a g x a ≥+++有解,化简得,即()()()213g x a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解即可【详解】解:(1)∵4tan 3α=,∴222222cos sin cos 2cos sin cos sin ααααααα-=-=+2222411tan 73251tan 413αα⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,∵α,β为锐角,即α,0,2πβ⎛⎫∈ ⎪⎝⎭, ∴()20,απ∈,()0,αβπ+∈.22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, ∵()cos f x x =,∴()()cos 5f αβαβ+=+=-, ∴()sin αβ+==,∴()()()sin tan 2cos αβαβαβ++==-+, ∴()()()()242tan tan 227tan tan 2241tan tan 211127αβαβααβααβα-++--=+-===+++⨯. 综上,7cos 225α=-,()2tan 11βα-=. (2)()()[]3213cos212,4g x f x x =+=+∈-, 关于x 的不等式()()()2133g x a g x a ≥+++有解,即()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,则[]1,7t ∈,()()231t a t -≥+有解,即916a t t+≤+-有解, max97a t t ⎛⎫+≤+ ⎪⎝⎭,设()9h t t t =+,则()h x 在[)1,3上单调递减,在(]3,7上单调递增,则()(){}max9max 1,710t h h t ⎛⎫+== ⎪⎝⎭, ∴3a ≤,故实数a 的最大值为3. 【点睛】关键点睛:(1)利用二倍角公式,以及正切函数的两角和差公式求解; (2)通过化简,把问题转化为()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解;主要考查学生的转化化归思想以及运算能力,属于中档题 23.(1) 5.6 4.8cos h θ=-;(2)3.2m. 【分析】(1)建立平面直角坐标系,结合条件求出点B 的坐标后可得h 与θ间的函数关系式; (2)由60秒转动一圈,易得点A 在圆上转动的角速度是/30rad s π,再计算出经过10秒后转过的弧度数为3π,然后代入(1)中所求函数解析式计算即可得到答案. 【详解】(1)以圆心O 原点,建立如图所示的坐标系,如下图所示,则以Ox 为始边,OB 为终边的角为2πθ-,故点B 坐标为 4.8cos ,4.8sin 22ππθθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴ 5.6 4.8sin 5.6 4.8cos 2h πθθ⎛⎫=+-=- ⎪⎝⎭; (2)点A 在圆O 上逆时针运动的角速度是/30rad s π,∴经过t 秒后转过的角度30t πθ=,则经过10秒后转过的角度为3πθ=,∴ 5.6 4.8cos 5.6 2.4 3.23h π=-=-=(m ).【点睛】关键点点睛:本题考查的知识点是在实际问题中建立三角函数模型,在建立函数模型的过程中,以圆心O 为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,是解决本题的关键. 24.(1)1;(2)()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【分析】本题考查三角函数的图像和性质、三角恒等变换,根据三角恒等变换公式()f x 化简函数解析式,根据图像和性质求单调递增区间. 【详解】(1)5()23(cos cossin sin )(1cos 2)332f x wx wx wx wx ππ=--++23sin 23sin cos 222wx wx wx =--+1cos 2323cos 222wx wx wx -=-⨯-+12cos 22wx wx =+ sin(2)6wx π=+又因为()f x 图象上相邻的两个最低点间的距离为π,0w >, 所以22w,解得1w =.(2)据(1)求解知,()sin(2)6f x x π=+令222()262k x k k Z πππππ-+≤+≤+∈,所以()36k x k k Z ππππ-+≤≤+∈,所以所求的单调递增区间是()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【点睛】思路点睛:三角恒等变换综合应用的解题思路:(1)利用降幂、升幂公式将()f x 化为sin cos a x b x 的形式;(2)构造())f x x x +;(3)和差公式逆用,得())f x x ϕ=+ (其中ϕ为辅助角,tan b aϕ=);(4)利用())f x x ϕ=+研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范.25.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1; 当π4π263x +=,即7π12x =时,()f x取得最小值为. 26.an 2α=43,sin ()4πα-=. 【分析】 先由tan α=12可得tan 2α=43,再由sin cos αα=12,结合角的范围可得sin α和cos α的值,再由in ()4πα-的展开求解即可.【详解】∵tan α=12,∴tan 2α=22tan 1tan a a -=122114⨯-=43. 且sin cos αα=12,即cos α=2sin α. 又sin 2α+cos 2α=1,∴5sin 2α=1.而α∈(0,)2π,∴sin α,cos α. ∴sin ()4πα-=sin αcos4π-cos αsin 4π。

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷含答案解析(33)

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷含答案解析(33)

人教A 版高一数学必修第一册第五章《三角函数》单元练习题卷4(共22题)一、选择题(共10题)1. 与 −45∘ 角终边重合的角的表示正确的是 ( ) A . k ⋅360∘+45∘(k ∈Z ) B . k ⋅360∘−45∘(k ∈Z ) C . k ⋅360∘+45∘(k ∈N )D . k ⋅360∘+315∘(k ∈Z )2. cos285∘ 等于 ( ) A .√6−√24B .√2−√64C .√6+√24D . −√2+√643. 若 f (x )=cosx −sinx 在 [0,a ] 是减函数,则 a 的最大值是 ( ) A . π4B . π2C .3π4D . π4. 设 α∈(0,π2),β∈(0,π2),且 tanα=1+sinβcosβ,则 ( )A . 3α−β=π2B . 3α+β=π2C . 2α−β=π2D . 2α+β=π25. 函数 f (x )=sinxcosx 的最大值是 ( ) A . 1 B . 2C . 12D . 146. 函数 f (x )=2sin x2⋅sin (π3−x2) 的最小值是 ( )A . 12B . 32C . −12D . −327. 已知函数 f (x )=sin (4x +π3)(x ∈[0,1324π]),函数 g (x )=f (x )+a 有 3 个零点 x 1,x 2,x 3,则 x 1+x 2+x 3 的取值范围是 ( ) A . [10π3,7π2] B . [7π12,5π8] C . [0,5π8) D . [7π12,5π8)8. 设 a ∈R ,函数 f (x )={cos (2πx −2πa ),x <ax 2−2(a +1)x +a 2+5,x ≥a,若函数 f (x )(0,+∞) 内恰有 6 个零点,则 a 的取值范围是 ( ) A . (2,94]∪(52,114] B . (74,2]∪(52,114] C . (2,94]∪[114,3)D . (74,2)∪[114,3)9. 已知定义在 R 上的函数 f (x )=sin (ωx +φ)(ω>0,∣φ∣≤π2) 在 [1,2] 上有且仅有 3 个零点,其图象关于点 (14,0) 和直线 x =−14对称,给出下列结论:① f (12)=√22; ②函数 f (x ) 在 [0,1] 上有且仅有 3 个极值点; ③函数 f (x ) 在 (−32,−54) 上单调递增;④函数 f (x ) 的最小正周期是 2. 其中所有正确结论的编号是 ( ) A .②③B .①④C .②③④D .①②10. 化简 √1−sin80∘ 的结果是 ( )A . √2sin5∘B . √2cos5∘C . −√2sin5∘D . −√2cos5∘二、填空题(共6题) 11. θ 为第四象限角,化简:√1−2sinθcosθsinθ−cosθ= .12. 化简:(1)cos2x −[cosxsin (52π−x)−sin 2x]= ; (2)sin3αsinα−cos3αcosα= .13. 定义在 R 上的函数 f (x )=sin (ωx +φ)(ω>0,−π2<φ<π2),给出以下四个论断:① f (x ) 的最小正周期为 π;② f (x ) 在区间 (−π6,0) 上是增函数;③ f (x ) 的图象关于点 (π3,0) 对称;④ f (x ) 的图象关于直线 x =π12 对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p ⇒q ”的形式) .(用到的论断都用序号表示)14.438∘是第象限角.15.已知函数f(x)=sin(2x+φ)(∣∣φ∣<π2),那么函数f(x)的最小正周期是,若函数f(x)在[π2,5π6]上具有单调性,且f(π2)=−f(5π6),则φ=.16.若sin(π4−α)=−12,sin(π4+β)=√32,其中π4<α<π2,π4<β<π2,则角α+β的值为.三、解答题(共6题)17.已知α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,求cosα的值.18.已知1∣sinα∣=−1sinα,且lg(cosα)有意义.(1) 试判断角α所在的象限;(2) 若角α的终边上一点是M(35,m),且∣OM∣=1(O为坐标原点),求m的值及sinα的值.19.如图,已知扇形OAB的圆心角为120∘,半径长为6.求:(1) AB⏜的长l;(2) AB⏜的弦AB所成的弓形的面积S.20.已知函数f(x)=sinx−2√3sin2x2.(1) 求f(x)的最小正周期;(2) 求f(x)在区间[0,2π3]上的最小值.21.已知f(x)=2x2−3x+1,g(x)=ksin(x−π6)(k≠0).(1) 若对任意x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2),求实数k的取值范围.(2) 若方程f(sinx)+sinx−a=0在[0,11π6]上恰有两个解,求实数a的取值范围.22.求下列各式的值.(1) 2cos50∘cos70∘−cos20∘;sin40∘;(2) sin80∘cos40∘−12cos15∘;(3) sin37.5∘sin22.5∘−12(4) cos40∘−cos80∘−√3sin20∘.答案一、选择题(共10题)1. 【答案】D【知识点】任意角的概念2. 【答案】A【知识点】诱导公式3. 【答案】C【解析】f(x)=cosx−sinx=√2cos(x+π4).当x∈[0,a]时,x+π4∈[π4,a+π4],所以结合题意可知,a+π4≤π,即a≤3π4,故所求a的最大值是3π4.【知识点】Asin(ωx+ψ)形式函数的性质4. 【答案】C【解析】已知tanα=sinαcosα=1+sinβcosβ,所以sinαcosβ=cosα+cosαsinβ,即sinαcosβ−cosαsinβ=cosα,即sin(α−β)=cosα=sin(π2−α),又因为−π2<α−β<π2,0<π2−α<π2,所以α−β=π2−α,即2α−β=π2.【知识点】两角和与差的正弦5. 【答案】C【解析】因为f(x)=sinxcosx=12sin2x,所以f max(x)=12.【知识点】Asin(ωx+ψ)形式函数的性质6. 【答案】D【解析】因为f(x)=2sin x2sin(π3−x2)=−[cos(x2+π3−x2)−cos(x2−π3+x2)]=cos(x−π3)−12,所以f(x)min=−1−12=−32.【知识点】Asin(ωx+ψ)形式函数的性质7. 【答案】D【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】A【解析】因为f(x)在区间(0,+∞)内恰有6个零点,又因为二次函数最多有两个零点,所以当x<a时,f(x)=6至少有四个根,因为f(x)=cos(2πx−2πa)=cos2π(x−a),所以令f(x)=0,即2π(x−a)=π2+kπ,k∈Z,所以x=k2+14+a,又因为x∈(0,+∞),所以0<k2+14+a<a,即−2a−12<k<−12,①当x<a时,−5≤−2a−12≤−4,f(x)有4个零点,即74<a≤64,−6≤−2a−12≤−5,即94<x≤114,−7≤−2a−42≤−6,即115<x≤134,②当x≥a时,f(x)=x2−2(a+1)x+a2+8,所以Δ=b2−4ac=8(a+1)2−5(a2+5)=8a−16=0,解得a=2,当a<7时,Δ<0,当a=2时,Δ=2,当a>2时,f(a)=a2−7a(a+1)+a2+5=−2a+5,因为f(x)的对称轴x=a+7,即f(a)在对称轴的左边,所以当−2a+5≥4时,即2<a≤52,当−2a+5<6时,即a>52,综合①②可得,若函数 f (x ) 在区间 (0,+∞) 内恰有 6 个零点,则需满足:{74<a ≤64,2<a ≤82或{94<a ≤114,a >52或a =2 或 {114<a ≤135,a <2.解得 a ∈(2,84]∪(56,114]. 故选:A .【知识点】Asin(ωx+ψ)形式函数的性质、函数的零点分布9. 【答案】A【解析】曲线关于点 (−14,0) 对称,所以:14ω+φ=k 1π,k 1∈Z, ⋯⋯① 又因为其图象关于直线 x =14 对称,所以:−14ω+φ=k 2π+π2,k 2∈Z, ⋯⋯② 由 ①② 可得:ω=[2(k 1−k 2)−1]=π,即 ω=(2n −1)π,n ∈Z, ⋯⋯③ 因为数 f (x )=sin (ωx +φ)(ω>0,∣φ∣≤π2) 在 [1,2] 上有且仅有 3 个零点, 所以2πω≤2−1<4πω(ω>0),即 2π≤ω<4π, ⋯⋯④由 ③④ 可得 ω=3π; 因为 f (14)=0, 所以3π4+φ=kπ,又 ∣φ∣≤π2, 所以 φ=π4,所以 f (x )=sin (3πx +π4), 所以易知 f (12)=−√22,所以①错误; 令 3πx 0+π4=π2+kπ,则 x 0=k3+112(k ∈Z ), 令 0≤k3+112≤1,则可取 k =0,1,2, 所以 x 0=112,512,34,所以②正确;令−π2+2kπ≤3πx+π4≤π2+2kπ⇒−14+23k≤x≤112+23k,k∈Z,当k=−2时,[−1912,−54]为f(x)的一个递增区间,而(−32,−54)⫋[−1912,−54],所以f(x)在(−32,−54)上单调递增,③正确;因为f(x)=sin(3πx+π4),所以T=2π3π=23,④错误.综上所述,其中正确的结论为②③.【知识点】Asin(ωx+ψ)形式函数的性质10. 【答案】A【解析】√1−sin80∘=√1−cos10∘=√2sin25∘=√2sin5∘.【知识点】二倍角公式二、填空题(共6题)11. 【答案】−1【知识点】同角三角函数的基本关系12. 【答案】0;2【知识点】二倍角公式、两角和与差的正弦13. 【答案】①④ ⇒②③或①③ ⇒②④【解析】①④ ⇒②③:因为f(x)的最小正周期为π,所以ω=2,函数f(x)=sin(2x+φ),又f(x)的图象关于直线x=π12对称,所以sin(2×π12+φ)=±1,所以2×π12+φ=π2+kπ,k∈Z,所以φ=π3+kπ,k∈Z,又−π2<φ<π2,所以φ=π3,此时f(x)=sin(2x+π3),②③成立,故①④ ⇒②③.①③ ⇒②④:因为f(x)的最小正周期为π,所以ω=2,函数f(x)=sin(2x+φ),又f(x)的图象关于点(π3,0)对称,所以2×π3+φ=kπ,k∈Z,又−π2<φ<π2,所以φ=π3,此时f(x)=sin(2x+π3),②④成立,故①③ ⇒②④.【知识点】Asin(ωx+ψ)形式函数的性质14. 【答案】一【知识点】任意角的概念15. 【答案】π;−π3【解析】函数f(x)=sin(2x+φ)的最小正周期是2π2=π.因为函数f(x)在[π2,5π6]上具有单调性,且f(π2)=−f(5π6),所以12×(π2+5π6)=2π3,所以(2π3,0)是函数f(x)图象的一个对称中心,所以2π3×2+φ=kπ(k∈Z),解得:φ=kπ−4π3(k∈Z),又因为∣φ∣<π2,所以当k=1时,φ=−π3.【知识点】Asin(ωx+ψ)形式函数的性质16. 【答案】5π6【解析】因为 π4<α<π2,π4<β<π2, 所以 −π4<π4−α<0,π2<π4+β<3π4.所以cos (π4−α)=√1−sin 2(π4−α)=√32,cos (π4+β)=−√1−sin 2(π4+β)=−12,所以cos (α+β)=cos [(π4+β)−(π4−α)]=cos (π4+β)cos (π4−α)+sin (π4+β)sin (π4−α)=(−12)×√32+√32×(−12)=−√32, 又 π2<α+β<π, 所以 α+β=5π6.【知识点】两角和与差的余弦三、解答题(共6题)17. 【答案】因为 α,β 为锐角,所以 0<α+β<π,0<2α+β<3π2.又因为 cos (α+β)=1213, 所以 sin (α+β)=513. 又因为 cos (2α+β)=35>0, 所以 0<2α+β<π2, 所以 sin (2α+β)=45,所以cosα=cos[(2α+β)−(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β)=35×1213+45×513=5665.【知识点】两角和与差的余弦18. 【答案】(1) 由1∣sinα∣=−1sinα,可知sinα<0,由lg(cosα)有意义可知cosα>0,所以角α是第四象限角.(2) 因为∣OM∣=1,所以(35)2+m2=1,解得m=±45.又α是第四象限角,故m<0,从而m=−45.由正弦函数的定义可知sinα=yr =m∣OM∣=−451=−45.【知识点】任意角的三角函数定义19. 【答案】(1) 圆心角α=23π,半径r=6,故AB⏜的长l=αr=4π.(2) S扇形AOB =12lr=12π,取AB中点C,连OC,则OC⊥AB,在Rt△AOC中,OC=3,AC=3√3,所以S△AOB=12AB⋅OC=9√3,故S=S扇形AOB−S△AOB=12π−9√3.【知识点】弧度制20. 【答案】(1) 由f(x)=2sin(x+π3)−3,所以f(x)的最小正周期T=2π.(2) 因为x∈[0,2π3],所以x+π3∈[π3,π],所以sin(x+π3)∈[0,1],所以可解得f(x)在区间[0,2π3]上的最小值为−3.【知识点】Asin(ωx+ψ)形式函数的性质21. 【答案】(1) k>10.(2) a∈{a∣ a=12或1<B≤5}.【知识点】函数的零点分布、Asin(ωx+ψ)形式函数的性质22. 【答案】(1)2cos50∘cos70∘−cos20∘=cos(50∘+70∘)+cos(50∘−70∘)−cos20∘=cos120∘+cos20∘−cos20∘=cos120∘=−12.(2)sin80∘cos40∘−12sin40∘=12[sin(80∘+40∘)+sin(80∘−40∘)]−12⋅sin40∘=12(sin120∘+sin40∘)−12sin40∘=√34.(3)sin37.5∘sin22.5∘−12cos15∘=−12[cos(37.5∘+22.5∘)−cos(37.5∘−22.5∘)]−12cos15∘=−12(cos60∘−cos15∘)−12cos15∘=−12cos60∘=−14.(4)cos40∘−cos80∘−√3sin20∘=−2sin40∘+80∘2sin40∘−80∘2−√3sin20∘=−2sin60∘sin(−20∘)−√3sin20∘=√3sin20∘−√3sin20∘=0.【知识点】积化和差与和差化积公式。

【金版教程】人教版高中数学必修一练习:综合检测2(含答案解析)

【金版教程】人教版高中数学必修一练习:综合检测2(含答案解析)

必修1 综合检测(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数f(x)=11-x +11+x 的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)答案 C解析 由⎩⎪⎨⎪⎧1-x≠01+x>0得x>-1且x≠1,故选C.2.下列各组函数中,表示同一函数的是( ) A .y =1,y =x 0B .y =lg x 2,y =2lg xC .y =|x|,y =(x)2D .y =x ,y =3x 3答案 D解析 对于A ,当x =0时后者无意义;对于B 和C ,当x<0时前者有意义而后者无意义;D 显然正确.3.[2016·北大附中月考]已知集合A ={y|y =ln (x 2+1),x ∈R},则∁R A =( ) A .∅ B .(-∞,0] C .(-∞,0) D .[0,+∞)答案 C解析 ∵A ={y|y =ln (x 2+1),x ∈R}且x 2+1≥1 ∴A ={y|y≥0},∴∁R A ={y|y<0},故选C.4.[2016·洛阳高一期中]设a =log 12 3,b =⎝⎛⎭⎫130.2,c =⎝⎛⎭⎫13-1,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c 答案 A解析 因为log 12 3<log 12 1=0,0<⎝⎛⎭⎫130.2<⎝⎛⎭⎫130=1,⎝⎛⎭⎫13-1=3>1,所以正确的答案为A.5.已知函数f(x)是偶函数,且在区间[0,1]上是减函数,则f(-0.5)、f(-1)、f(0)的大小关系是( )A .f(-0.5)<f(0)<f(-1)B .f(-1)<f(-0.5)<f(0)C .f(0)<f(-0.5)<f(-1)D .f(-1)<f(0)<f(-0.5) 答案 B解析 因为函数f(x)是偶函数,所以f(-0.5)=f(0.5),f(-1)=f(1).又因为f(x)在区间[0,1]上是减函数,所以f(-1)<f(-0.5)<f(0).6.[2016·福建宁德市联考]已知f(x)=⎩⎪⎨⎪⎧x +-,x<1a x,x≥1是R 上的增函数,则实数a的取值范围是( )A.⎣⎡⎭⎫32,+∞B.⎝⎛⎦⎤1,32 C .(0,1) D .(1,+∞)答案 B解析 ∵f(x)是R 上的增函数,∴⎩⎪⎨⎪⎧a>1,1+3a -4≤a ,解得:1<a≤32,∴选B.7.[2016·河南商水一中]已知函数f(x)=|lg x|-⎝⎛⎭⎫12x有两个零点x 1,x 2,则有( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1答案 D解析 根据分析,不妨设0<x 1<1,x 2>1,根据函数零点的概念则有|lg x 1|-⎝⎛⎭⎫12x1=0,|lg x 2|-⎝⎛⎭⎫12x2=0,即-lg x 1=⎝⎛⎭⎫12 x 1,lg x 2=⎝⎛⎭⎫12 x 2,后面的方程减去前面的方程得lg (x 1x 2)=⎝⎛⎭⎫12 x 2-⎝⎛⎭⎫12 x 1,由于x 2>x 1,根据指数函数的性质,⎝⎛⎭⎫12 x 2-⎝⎛⎭⎫12x 1<0,所以lg (x 1x 2)<0,即0<x 1x 2<1.正确选项D.8.已知函数f(x)=a x 在(0,2)内的值域是(a 2,1),则函数y =f(x)的图象是( )答案 A解析 由f(x)=a x 在(0,2)内的值域是(a 2,1)可知函数必为减函数,而且是指数函数,因此显然只有A 符合.9.设x>y>1,0<a<1,则下列关系正确的是( ) A .x -a >y -aB .ax<ayC .a x <a yD .log a x>log a y答案 C解析 对于A ,由0<a<1,可知-1<-a<0,因此函数y =x -a 为减函数,所以由x>y>1应得到x -a <y -a ,A 不正确;对于B ,由x>y>1,0<a<1,显然应得ax>ay ,B 不正确;对于C 、D ,由于0<a<1,所以函数y =a x 以及y =log a x 均为减函数,所以由x>y>1可得a x <a y 及log a x<log a y ,所以C 正确,D 不正确.所以选C.10.函数y =x 2与函数y =|lg x|的图象的交点个数为( ) A .0 B .1 C .2D .3答案 B解析 在同一平面直角坐标系中分别作出y =x 2和y =|lg x|的图象,如图,可得交点个数为1.11.当0<x≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)答案 B 解析解法一:令f(x)=4x ,g(x)=log a x , 当x =12时,f ⎝⎛⎭⎫12=2.(如图) 而g ⎝⎛⎭⎫12=log a12=2,∴a =22. 又∵g(x)=log a x ,x 0∈(0,1),a 1,a 2∈(0,1)且a 1<a 2时,log a 2x 0>log a 1x 0,∴要使当0<x≤12时,4x <log a x 成立,需22<a<1.故选B.解法二:∵0<x≤12,∴1<4x ≤2,∴log a x>4x >1,∴0<a<1,排除答案C ,D ;取a =12,x =12,则有4 12 =2,log 12 12=1,显然4x <log a x 不成立,排除答案A ;故选B.12.[2015·米易中学月考]函数y =ax 2+bx 与y =log |b a | x(ab≠0, |a|≠|b|)在同一直角坐标系中的图象可能是( )答案 D解析 若⎪⎪⎪⎪b a >1,y =log |b a |x 单调递增,A 、B 符合,此时⎪⎪⎪⎪b 2a >12,则由函数y =ax 2+bx 的图象,A 、B 不符;若⎪⎪⎪⎪b a <1,y =log |b a |x 单调递减,C 、D 符合,此时⎪⎪⎪⎪b 2a <12,则由函数y =ax 2+bx 的图象,C 不符,故选D.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f(x)=(a 2-a -1)log (a +2)x 为对数函数,则f(64)=________. 答案 3解析 由对数函数的定义可知需要满足⎩⎪⎨⎪⎧a 2-a -1=1a +2>0a +2≠1,解得a =2,所以f(x)=log 4x ,f(64)=3.14.[2016·辽宁名校期末]已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x≤3,函数y =log 2(ax 2+2x -2)的定义域为Q ,若P∩Q≠∅,则实数a 的取值范围是________.答案 ⎝⎛⎭⎫-12,+∞ 解析 若P∩Q≠∅,则在区间⎣⎡⎦⎤13,3上至少存在一个x 使ax 2+2x -2>0成立,a>2⎝⎛⎭⎫1x 2-1x =2⎣⎡⎝⎛⎭⎫1x -122⎦⎤-14∈⎣⎡⎦⎤-12,12,所以a>-12. 15.若定义在区间(1,2)内的函数f(x)=log 3a (x -1)满足f(x)>0,则a 的取值范围是________.答案 0<a<13解析 当x ∈(1,2)时,x -1∈(0,1),而此时必有 0<3a<1,因此0<a<13.16.对于函数f(x)=x -2-ln x ,我们知道f(3)=1-ln 3<0,f(4)=2-ln 4>0,用二分法求函数f(x)在区间(3,4)内的零点的近似值,我们先求出函数值f(3.5),若已知ln 3.5=1.25,则接下来我们要求的函数值是______.答案 f(3.25)解析 由ln 3.5=1.25且f(3.5)=3.5-2-ln 3.5≈0.25>0,以及f(3)<0可知下一步应代入的x 值为3.5和3的平均数,即接下来我们需求的函数值为f(3.25).三、解答题(本大题共6小题,满分70分)17.[2015·米易中学高一月考](本小题满分10分)函数f(x)=4-x +lg (3x -9)的定义域为A ,集合B ={x|x -a <0,a ∈R}.(1)求集合A ;(2)若A∩B≠∅,求a 的取值范围.解 (1)要使函数f(x)有意义,只需满足⎩⎪⎨⎪⎧ 4-x≥03x -9>0,解得⎩⎪⎨⎪⎧x≤4x >2,即2<x≤4,从而求出集合A ={x|2<x≤4}.(2)由(1)可得集合A ={x|2<x≤4},而集合B ={x|x <a},若a≤2,则A∩B =∅,所以a >2,即a 的取值范围是(2,+∞).18.[2016·梅县东山中学期中](本小题满分12分)已知函数f(x)=1-23x +1.(1)求函数f(x)的定义域,判断并证明f(x)的奇偶性; (2)用单调性的定义证明函数f(x)在其定义域上是增函数; (3)解不等式f(3m +1)+f(2m -3)<0.解 (1)∵3x >0,∴3x +1≠0,函数f(x)的定义域为R ,即(-∞,+∞).f(x)是奇函数. 证明如下:∵f(x)的定义域为R ,又f(x)=1-23x +1=3x +1-23x +1=3x -13x +1,∴f(-x)=3-x -13-x +1=1-3x3x 1+3x 3x =1-3x1+3x=-f(x),∴f(x)是定义在R 上的奇函数.(2)任取x 1,x 2∈R ,且x 1<x 2.则f(x 1)-f(x 2)=1-23 x 1+1-⎝ ⎛⎭⎪⎫1-23 x 2+1=23 x 2+1-23 x 1+1=x1+-x2+ x1+x 2+=x 1-3 x2x 1+x 2+,∵x 1<x 2,∴3 x 1<3 x 2,∴3 x 1-3 x 2<0, 又3 x 1+1>0,3 x 2+1>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在其定义域上是增函数.(3)由f(3m +1)+f(2m -3)<0得f(3m +1)<-f(2m -3), ∵函数f(x)为奇函数,∴-f(2m -3)=f(3-2m),∴f(3m +1)<f(3-2m).由(2)已证得函数f(x)在R 上是增函数, ∴f(3m +1)<f(3-2m)⇔3m +1<3-2m ,∴m<25.则不等式f(3m +1)+f(2m -3)<0的解集为⎩⎨⎧⎭⎬⎫m ⎪⎪m<25. 19.[2015·成都高一质检](本小题满分12分)某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本500万元,生产与销售均以百台计数,且每生产100台,还需增加可变成本1000万元.若市场对该产品的年需求量为500台,每生产m 百台的实际销售收入近似满足函数R(m)=5000 m -500 m 2(0≤m≤5,m ∈N).(1)试写出第一年的销售利润y(万元)关于年产量x(单位:百台,x≤5,x ∈N *)的函数关系式;(说明:销售利润=实际销售收入-成本)(2)因技术等原因,第一年的年生产量不能超过300台,若第一年人员的年支出费用u(x)(万元)与年产量x(百台)的关系满足u(x)=500x +500(x≤3,x ∈N *),问年产量x 为多少百台时,工厂所得纯利润最大?解 (1)由题意,y =5000x -500x 2-500-1000x , 即y =-500x 2+4000x -500(x≤5,x ∈N *). (2)记工厂所得纯利润为h(x),则h(x)=-500x 2+4000x -500-u(x)=-500x 2+3500x -1000=-500(x 2-7x)-1000=-500⎝⎛⎭⎫x -722+5125(x≤3,x ∈N *). ∴当x =3(百台)时,h(x)max =5000.故当年生产量为300台时,厂家的纯利润最大,最大值为5000万元.20.[2015·杭州七校高一联考](本小题满分12分)已知函数f(x)=a -2x 4x +1(a ∈R).(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)在(0,+∞)上的单调性. 解 (1)∵函数f(x)的定义域为R ,关于原点对称, ∴f(-x)=a -2-x4-x +1=a -4x 2x+4x =a -2x4x +1=f(x),所以f(x)是偶函数. (2)判断:f(x)在(0,+∞)上是单调递增函数; 证明:任取x 1,x 2∈(0,+∞)且x 1<x 2,则f(x 1)-f(x 2)=x 1-2 x2x 1+x 2- x 1+x2+.由0<x 1<x 2⇒2 x 1<2 x 2⇒2 x 1-2 x 2<0,由0<x 1<x 2⇒2 x 1+x 2>1, 2 x 1+x 2>1⇒2 x 1+x 2-1>0. 而4 x 1+1>0,4 x 2+1>0, 则f(x 1)-f(x 2)<0⇒f(x 1)<f(x 2).所以f(x)在(0,+∞)上是单调递增函数.21.(本小题满分12分)已知函数f(x)=2a·4x -2x -1. (1)当a =1时,求函数f(x)的零点; (2)若f(x)有零点,求a 的取值范围. 解 (1)当a =1时,f(x)=2·4x -2x -1.令f(x)=0,即2·(2x )2-2x -1=0,解得2x =1或2x =-12(舍去).∴x =0,∴函数f(x)的零点为x =0.(2)解法一:若f(x)有零点,则方程2a·4x -2x -1=0有解.于是2a =2x +14x =⎝⎛⎭⎫12x +⎝⎛⎭⎫14x =⎣⎡⎦⎤⎝⎛⎭⎫12x +122-14.∵⎝⎛⎭⎫12x >0,∴2a>14-14=0,即a>0.解法二:令t =2x ,∵x ∈R ,∴t>0, 则方程2at 2-t -1=0在(0,+∞)上有解.①当a =0时,方程为t +1=0,即t =-1<0,此时方程在(0,+∞)无解. ②当a≠0时,令g(t)=2at 2-t -1,若方程g(t)=0在(0,+∞)上有一解,则ag(0)<0,即-a<0,解得a>0. 若方程g(t)=0在(0,+∞)上有两解,则 ⎩⎪⎨⎪⎧,Δ=1+8a≥0,14a >0,解得a ∈∅.综上所述,所求实数a 的范围是(0,+∞).22.[2015·衡水高一调研](本小题满分12分)已知定义域为R 的函数f(x)满足f(f(x)-x 2+x)=f(x)-x 2+x.(1)若f(2)=3,求f(1);又若f(0)=a ,求f(a);(2)设有且仅有一个实数x 0,使得f(x 0)=x 0,求函数f(x)的解析表达式. 解 (1)因为对任意x ∈R ,有f(f(x)-x 2+x)=f(x)-x 2+x , 所以f(f(2)-22+2)=f(2)-22+2. 又由f(2)=3,得f(3-22+2)=3-22+2, 即f(1)=1.若f(0)=a ,则f(a -02+0)=a -02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.又因为有且只有一个实数x0,使得f(x0)=x0,所以对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)-x2+x=0,即f(x)=x2-x.但方程x2-x=x有两个不相同实根,与题设条件矛盾.故x0≠0.若x0=1,则有f(x)-x2+x=1,即f(x)=x2-x+1.易验证该函数满足题设条件.综上,所求函数为f(x)=x2-x+1(x∈R).。

高中数学必修第一册第五章综合测试02含答案解析

高中数学必修第一册第五章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第五章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点(tan ,cos )P αα在第三象限,则角α的终边在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知1sin()3πϕ+=-,则tan ϕ=( )A.BC. D.±3.函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移(0)ϕϕ>个单位长度所得图象关于原点对称,则ϕ的最小值是( ) A .8πB .4πC .38πD .34π 4.设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的一个最小正周期为2πB .()y f x =的图象关于直线83x π=对称 C .()f x π+的一个零点为6x π=D .()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减5.已知角α的终边上有一点(1,3)P ,则sin()sin 22cos(2)ππαααπ⎛⎫--+ ⎪⎝⎭-的值为( ) A .1B .45-C .1-D .4-6.已知sin 3cos 53cos sin αααα+=-,则2sin sin cos ααα-的值是( )A .25B .25- C .2- D .27.已知3sin ,,52πααπ⎛⎫=∈ ⎪⎝⎭,1tan()2πβ-=,则tan()αβ-的值为( )A .211-B .211C .112D .112-8.将函数sin 23y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫⎪⎝⎭向左平移(0)s s >个单位长度得到P ',若P '位于函数sin 2y x =的图像上,则( )A .12t =,s 的最小值为6πB .t =s 的最小值为6πC .12t =,s 的最小值为3πD .t =,s 的最小值为3π9.函数()sin(2)2f x x πϕϕ⎛⎫=+ ⎪⎝⎭<的图象向左平移6π个单位长度后所得图象对应的函数是偶函数,且存在0,2x π⎡⎤∈⎢⎥⎣⎦,使得不等式()f x m ≤成立,则m 的最小值是( ) A .1-B .12-C .12D .110已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图像如图所示,且()1,0,3f παα⎛⎫=∈ ⎪⎝⎭,则5cos 26πα⎛⎫+= ⎪⎝⎭( )A .BC .D .1311.(sin 40tan10︒︒=( )A .12-B .1-C .D . 12.将函数()sin 2f x x =红的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位长度后得到函数()g x 的图象.若对满足()()12=2f x g x -的12,x x ,有12minπ3x x -=,则ϕ=( ) A .512π B .3πC .4πD .6π二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.已知1sin cos 63παα⎛⎫--= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭________.14.若函数()*()sin 6f x x πωω⎛⎫=+∈ ⎪⎝⎭N 在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递增,则ω的最大值为________.15.如图是某个弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振动的位移,则这个振子振动的函数解析式是________.16.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x ⎧=⎨⎩≤>给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当()x k k ππ=+∈Z 时,该函数取得最小值1-;③该函数的图象关于直线52()4x k k ππ=+∈Z 对称;①当且仅当22()2b x k k πππ+∈Z <<时,0()f x <. 其中正确命题的序号是________.(请将所有正确命题的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.[10分]已知tan 3α=,求下列各式的值: (1sin 22αα++- ⎪ ⎪⎝⎭⎝⎭(2)22sin 3sin cos 1ααα--.18.已知函数()sin()0,0,2f x A x A πωϕωϕ⎛⎫=+ ⎪⎝⎭>><的部分图像如图所示.(1)写出函数()f x 的解析式及0x 的值;(2)求函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最小值与最大值.19.[12分]已知函数2()sin cos f x x x x =. (1)求()f x 的最小正周期;(2)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.20.[12分]已知函数)2()2sin cos 0,0f x a x x x a ωωωω=+>>的最大值为2,且最小正周期为π. (1)求函数()f x 的解析式及其对称轴方程; (2)若4()3f α=,求sin 46πα⎛⎫+ ⎪⎝⎭的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章综合测试
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知点(tan ,cos )P αα在第三象限,则角α的终边在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.已知1sin()3πϕ+=-,则tan ϕ=( )
A
. B
C
. D
.±3.函数()sin 24f x x π⎛⎫=+ ⎪⎝
⎭的图象向左平移(0)ϕϕ>个单位长度所得图象关于原点对称,则ϕ的最小值是( )
A .8π
B .4π
C .38π
D .3
4
π 4.设函数()cos 3f x x π⎛⎫=+ ⎪⎝
⎭,则下列结论错误的是( ) A .()f x 的一个最小正周期为2π
B .()y f x =的图象关于直线83x π=
对称 C .()f x π+的一个零点为6
x π
= D .()f x 在区间,2ππ⎛⎫ ⎪⎝⎭
上单调递减 5.已知角α的终边上有一点(1,3)P ,则sin()sin 22cos(2)
ππαααπ⎛⎫--+ ⎪⎝⎭-的值为( ) A .1
B .45-
C .1-
D .4- 6.已知sin 3cos 53cos sin αααα
+=-,则2sin sin cos ααα-的值是( ) A .25 B .25- C .2- D .2
7.已知3sin ,,52πααπ⎛⎫=∈ ⎪⎝⎭,1tan()2πβ-=,则tan()αβ-的值为( ) A .211- B .211 C .112 D .112
-
8.将函数sin 23y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫ ⎪⎝⎭
向左平移(0)s s >个单位长度得到P ',若P '位于函数sin 2y x =的图像上,则( )
A .12t =,s 的最小值为6
π B .t =
,s 的最小值为6π
C .12t =,s 的最小值为3π
D .t =,s 的最小值为3π 9.函数()sin(2)2f x x πϕϕ⎛⎫=+ ⎪⎝
⎭<的图象向左平移6π个单位长度后所得图象对应的函数是偶函数,且存在0,2x π⎡⎤∈⎢⎥⎣⎦
,使得不等式()f x m ≤成立,则m 的最小值是( ) A .1- B .1
2- C .12 D .1
10已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图像如图所示,且()1,0,3f παα⎛⎫=∈ ⎪⎝⎭
,则5cos 26πα⎛⎫+= ⎪⎝⎭
( )
A .3±
B .3
C .3-
D .1
3
11.(sin 40tan10︒︒=( )
A .1
2- B .1- C . D . 12.将函数()sin 2f x x =红的图象向右平移02πϕϕ⎛⎫<< ⎪⎝
⎭个单位长度后得到函数()g x 的图象.若对满足()()12=2f x g x -的12,x x ,有12min π3x x -=
,则ϕ=( ) A .512π B .3π C .4π D .6
π
二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)
13.已知1sin cos 63παα⎛⎫--= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝
⎭________. 14.若函数()
*()sin 6f x x πωω⎛⎫=+∈ ⎪⎝⎭N 在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递增,则ω的最大值为________. 15.如图是某个弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振动的位移,则这个振子振动的函数解析式是________.
16.对于函数sin ,sin cos ()cos ,sin cos x x x f x x x x ⎧=⎨⎩
≤>给出下列四个命题: ①该函数是以π为最小正周期的周期函数;
②当且仅当()x k k ππ=+∈Z 时,该函数取得最小值1-; ③该函数的图象关于直线5
2()4
x k k ππ=+∈Z 对称; ①当且仅当22()2
b x k k πππ+∈Z <<
时,0()f x <. 其中正确命题的序号是________.(请将所有正确命题的序号都填上) 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.[10分]已知tan 3α=,求下列各式的值:
(1
sin 22αα++- ⎪ ⎪⎝⎭⎝⎭
(2)22sin 3sin cos 1ααα--.
18.已知函数()sin()0,0,2f x A x A πωϕωϕ⎛⎫=+ ⎪⎝
⎭>><的部分图像如图所示. (1)写出函数()f x 的解析式及0x 的值;
(2)求函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦
上的最小值与最大值.
19.[12分]已知函数2()sin cos f x x x x =.
(1)求()f x 的最小正周期;
(2)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.
20.[12分]已知函数)2()2sin cos 0,0f x a x x x a ωωωω=+->>的最大值为2,且最小正周期为π.
(1)求函数()f x 的解析式及其对称轴方程;
(2)若4()3f α=,求sin 46πα⎛⎫+ ⎪⎝
⎭的值。

21.[12分]已知函数()24f x x π⎛⎫=- ⎪⎝
⎭,x ∈R . (1)求函数()f x 的最小正周期和单调递增区间;
(2)当,82x ππ⎡⎤∈-⎢⎥⎣⎦
时,方程()f x k =恰有两个不同的实数根,求实数k 的取值范围;
(3)将函数()24f x x π⎛⎫=- ⎪⎝
⎭的图象向右平移(0)m m >个单位长度后所得函数()g x 的图象关于原点中心对称,求m 的最小值.
22.[12分]已知函数()21(0)3f x x πωω⎛⎫=++> ⎪⎝
⎭,且()f x 的最小正周期为2π. (1)求函数()f x 的解析式及()f x 图像的对称中心;
(2)若23sin 122812x x f m π⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦
≥对任意[]0,2x π∈恒成立,求实数m 的取值范围.。

相关文档
最新文档