量子力学教程第七讲
《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学 刘劲松 7讲

二、 厄密算符的本征值与本征函数(5)
正交归一化的表示
由 n d r 0, 或( m , n ) 0
* m 3
以及 n d r 1, 或( n , n ) 1
* n 3
有 n d r mn
* m 3
* 2 3
An | n | d r An . A是实数 An也是实数。
8
二、 厄密算符的本征值与本征函数(4) 定理2:厄密算符的属于不同本征值的本征 函数,彼此正交。即
证 ˆ A是厄密算符,且 A n A n n , A m A m m, * ˆ * * A * ,左乘 , 积分,得 A A , 有A
1, m n 0, m n
或 m , n ) mn (
11
三、角动量的本征值与本征函数(1)
ˆ rp ˆ 角动量 l r p, 角动量算符 l ˆ i i( e e e ) 在直角坐标下, p x y z x y z ˆ ˆ ˆ ˆ r xex ye y zez , l l x ex l y e y l z ez ˆ i( y z ), lx z y ˆ i( x y ) lz y x ˆ i( z x ) ly x z
2
0
e i ( n m ) d 0
18
三、角动量的本征值与本征函数(6)
例2:平面转子的本征值与本征函数 绕z轴旋转的平面转子,设I 为转动惯量,则 lˆz2 2 2 ˆ H 。能量本征方程为 2 2I 2 I
量子力学讲义第7章

第七章 定态问题的近似解(本部分内容尽可能采用精讲多练的方法教学,减少课堂推导,增加例题训练)7.1 非简并态微扰论微扰论的基本精神 -- 对小量逐级展开一、非简并微扰论适用的条件①n n n E H t H ψψ==∂∂,0;②H H H H ''+= ,0要远小于00,H H为分立谱;③)0()0()0()0()0(0,,nn n n n E E H ψψψ= 已知或易求; ① 所研究的那个能级无简并。
二 、零级近似方程和各级修正方程为表征微扰程度,引入参数H H '→'≤λλ:1,按λ的幂次展开。
方程: n n n E H H ψψλ='+)(0设 ......)2(2)1()0(+++=n n n n E E E E λλ ......)2(2)1()0(+++=n n n n ψλλψψψ代入方程: ...)...)((...))(()2(2)1()0()2(2)1()0()2(2)1()0(0++++++=+++'+n n n n n n n n n E E E H H ψλλψψλλψλλψψλ 比较各级得:)0()0()0(00:n n n E H ψψλ=)0()1()1()0(01)()(:n n n n E H E H ψψλ-'-=-)0()2()1()1()2()0(02)()(:n n n n n n E E H E H ψψψλ+-'-=-……最后令λ=1,求得各级 )()(,m nm n E ψ。
三、n n E ψ, 的各级近似 1、一级近似用}{)0(n ψ展开∑=ll l n na )0()1()1()1(:ψψψ。
代入一级近似方程:)0()1()0()1()0(0)()(n n l ll n E H a E H ψψ-'-=-∑用)*0(k ψ左乘上式,利用kl l k d δτψψ=⎰)0()*0( 得,)1()1()0()1()0(kn n knk n k k E H a E a E δ+'-=-其中⎰''='H d H H n k kn~)0()*0(τψψ在0H 表象的矩阵元。
《量子力学》课件

贝尔不等式实验
总结词
验证量子纠缠的非局域性
详细描述
贝尔不等式实验是用来验证量子纠缠特性的重要实验。通过测量纠缠光子的偏 振状态,实验结果违背了贝尔不等式,证明了量子纠缠的非局域性,即两个纠 缠的粒子之间存在着超光速的相互作用。
原子干涉仪实验
总结词
验证原子波函数的存在
详细描述
原子干涉仪实验通过让原子通过双缝,观察到干涉现象,证明了原子的波函数存在。这个实验进一步 证实了量子力学的预言,也加深了我们对微观世界的理解。
量子力学的意义与价值
推动物理学的发展
量子力学是现代物理学的基础之一,对物理学的发展产生了深远 的影响。
促进科技的创新
量子力学的发展催生了一系列高科技产品,如电子显微镜、晶体 管、激光器等。
拓展人类的认知边界
量子力学揭示了微观世界的奥秘,拓展了人类的认知边界。
量子力学对人类世界观的影响
01 颠覆了经典物理学的观念
量子力学在固体物理中的应用
量子力学解释了固体材料的电子 结构和热学性质,为半导体技术 和超导理论的发现和应用提供了
基础。
量子力学揭示了固体材料的磁性 和光学性质,为磁存储器和光电 子器件的发展提供了理论支持。
量子力学还解释了固体材料的相 变和晶体结构,为材料科学和晶
体学的发展提供了理论基础。
量子力学在光学中的应用
复数与复变函数基础
01
复数
复数是实数的扩展,包含实部和虚部,是量子力 学中描述波函数的必备工具。
02
复变函数
复变函数是定义在复数域上的函数,其性质与实 数域上的函数类似,但更为丰富。
泛函分析基础
函数空间
泛函分析是研究函数空间的数学分支,函数空间中的元素称为函数或算子。
第七讲散射理论

第七讲散射理论一、散射现象的一般描述1、什么是散射?简单地说,散射就是指粒子与粒子之间或粒子与力场之间的碰撞(相互作用)过程,是一种具有重要实际意义的现象,所以散射现象也称碰撞现象,其可以示意为:粒子流散射中心如:原子物理中的α粒子散射实验。
2、散射的分类:弹性散射:一粒子与另一粒子碰撞的过程中,只有动能的交换,粒子内部状态并无改变。
非弹性散射:两粒子碰撞中粒子的内部状态有所改变(例如原子被激发或电离)。
在这里我们只讨论弹性散射,即假设碰撞过程中粒子的内部状态未变,并假设散射中心质量很大、碰撞对其运动没有影响。
3、散射的经典力学描述从经典力学来看,在散射过程中,每个入射粒子都以一个确定的碰撞参数(瞄准距离)b 和方位角0ϕ射向靶子,由于靶子的作用,入射粒子的轨道将发生偏转,沿某方向(,)θϕ出射。
例如在α粒子的散射实验中,有22cot 422M b Ze θυπε= (偏转角θ与瞄准距离之间的关系) 那些瞄准距离在b b db -和之间的α粒子,散射后,必定向着d θθθ+和之间的角度射出,如下图所示:凡通过图中所示环形面积d σ的α粒子,必定散射到角度在d θθθ+和之间的一个空心圆锥体之中。
环形面积d σ称为有效散射截面,又称微分截面。
且2222401()()4sin 2Ze d d M σθπευΩ= 然而,在散射实验中,人们并不对每个粒子的轨道感兴趣,而是研究入射粒子束经过散射后沿不同方向出射的分布。
设一束粒子流以稳定的入射流强度沿Z 轴方向射向靶粒子A ,由于靶粒子的作用,设在单位时间内有dn 个粒子沿(,)θϕ方向的立体角d Ω中射出,显然,,(,)dn Nd dn q Nd θϕ∝Ω=Ω令,即1(,)()dn q N d θϕ=Ω显然,(,)q θϕ具有面积的量纲,称为微分散射截面。
微分散射截面),(ϕθq 表示单位时间内散射到单位立体角Ωd (面积/距离平方)的粒子数占总粒子数比率,即Ω=Nd q dn ),(ϕθ。
量子力学教程习题答案周世勋

解:
= 1
= 0
*
= 0
同理可证其它的正交归一关系。
*
1
综合两方面,两电子组成体系的波函数应是反对称波函数,即
2
独态:
*
三重态:
单击添加文本具体内容简明扼要地阐述你的观点
单击此处添加副标题
*
解:电子波函数的空间部分满足定态S-方程
*
*
两电子的空间波函数能够组成一个对称波函数和一个反对称波函数,其形式为
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为
式中
02
为归一化因子,即
03
求线性谐振子哈密顿量在动量表象中的矩阵元。
01
解:
02
*
第五章 微扰理论
*
运营计划简约通用模板
《量子力学教程》 习题解答
单击此处添加副标题
《量子力学教程》 习题解答说明 为了满足量子力学教学和学生自学的需要,完善精品课程建设,我们编写了周世勋先生编写的《量子力学教程》的课后习题解答。本解答共分七章,其中第六章为选学内容。 第一章 第二章 第三章 第四章 第五章 第六章 第七章
*
01
第一章 绪论
第七章 自旋和全同粒子
03
第三章 力学量的算符表示
单击此处添加正文
05
第五章 微扰理论
单击此处添加正文
02
第二章 波函数和薛定谔方程
单击此处添加正文
04
第四章 态和力学量的表象
单击此处添加正文
量子力学教程(二版)习题答案

第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
《量子力学教程》_课后答案

(n 1, 2, 3,)
∴ 2 ( x) A sin
n x a
由归一化条件
得
( x) dx 1
2
A2
a
2 sin
0
n xdx 1 a
由
a
b
sin
m n a x sin xdx mn a a 2
14
A
2 a 2 n sin x a a
2 ( x)
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,
2 2 T 2
A2 2 nh E nh , n 0,1,2, 2 T
6
v 2 v (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由 evB ,得 R eB R
其解为
2 ( x) A sin kx B coskx
④
13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥
⑤
B0 A sin ka 0
A0 s i n ka 0 ka n
max
0 h 6.626 1034 c 0.024A (电子的康普顿波长)。 31 8 e c 9.1 10 3 10
量子力学教程共45页

辐射热平衡状态: 处于某一温度T下的腔壁,单位面积所发射 出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡 状态。
实验发现:
热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线无关。
物理与光电工程学工程学院
能 量 密 度
0
5
10
(104 cm)
物理与光电工程学工程学院
内容
No Image
第一节 经典物理学的困难 第二节 光的波粒二象性 第三节 原子结构的波尔理论 第四节 微光粒子的波粒二象性
物理与光电工程学工程学院
§1 经典I物m 理N 学a 的o g 困难e
(一)经典物理学的成功
19世纪末,物理学理论在当时看来已经发展到 相当完善的阶段。主要表现在以下两个方面:
——光的粒子性的进一步证实 (四)波尔(Bohr)的量子论
物理与光电工程学工程学院
No Image
(一)Planck 黑体辐射定律
究竟是什么机制使空腔的原子产生出所观察到 的黑体辐射能量分布,对此问题的研究导致了 量子物理学的诞生。
•1900年12月14日Planck 提出: 如果空腔内的黑体辐射和腔壁原子处
(1) 应用牛顿方程成功的讨论了从天体到地上各种 尺度的力学客体的运动,将其用于分子运动上, 气体分子运动论,取得有益的结果。1897年汤姆 森发现了电子,这个发现表明电子的行为类似于 一个牛顿粒子。
(2) 光的波动性在1803年由杨氏衍射实验有力揭示 出来,麦克斯韦在1864年发现的光和电磁现象之 间的联系把光的波动性置于更加坚实的基础之上。
能
No
量 密
Image
度
•该式称为 Planck
辐射定律
0
Planck 线
量子力学课件第七章

χ
−
1 2
0 h 的本征矢量。 = 分别是 s z = ± 的本征矢量。 1 2
σ x的矩阵形式
令 a ˆ σx = c b d
ˆ ˆ ˆ ˆ 由σ zσ x = −σ xσ z
§ 7.2 电子自旋算符和自旋函数
1 0 a b a b 1 0 0 − 1 c d = − c d 0 − 1
§ 7.2 电子自旋算符和自旋函数
二、泡利算符
h ˆ S x = 2 σˆ v h v ˆ ˆ → S = h σˆ S = σ ˆy 2 2 ˆ S = h σˆ z 2
x y z
( 7 .2 − 2 )
(A)对易关系 对易关系
7.2式代入(7.2得到所满足的对易关系: (7.2-1)式代入(7.2-2)式,得到所满足的对易关系:
§ 7.2 电子自旋算符和自旋函数
证明
ˆ ˆ ˆ ˆ ˆ σ xσ y −σ yσ x=σ x − σ y = 2iσ zσ x
ˆ ˆ ˆ ˆ ˆ ˆ σ y − σ xσ yσ x = 2iσ xσ z
ˆ σ x右乘上式
ˆ σ x左乘上式
在把两式相加
2
r
r
h 2
2
r
§ 7.2 电子自旋算符和自旋函数
v 于是, 于是,∫ ψ 1 d r = 自旋朝上的几率
2
∫ψ
4.
2 2
v d r = 自旋朝下的几率
波函数归一化表示为: 波函数归一化表示为:
∫ψ
+
ψ dτ =
∫ d τ (ψ
2 1
+ψ2
量子力学教程课件

量子力学教程课件1. 简介量子力学是一门研究微观粒子行为的物理学分支,描述了微观世界的基本原理和规律。
本教程课件旨在介绍量子力学的基本概念、数学描述和常见应用,帮助学生深入理解和应用量子力学知识。
2. 量子力学基础2.1 波粒二象性介绍波粒二象性的基本概念,包括波动性和粒子性的相互转化,以及双缝实验等经典实例。
2.2 不确定性原理解释不确定性原理的概念和意义,说明无法同时准确确定粒子的位置和动量的原理。
2.3 波函数和 Schrödinger 方程介绍波函数的概念,以及薛定谔方程的基本形式和求解方法,引导学生理解波函数描述微观粒子的性质和行为。
3. 定态量子力学3.1 定态和定态方程介绍定态的概念,以及定态方程的推导和求解方法,帮助学生理解波函数与能量之间的关系。
3.2 算符和本征值问题解释算符和本征值问题的基本概念,包括算符的作用和本征函数的定义,引导学生掌握本征值问题的求解方法。
3.3 动量和位置算符介绍动量和位置算符的定义和性质,解释它们对应的本征函数和本征值,讨论动量-位置不确定性关系。
4. 哈密顿力学和波函数演化4.1 哈密顿量和状态演化解释哈密顿量的概念和物理意义,讨论波函数演化的基本原理,引导学生理解时间演化和态矢量的变化关系。
4.2 边界条件和量子力学稳定态探讨边界条件对量子力学系统稳定态的影响,以及波函数在无穷深势阱等特定势场中的求解。
4.3 时间演化和量子力学测量介绍时间演化算符的定义和性质,讨论量子力学测量的基本原理和微扰态的提取方法。
5. 特殊系统和量子力学应用5.1 含时量子力学引入含时量子力学的概念,解释含时薛定谔方程的物理意义,介绍准确求解和近似求解的方法。
5.2 简谐振子讨论简谐振子的基本性质和量子化过程,引导学生理解能级和激发态的概念。
5.3 氢原子和多电子系统介绍氢原子的量子力学描述和能级结构,讨论多电子系统的波函数形式和近似求解方法。
5.4 量子力学与量子信息探索量子力学与量子信息科学的联系,简要介绍量子计算、量子通信和量子加密等前沿应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可见,库仑场中的粒子处在束缚态时,其能量为分 立值,即能量是量子化的
方程(15)在 0 r 内的有限解
f
()
b0
(2l
1)!(n l
(l n)!2
1)!
l
1
L2l 1 nl
(
)
(19)
其中,b0为一任意常数,L2nll1() 称为缔合拉盖尔多项式
9
3.3 电子在库仑场中的运动(续7) The variables in Quantum mechanics
Rnl
()
N nl e
1 2
l
L2l 1 nl
(
)
(20)
角量子数 l 0,1,2, , n 1
10
3.3 电子在库仑场中的运动(续8) The variables in Quantum mechanics
8 E
2
r
2z n
es2
2
r
2z na0
r
式中a
0
h2
e
2 s
为玻尔半径
(a 0 ~ 5.291011m)
100(r,,) R10(r )y00(, )
1
z
a
0
3
2
e
zr 1a0
200(r , , )
R20(r )y00(, )
4
1
2
z
a
0
3
2
2
zr a0
e
zr 2a0
3
210 r,, R21 rY10 ,
3
4
z 2a0
2
zr a0 3
zr
e 2a0
cos
3
211 r,, R21 rY11 ,
度。 但是对于库仑场 Ze2 r 这种特殊情况,得到的能
量只与 n nr l 1 有关。所以又出现了对 l 的简并
度,这种简并称为附加简并。这是由于库仑场具有 比一般中心力场有更高的对称性的表现。
(l m所)以无,关库,仑对场(l中m电) 简子并的,能这级是E库n 只仑与场n所有特关有,的与。
17
设 (r,,) R(r)Y(,)
(2)
式(2)代入方程(1),分离变量得
1 r2
d dr
r
2
dR dr
2
h
2
E
U (r)
r2
R
0
径向方程 (3)
1
sin
sin
1
sin 2
2
2
Y
0
球面方程 (4)
球面方程(4)与中心力场的势函数无关,即不管中
心力场 U(r) 的形式如何,当 l(l 1) ,且 l 0,1,2,
z2es4
2n2h2
库仑场中运动电子处在束缚态时波函数
n l m (r, ,) R n l (r)Ylm ( ,)
主量子数 角量子数
n 1, 2, 3,
l 0,1, 2, , n 1
磁量子数 m 0, 1, 2, ,l
下面列出了前几个波函数 nlm r, ,表 达式
13
3.3 电子在库仑场中的运动(续11) The variables in Quantum mechanics
变,此时不再是严格的点库仑场。
因此价电子的能级与 n 和 l 有关,而与 m无关,
即能级仅对 简并m ,对 的简l 并消除了。
18
3.4 氢原子
The variables in Quantum mechanics
量子力学发展史上最突出的成就之一是对氢原子光 谱和化学元素周期律给予了满意的解释。氢原子是最 简单的原子,其Schrodinger方程可以严格求解,氢原 子理论也是了解复杂原子及分子结构的基础。
第 n 个能级 En ,共有
n1
(2l 1) 1 3 5 (2n 1) n2
l0
个波函数,即 En 的简并度为n2 Ex. n = 2 时,E2 是4度简并的,对应的波函数有
200 , 211 , 210 , 211
库仑场中电子的能级 En 只与 n 有关,与 (l, m) 无
关,对 l、m 简并,这是库仑场所特有的。 16
15
3.3 电子在库仑场中的运动(续13) The variables in Quantum mechanics
(2)电子的第n 个能级 En 是 n2 度简并的
粒子处在束缚态,对于第 n 个能级 En ,角量子数 l 取 0,1, 2, , n 1 ,共 n 个值;对于一个 l 值,磁量子
数 m可取 0, 1, 2, ,l ,共 (2l 1) 个值。因此,对于
2. 库仑场中径向方程的解
电子在核的电场中运动,核带正电荷 Ze,Z 为原子序数
Z 1
Z
1
(氢原子) (类氢原子)
电子受核的吸引,其势为库仑势 U (r) Zes2
r
e
(SI )
es
4 0
中心力场的一种形式
e
(CGS )
5
3.3 电子在库仑场中的运动(续3) The variables in Quantum mechanics
方程(9)变成
d 2u
d 2
1 4
l
(l
2
1)
u
0
(13)
令
1
u() e 2 f ()
(14)
将(14)代入(13),则有
d2 f
d 2
df
d
l(l 1)
2
f
0
(15)
利用幂级数求解微分方程的方法解方程(15)
设
f () bk sk
(b0 0)
k 0
(16)
将(16)代入(15)式,求其在 0 r 范围内的
可见, nlm (r, ,) 是电子三个算符 Hˆ、Lˆ2、Lˆz 的共同
本征函数系,当量子数 n,l,m 给定时,就确定了
一个状态,力学量 H , L2 , Lz 可同时测定。当粒子处
在任一状态时,它可用 nlm(r,,) 构成的函数系
展开,因此,Hˆ , Lˆ2 , Lˆz 构成一组力学量完全集。
The variables in Quantum mechanics
第七讲
第三章
3.3 电子在库仑场中的运动 The motion of electrons in Coulomb
field 3.4 氢原子 Hydrogen atom
1
学习内容
The variables in Quantum mechanics
有限解,得
8
3.3 电子在库仑场中的运动(续6) The variables in Quantum mechanics
n n 1, 2,3,L
(17)
联式立,(得到12类)氢和原(子17)Zes2
2E
的能量算符的本征 值
En E
Z 2es4
2n 2 2
n 为主(量1子2)数
(18)
处,即 E 0 ,方程(8)的极限形式
d 2u dr 2
2E
2
u
0
6
3.3 电子在库仑场中的运动(续4) The variables in Quantum mechanics
2E
2E
u(r) C cos
r D sin
r
Hale Waihona Puke 满足波函数的连续、单值和有限条件,因此对E 没
有什么限制,所以 E 0 的一切值都允许(连续谱)
2Z
2
Z
Z
Z 3 a0
r
31
a0
27 3 81 3a0 a0
R (r) ( r) e 3/2
2Z
Z
Z
2
Z 3 a0
r
31
a0
81 15 a0
12
3.3 电子在库仑场中的运动(续10) The variables in Quantum mechanics
3.电子的能量本征值与波函数
能量本征值
En
时,该方程在 0 , 0 2 内的单值有限解均为
球谐函数 Ylm ( ) Nlm Pl m (cos )eim
(5)
m 0,1,2, ,l 4
3.3 电子在库仑场中的运动(续2) The variables in Quantum mechanics
方程(3)是有关径向波函数 R(r) 的微分方程,称 为径向方程,由它求出 R(r) ,便可知道 (r,,) ,但 要求径向方程的解,必须先要知道 U(r) 的具体形式。
N nl 为径向波函数的归一化常数,由归一化条件
R n l (r)R nl (r)r2dr n n 求得
0
1
Nnl
2z na0
3
(n l 1)! 2n[(n l)!]3
2
下面列出了前几个径向波函数 Rlm表达式:
11
3.3 电子在库仑场中的运动(续9) The variables in Quantum mechanics
R (r) 2e 3/2 Z
Z a0
r
10
a0
R20(r)
Z 2 a0
(2 r)e 3/2
Z
Z 2 a0
r
a0
R (r) re 3/2
Z
Z
Z 2 a0
r
21
2 a0
a0 3
R30(r)
Z 3a0
[2 r ( r) ]e 3/2
4Z
4Z
2
Z 3 a0
r
3a0
27 a0
R (r) [ r] re 3/2