航空无线电导航设备第2部分:甚高频全向信标(VOR)

合集下载

伏尔(VOR)导航系统

伏尔(VOR)导航系统

伏尔(VOR)导航系统伏尔导航系统伏尔导航系统(omnidirectional range—VOR)是空中导航用的甚高频全向信标。

这种系统能使机上接收机在伏尔地面台任何方向上和伏尔信号覆盖范围内测定相对于该台的磁方位角。

伏尔导航系统出现于20世纪30年代,是为了克服中波和长波无线电信标传播特性不稳定、作用距离短的缺点而研制的导航系统,是甚高频(108~118兆赫)视线距离导航系统。

飞机飞行高度在 4400米以上时,稳定的作用距离可达200公里以上。

原理伏尔导航系统通过比较两个30赫信号的相位来确定飞机对伏尔台的方位。

一个30赫信号是固定的基准相位信号,先在9960赫副载频上以±480赫频偏调频,用副载频再对甚高频调幅,以伏尔导航系统全向方式辐射。

一个30赫信号是可变相位信号,用两对正交奥尔福德环形天线在双边带上辐射旋转∞场型。

天线系统两种辐射输出合成为旋转30次每秒的心脏形场型。

载频上还有以1020赫调幅的莫尔斯码识别信号和话音。

在接收端,外来信号经放大、调幅检波后分成三路:一路经副载频滤波、限幅、鉴频和30赫滤波后输入比相器,这是固定相位信号;一路经30赫滤波直接至比相器,这是可变相位信号;再一路是莫尔斯识别码和话音输出。

比相器对两个相位信号比相,得出飞机对伏尔地面台的磁方位角。

性能与特点性能伏尔导航系统应用在航路上和终端区。

在航路上,它构成航道和航道网的基准,也是仪表飞行时的必要装备。

航路上使用的伏尔台的辐射功率为200瓦,作用距离随飞行高度而变化。

在小高度上仅30海里,大高度上最远可达200海里。

终端区伏尔台用于引导飞机进场,辐射功率50瓦,作用距离25海里以上。

终端伏尔台与仪表着陆系统中的航向信标使用相同频段,即108~112兆赫,装备仪表着陆系统的机场不再装备伏尔导航系统。

优点伏尔导航系统与地美依导航系统合装在一起成为极坐标导航方式,既提供方位,又提供距离。

地美依导航系统与塔康导航系统的测距部分完全相同,伏尔导航系统与塔康导航系统合装在一处,就是伏尔塔克导航系统,属于军用和民用共用系统。

浅谈甚高频全向信标(VOR)系统

浅谈甚高频全向信标(VOR)系统

浅谈甚高频全向信标(VOR)系统
浅谈甚高频全向信标(VOR)系统
张旭;
【期刊名称】《中国科技博览》
【年(卷),期】2013(000)015
【摘要】甚高频全向信标(VOR)是现代航空无线电测向的一种地面导航设备,被广泛应用于短距及中距制导。

多普勒甚高频全方位信标(DVOR)是常规VOR的进一步发展。

它利用多普勒效应及宽孔径天线系统从而使它能产生更加精密得多的方位角信号。

本文通过对甚高频全向信标原理介绍,使我们能够对其有一个初步的了解。

【总页数】1页(P.142-142)
【关键词】甚高频;全向信标;导航
【作者】张旭;
【作者单位】广西河池市广西河池机场有限公司,545900;
【正文语种】英文
【中图分类】F764.6
【相关文献】
1.甚高频全向信标改造成数字通信测向综合化系统的几种新方案[J], 宋茂忠
2.试析甚高频全向信标系统机载接收机数字信号处理[J], 孙志浩; 殷飞
3.甚高频全向信标系统机载接收机数字信号处理浅析 [J], 梅晓华
4.甚高频全向信标VOR的发展和应用 [J], 时琳
5.浅谈多普勒甚高频全向信标的数字化设计 [J], 冉银龙。

VHF全向信标(VOR)系统—介绍

VHF全向信标(VOR)系统—介绍

缩略语
ACP DEU DFCS DME EFIS FCC FDAU FMC HSI ILS LCD MCP NAV NCD PWR REU RF RMI VOR
— 音频控制面板 — 显示电子组件 — 数字式飞行控制系统 — 测距机 — 电子飞行仪表系统 — 飞行操纵计算机 — 飞行数据获取组件 — 飞行管理计算机 — 水平状态显示器 — 仪表着陆系统 — 液晶显示 — 模式控制面板 — 导航 — 无计算数据 — 电源 — 遥控电子组件 — 无线电频率 — 无线电磁指示器 — 甚高频全向信标
34—51—00—001 Rev 3 10/03/2000
VHF 全向信标(VOR)系统 — 介绍
目的
VHF 全向信标(VOR)系统是从 VOR 地面站向飞机提供磁方向 数据的导航辅助系统。
VOR 地面站发射可提供从 000 度到 359 度范围的磁射线信息 的信号。所有 VOR 地面站将 000 度基准设定到磁北方向。
34—51—00—005 Rev 4 07/21/2000
有效性 YE201
34—51—00
34—51—00—001 Rev 3 11/15/2000
有效性 YE201
VHF 全向信标(VOR)系统 — 介绍
34—51—00
VOR 系统 —概述
概述
VOR 系统有两个甚高频全向信标/指点信标(VOR/MB)接收机。 接收机有 VOR 和指点功能。本节只包括 VOR/MB 接收机的 VOR 工作。
导航控制面板电路提供 115V 交流电用于控制面板工作。机长控 制面板从交流备用转换汇流条获得电源。副驾驶控制面板从交流转换 汇流条 2 获得电源。
导航控制面板接收 28V 直流电用于控制面板监控工作并且当调 谐 ILS 频率时用于 ILS 调谐输出。机长控制面板从 28V 直流备用汇 流条,导航传感器直流-1 电路跳开关获得 28V 直流电。副驾驶控制 面板从 2 号 28V 直流汇流条,导航传感器直流-2 电路跳开关获得 28V 直流电。

甚高频全向信标(VOR)信号的监测方法

甚高频全向信标(VOR)信号的监测方法

电波卫士导航天地Radio Wave GuardGNSS WORLD2018.0258DIGITCW1 引言甚高频全向信标(V H F O m n i -d i r e c t io n a l Range ,简称VOR )是现代航空无线电导航中广泛使用的一种地面设备,或用于航路导航,或用于机场飞机进场的引导,是飞机安全飞行着陆的保障。

作为无线电管理部门,我们必须从无线电信号监测方面入手,准确掌握VOR 信号的信号特征及监测方法,快速判断一些民航干扰,为民航飞机的安全提供有效的技术支撑。

2 甚高频全向信标系统特征甚高频全向信标分为常规全向信标(CVOR )和多普勒全向信标(DVOR ),对航空器接收机来讲,两者是兼容的,但是现在国内外一般都使用DVOR ,因此本文主要针对DVOR 信号的监测。

为了更好地识别与准确监测DVOR 信号,我们必须对DVOR 信标系统有大致的了解。

多普勒甚高频全向信标基于多普勒效应的原理,即通过相对运动产生的相位差实现定位功能。

在实际应用中,DVOR 与机载甚高频全向信标接收机相结合,由机载接收机可测得地面VOR 信标台的磁方位角。

如果设在航线上,可以利用两个VOR 信标台或一个信标台和一个测距台(DME )实现飞机的定位,引导飞机沿航线飞行,与DME 配合完成区域导航;如果VOR 台设在机场附近,可用于引导飞机进出港,并可辅助仪表着陆系统引导飞机安全着陆等。

根据不同的用途,VOR 地面导航台分为两大类:(1)航路VOR 台(A 类):用于航路导航,112-甚高频全向信标(VOR)信号的监测方法袁冰清1,李思静2(1.国家无线电监测中心上海监测站,上海 201419;2.国家无线电监测中心深圳监测站,深圳 518120)摘要:本文简单地介绍了甚高频全向信标发射系统的原理及特征,并且根据VOR信号频谱特点,给出了行之有效的监测方法。

这将为无线电管理部门掌握VOR信号特征及正确的监测方法提供技术支持,进而为民航飞机的安全提供一定的保障。

导航VOR设备在民航中的应用

导航VOR设备在民航中的应用

导航VOR设备在民航中的应用发表时间:2018-12-07T09:25:46.850Z 来源:《科技新时代》2018年10期作者:潘登[导读] VOR的全称为甚高频全向信标系统,主要由机载甚高频全向信标接收机和地面全向方位导航台组成。

(贵州遵义茅台机场有限责任公司,贵州遵义 563000)摘要近些年来,随着航空事业的快速发展,越来越多的高精确度导航技术应用到了航空领域中。

甚高频全向信标(VOR)导航技术因成本低、航线多等方面的优点,仍然在我国航空领域中占据重要地位。

基于此,本文首先分析了VOR的一般特性,接着分析了其在民航中的具体应用,仅供相关部门进行参考借鉴。

关键词 VOR设备特性民航应用引言作为最基本的导航方式,每个飞行员都要对无线电领航进行熟练掌握。

因此,努力钻研和熟练无线电导航系统及设备的使用是每个合格飞行员具备的要领。

导航就是引导飞机沿着预定航线安全、准确、准时地到达目的地的技术。

选择科学有效的导航方法,并且选取精度优良、可靠性强的导航设备在精确度导航中发挥着十分重要的作用。

随着航空事业的快速发展和科学技术水平的进步,全球定位系统的精确度水平不断增强,而VOR导航设备因成本低、航线多等的特点,是航空飞行中的重要导航方式。

因导航VOR只能提供航向导引,不能提供下滑道引导,是非精密进近范畴,对VOR导航设备进行熟练掌握,在确保航空飞行安全中极其重要。

1 VOR的一般特性VOR的全称为甚高频全向信标系统,主要由机载甚高频全向信标接收机和地面全向方位导航台组成。

若VOR系统的位置较远,在定位中会有较大的误差存在。

将甚高频全向信标(VOR)与机载导航接收机配合使用,可以对航空器提供全方向、不间断的方位信息,确保航空器可以沿着事先规划的航路飞行、归航和进近着陆,但需要与测距仪(DME)配合使用。

我国使用最为广泛的是多普勒全向信标(DVOR)。

VOR设备主要有六部分组成,分别为发射机系统、监视系统、控制和交换系统、电源系统、天线系统、遥控和状态显示系统。

甚高频全向信标

甚高频全向信标

Very High Frequency Omnidirectional Radio Range是一种用于航空的无线电导航系统。

其工作频段为108.00 兆赫- 117.95 兆赫的甚高频段,故此得名。

VOR是以地面设施上放射出30Hz回转的心型图形后,撘载受讯机会输出30Hz之讯号。

另外,地面设施也会发送出不含方位数据,由基准30Hz讯号变调而成的无向性讯号。

两个30Hz之间之向位差就成为地面上之磁方位。

使用VHF的VOR虽然容易因为地面发送设施附近之地形影响而产生误差,但是由于不受空间波的妨碍而没有传送特性之变动。

地面设施的基地误差是VOR的缺点。

一般来说,在地面发送讯号站半径五百公尺以内没有树木,没有大型反射建筑物的平滑地面,通常是设置VOR基地之地点,但是,由于预定场所通常不得已会选在非良好条件的地方,这时候就可以设置多普勒VOR(D-VOR)。

D-VOR乃利用广开口面天线使误差减小,在其半径6.7公尺的圆周上等间隔地设置50基Alford环型天线,然后在一圆中心设置传统型VOR (Conventional VOR)的天线。

中心天线乃无指向性的放射以30Hz进行振幅调变后所得之连续波,此讯号是方位的基本讯号,至于圆周上配列的Alford环型天线,则由中心所放射的讯号周波数,顺次传送9960Hz高连续波过去。

VOR系统于1949年被国际民航组织批准为国际标准的无线电导航设备,是目前广泛使用的陆基近程测角系统之一。

VOR台的发射机有两种形式即普通VOR(CVOR)和多普勒VOR(DVOR)。

机载VOR接收机对两种VOR台都是兼容的。

中国民航引进安装的VOR地面信标台自1987年以来多以DVOR为主。

VOR发射机发送的信号有两个:一个是相位固定的基准信号;另一个信号的相位随着围绕信标台的圆周角度是连续变化的,也就是说各个角度发射的信号的相位都是不同的。

向360度(指向磁北极)发射的与基准信号是同相的(相位差为0),而向180度(指向磁南极)发射的信号与基准信号相位差180度。

VOR导航

VOR导航

VOR导航零基础教程个小三角,示下滑道在您左边,您应该向左转截获;反之亦然。

白色横指针在在VOR指示仪中,白色竖指针(现在有点偏右,(*^__^*) 图中红框中是NAV1无线电接收机和NAV1所对应的VOR指示仪NAV:机载甚高频无线电接收机,和收音机工作原理差不多,就是工作方式不太一样,分为NAV1和NAV2.个DME台组合确定飞机位置。

2、利用航路上的VOR台引导飞机沿航线飞行。

3、终端引导飞机进场和非精密VOR的直线就是VOR的一条径向线。

VOR系统主要具有以下3种功能:1、利用两个VOR台或利用一个VOR台和一它由地面基站向360方向每个方向发射一道无线电波,每束无线电波即称为VOR的幅向,延某束波穿过第一次写教程,希望对新手有帮助,老鸟绕道,谢谢。

赫的甚高频段,故此得名。

VOR:甚高频全方向无线电信标台的简称,其工作频段为108.00 兆赫- 117.95 兆首先掌握一点基础知识:近进。

DVOR的测角误差在1°,精度±2° ̄±4°。

DME:DME是通过无线电测量飞行器到导航台距离的一种装置。

DME工作在超高频段,分机载设备和地面设dme机备两部分。

基本工作原理是:机载设备发射一个脉冲信号,地面设备接收到该信号后返回给机载设备一个应答信号。

机载设备根据发射信号和接收到应答信号的时间差,就可以结合无线电波的速度算出飞行器与地面台站的距离。

当 DME 地面设备和甚高频全向信标或者仪表着陆系统同时安装时,分别称做VOR-DME 和 ILS-DME。

闲话不多说,上飞机 嘻嘻……)是偏航指示,当纵杆向左偏,就说明径向线VOR导航中没作用,但在ILS近进的时候可以指,左下角的OBS是径向线选择开关,用来选择您所要飞的VOR幅向,如图现在选择的是341度径向线,竖杆下还有朝上说明您真正向台飞行,朝下就是背台,在NAV1中输入VOR频率时,要先输入到左边(现在112.20)的位置,然后点击白色双箭头把它转到左边来激活它,很多新手都在这里为难,弄不清左右两个位置是干什么的,本人曾经也是,呵呵。

DME导航系统概述

DME导航系统概述

DME导航系统概述◇高教论述◇科技圈向导2012年第03期中国民用航空VOR/DME导航系统概述吴江(中国民航飞行学院十二大队I~lJII绵阳610000)【摘要】本文详细介绍了VOR/DME系统.VOR/DME导航系统是由VOR台,即甚高频全向信标(veryhighfrequencyon1I1idirecdona1radiorange)ff~'N'lIEDME(distancemeasuringequipment)~在一起通过钡4角测距(p/e 定士~一.z-,if_作的.本文通过介绍及分析VOR/DME地面设备与机载设备的组成,列举了其主要性能参数,工作频率,工作容量,工作范围和使用精密程度.【关键词】甚高频全向信标;测距台无线电领航作为最基本的导航方式.是每个飞行员必须要掌握的要领.因此.努力专研和熟练无线电导航系统及设备的使用时每个合格飞行员所必备的引导飞机沿着某条预定的航线安全.准确.准时地到达目的地的技术,称为导航.显然,选择一定的导航的方法并且选取具有精度优良和可靠性高的导航设备对于实现精确导航起着极其重要的作用航天事业飞速发展,GPS(全球定位系统)的精确度越来越高.而VOWDME导航技术依靠其成本低,航线多等优点在我国成为了重要的导航方式,.但是由于它区别于盲降(ILS/DME),只能提供航向引导.不能提供下滑道引导,属于非精密进近.因此,熟悉VOR/DME导航设备对于掌握VOWDME进近方法,保证飞行安全有着十分重要的作用.1.VOR/DME系统VOR/DME导航由甚高频全向无线电信标VOR(veryhi出frequency0mni—bearingRange1和测距机DME(distancemeasuringequipmem)合装在一起进行组合导航.VOR是能够测量飞机与电台方位的测角系统位:测距机统是一种能够测量由询问器到某个固定的应答器距离的二次雷达系统.利用这个测角测距系统可以为飞机定位. 等待飞行.引导飞机进场着陆.航路间隔,避开保护空域及地速计算等VOR和DME可组成近距离无线电导航系统2.VOR/DME地面设备2.1VOR系统分类VOR为甚高频全向信标系统它由机载甚高频全向信标接收机和地面全向方位导航台组成因VOR系统距离较远时定位误差较大. 所以VOR常和DME系统配合使用.安装在机场的VOR台叫终端VOR~(TVOR),使用108.00—111.95MHz之间的4O个波道.发射功率约为50W.工作距离25NMTVOR台之所以采用低功率发射.具有如下特点.(1)是不干扰在相同频率上工作的其他VOR台;(2)TVOR台位于建筑物密集的机场,多路径干扰严重影响VOR的精度.因此.只能用于短距离导航TVOR台通常和DME或LOC装在一起.VOR/ DME台组成极坐标定位系统:VOR/LOC装在一起.利用和跑道中心延长线一致的TVOR台方位线.可以代替LOC对飞机进行着陆引导.安装在航路上的VOR台叫航路VOR.台址通常选在无障碍物的地点.如山的顶部.这样,因地形效应引起的台址误差和多路径干扰可以大大减少航路VOR使用112.00—117.95MHz之间的120个波道.发射功率200W.工作距离200NM.VOR系统的工作范围决定于接收机灵敏度和地面台的发射功率,飞机高度以及VOR台周围的地形.工作范围主要受视距限制.而视距又受地球曲率的限制.在地球表面上, 只有飞机高度达到30000ft时.VOR工作距才达200NM.2.2DME的地面组成测距机fDME)系统是一种能够测量由询问器到某个固定应答器距离的二次雷达系统DME系统是询问——回答式脉冲测距系统,由机载设备和地面信标设备组成.地面信标设备由应答器,监视器,控制单元,机内测试设备,天线和电键器组成.应答器是DME系统地面信标设备的主要组成部分.它由接收机,视频信号处理电路和发射机组成.接收机的作用是接收,放大和译码所接收的询问信号:发射机的作用是产生,放大和发送回答脉冲对.2.3DME系统的主要性能数据DME系统的工作频率为962~1213MHz之间的252个波道.相邻波道间隔为1MHZ.机上设备与地面设备的收发频率是对应的.测距信标台的发射频率比询问频率高或低63MHz.询问频率安排在1O25—1150MHz范围.共安排126个询问频率.采用x,Y的波道安排.共有252个应答波道对于民用DME,有52个波道不用.不用的波道是l一16X,Y和60—69X,Y,这是因为:一是DME通常与VOR和ILS联用.而VOR和ILS一共只有200个波道.所以DME也只需要200个波道:二是测距机与空中交通管制应答机工作在同一频段.尽管采用不同的时间编码.但为了避免可能产生的相互干扰.测距机系统中252个波道中禁止使用其中若干波道DME系统的地面DME台通常设计为能同时为100架飞机提供服务.如果询问的飞机多于100架.地面DME台通过降低灵敏度来限制回答.保持对最近的100架飞机询问的回答DME系统机载DME设备连续地对地面信标台进行询问.直到它选择其他波道或者飞机飞出DME系统的作用距离为止正常的测距范围为0~200NM.最大可达到390NM.测距精度一般为0.3NM.DME系统地面信标的识别信号是三个国际莫尔斯电码2.4VOR/DME机载设备2.4.1VOR的机载设备组成VOR机载设备包括控制盒.天线.甚高频接收机和指示仪表,尽管有多种型号的机载设备.处理方位信息的方法不同.但他们的基本功能是相似的VOR控制显示(1)控制盒:在现代飞机上,控制盒是VOR,ILS,DME共用的,主要功能是:1)频率选择和显示选择和显示接收信号频率.频道间隔为50MHz,频率选择范围从108.00-117.975MHz,共有两百个波道在选择VOR.LOC频率的同时.还自动选择DME的配对频率.控制盒上可以同时选择两个频率.而是用哪个频率则由频率转换开关控制.2)试验按钮控制盒上有VOR.ILS和DME试验按钮,分别用来检查相应设备的工作性能.3)音量控制.因两调节电位计用来调节话音识别码的音量.话音和识别码信号来自接收机.经因两调节电位计后,输出到音频集成系统.(AIS).(2)天线:在多数飞机上,VOR天线和LOC天线是共用的,安装在垂直安定面上或机身的上部.避免机身对电波的阻挡,以提高接收信号的稳定性VOR天线的形式多种多样.如蝙蝠翼型天线.环形天线以及改进的"v"型偶极子天线等不管是用哪种形式的天线,应具有全向水平极化的方向图.能够接收108.00一l17.975MHz范围内的甚高频信号.(3)VOR接收机:接收和处理VOR台发射的方位信息.包括常规外差式接收机.幅度检波器和相位比较器电路.接收机提供如下的输出信号.1)话音和台识别信号加到音频集成系统供飞行员监听.2)方位信号.驱动无线电磁指示器(RMI)的指针.3)航道偏离信号.驱动水平姿态指示器fHsI)的航道偏离杆.4)向/背台信号,驱动水平姿态指示器(HSI)的向/背台指示器.5)旗警告信号,驱动水平姿态指示器(HSI)I-的警告旗.这些特点我会结合实际飞行情况在后面的图(7.8.1O)中表现出来.(4)指示器:指示器是将接收机提供的导航信息显示给驾驶员,根据指示其提供的指示进行飞机的定位和导航.常用的指示器有两种:无线电磁指示器fRM1)和水平姿态指示器.两个指针分别指示VOR一1/ ADF一1和VOR一2/ADF一2接收机输出的方位信息:两个VOWADF转换开关.分别用来转换输入指针的信号源2.4.2DME的机载设备组成2012年第03期科技曩向导◇高教论述◇机载DME设备主要由询问器,控制盒,距离指示器和天线部分组成.(1)询问器:由收发信机组成.发射机的作用是产生,放大和发射编码的询问脉冲对:接收机的作用是接收,放大和译码所接受的回答脉冲对询问器还包含有距离计算电路,其作用是确定回答脉冲对的有效性.并计算距离.这一距离为飞机到地面信标台的斜距.(2)控制盒:对询问器收发信机提供需要的控制和转换电路;控制盒还提供频率选择(3)距离指示器:指示飞机到地面信标台的斜距,以海里为单位;在某些距离指示器上.还显示有计算的地速和到达地面信标台的时间,必须注意:这两个参数只有在飞机沿径向线飞行时才是准确的,如电台在飞机一侧.显示的只是DME距离变化率.距离指示器可以是单独的指示器.也可以与其他电子设备的显示器共用.(4)天线:是具有垂直极化全向辐射图形的单个L波段天线,其作用是发射询问信号和接收回答信号地面DME台通常与VOR或ILS地面台安装在一起.因此.他们的工作频率是配套使用的,即在"VHFNA V"控制盒上调谐好VOR或ILS的频率,则DME的频率也就自动地调定了:而有的DME台是单独安装的或控制盒是单独的.则需对地面DME进行调谐:首先接通电源.将功能开关放"FREQ"位,用频率选择旋钮人工调定所需DME台频率.这时所选频率在显示器右边显示.左边显示飞机到地面DME台的斜距:按下音频控制板上"DME"的上排或下排按钮.可以辨听地面DME台识别信号:将功能开关扳至"地速/到台时间(GSfr)"位.则在显示器右边显示出地速和到台时间,此时机器已将频率储存起来:使用完毕.将通/断开关放断开位,设备即可断电关机.3.VORIDME工作原理甚高频全向信标VOR系统测方位时.通过机载设备接收地面VOR台发射的两种信号.并测量出这两种信号的相位差,就可以得到飞机的磁方位.我们称为VOR方位或径向方位,然后再将这一方位反向180度,就可以得到电台磁方位.在指示器上指示出电台磁方位.同时也指示出了飞机的磁方位我们可以把VOR地面台想象为一个灯塔:他向四周发射全方位光线的同时.还发射一个自磁北方向开始顺时针旋转的光束.如果一个远距离观察者记录了从开始看到全方位光线到看到旋转光束之间的时间间隔.并已知光束旋转的速度.就可以计算出观察者磁方位角:实际上.VOR台发射两个低频信号调制的射频信号.这两个低频信号,一个叫基本相位信号,另一个叫可变相位信号.基准相位信号相当于全方位光线.其相位在VOR台周围的各个方位上相同.可变相位信号相当于旋转光束,其相位随VOR台的径向方位而变.飞机磁方位(相当于观察者磁方位角)决定于基准和可变相位信号之间的相位差f相当于看到全方位光线和光束之间的时间差).机载设备接收VOR 台的发射信号.并测量出这两个信号的相位差,就可得到飞机磁方位, 再加180度就是VOR方位.DME系统测距机是从机载询问器向地面信标台发射询问脉冲对开始的.地面信标台接收这些询问脉冲对.延迟5O微妙,然后给询问器发射回答脉冲对.机载询问器距离计算机按照发射脉冲对和接收回答脉冲对之间所经过的时间计算出飞机到地面台的斜距,即d=cff2, 计算的距离信息送到距离指示器显示.由于电波传播的速度可认为是一个常数.即3x1Oe米.所以根据L=VsTr(L回波距主波的几何距离,vs为移动速度,Tr为滞后的时间),飞机到地面信标台的斜距可用下式表示.R=Cn(Tr一Ild)=Ird)/TR——询问器与应答机之间的距离.以海里为单位;Tr一自发射询问脉冲对到接收回答脉冲对之间所经过的时间,以微妙为单位:Td:5O微妙——地面信标台接收询问和发送回答之间的延迟时间:T:12.359——射频电波传输1海里并返回所需要的时间.以微妙为单位:询问器所提供的斜距对飞机导航用途来说是必需的.除非飞机飞行高度很高,或者接近于地面信标台时.斜距与地面距离之间的差别是很小的.其误差大约为1%.即R1.01GR——询问器与应答器之间的斜距:G——地面水平距离4.结束语VOR/DME进近作为一种非精密进近.需要机组人员进行充分的准备和默契的配合,分工明确,动作协调.严守程序.及时根据出现的情况迅速做出反应.修正偏差,以保证飞行安全.VOR/DME系统可用于飞机定位.等待飞行,引导飞机进场,着陆,航路间隔.避开保护空域及地速计算等熟悉VOR/DME地面设备组成.机载设备使用.工作原理及主要性能参数等知识是掌握VOR/DME 进近方法的基础.【参考文献】[1]莫能逊,空中领航学(上),中国民航飞行学院,1994.[2]中国民航飞行学院,TB一20飞行员训练教材,广汉,1995,1[3]航空电子设备,中国民航飞行学院,1998,6.(上接第10页)体地位,充分给予学生学习自由的同时,根据"任务"的不同,在教学过程中.给予必要的演示和指导.及时指导,帮助学生克服困难.在指导时,注意"度"的把握,多用启发式,引导式的方法.让学生有充分思考的空间.而后找到途径.完成"任务".依据学生能力的差异,不同层次的学生可分派难易不同,更具针对性的"任务".例如,在服装面料设计一课中.可先让学生欣赏一些电脑设计的服装面料.通过好奇心促使学生积极,主动地进行练习.实践表明,通过此法教学.学生一改"让我学"为"我要学"的学习态度.学习的主动性,积极性大为提高.教学效果显着(4)在指导学生完成"任务"时,关注学生的情感,心理等"非智力因素",多使用鼓励性,表扬性,启发性的语言评价,激励学生,尤其是对一些暂时学习有困难的学生,更应该随时寻找,捕捉他们的闪光点, 肯定他们的点滴进步,帮助他们竖立自信心.教师调节学生的情感.把学生学习动机的确立,情感的熏陶,意志的锻炼,兴趣的培养和性格的优化寓于教学中.帮助学生处于最佳的学习状态中.让所有学生都能在原有基础上有所进步.最大限度地提升任务驱动教学的效果. (5)实施任务驱动教学法旨在通过"任务驱动",使学生不仅能掌握知识点,更重要的是在自学能力,实践创新能力等方面获得锻炼.创新是社会发展的动力.创新能力的培养是教育的核心在"服装CAD"教学中.激发学生的创新意识.培养学生的创新思维.提高学生的创新能力.是服装专业教师义不容辞的职责.因此,在设计"任务" 时,特别是服装款式设计,服装效果图绘制,服装配件设计等,可对表现技法,格式等不作统一的要求,而是设置几种常见的风格,让学生结合自身的审美情趣和艺术素养,进行大胆地设计.而作为评价的标准, 也应相应地在"像不像"这种一元化的指标中.加入"美不美","新不新"等其他指标(6)每次教学完成后,教师应不断归纳,总结,反思在实施任务驱动教学法过程中遇到的各种问题.加以调整,完善,以期在后续教学中有所突破.4.结束语任务驱动教学法通过营造逼真的工作情境.使学生置身其中.激发其学习兴趣.再将"服装CAD"的教学内容巧妙地隐含于任务之中.在教师的指导下.以任务驱动学生进行自主学习.使学生在完成任务的过程中.不仅初步掌握了利用计算机进行服装设计的基本技能.又养成了独立思考的习惯.锻炼了实践创新的能力.提高了解决问题的综合能力, 有利于解决当前"服装CAD"教学面临的问题,改善教学质量.●【参考文献】[11黄宗艾"腚寝CAD应用'课程教学方法寸田.纺织教育,2011,26(3):213-216. [2]李艳梅月装CAD课程的实例教学法探讨『J1.纺织教育,2010,25(6):70—72. 『31周丽宏.任务驱动教学法在《服装结构设计》课程教学中的运用fJ1.职业教育研究,2010,(3):86—88.[4]李德义,刘华.任务驱动教学法在《纺织品检测技术》教学中的应用叨.山东纺织经济.2010,(7):67—68.。

VOR

VOR

甚高频全向信标(VOR)系统原理概述及维护2011-09-17 18:00:41| 分类:技术交流|字号订阅VOR(VHF Omnidirectional Range)是一种相位比较测向近程导航系统。

机载设备通过接收地面VOR导航台发射的甚高频电波,可直接测量从飞机所在位置的磁北方向到地面导航台的方位(VOR方位)以进一步确定飞机相对于所选航道的偏离状态。

被ICAO(国际民航组织)所采用,1949年起成为国际标准航线的无线电导航设备用作航路导航?也用作非精密进近引导。

下面讲述两个概念:VOR方位:飞机所在位置的磁北方向顺时针测量到飞机与VOR台连线之间的夹角?是以飞机为基准来观察VOR台在地理上的方位。

飞机磁方位:从VOR台的磁北方向顺时针测量到VOR台与飞机连线之间的夹角?是以VOR台为基准来观察飞机相对VOR台的磁方位。

工作频率高?108M~118MHz),因此受静电干扰小,指示较稳定。

但作用距离受视距离的影响,与飞行高度有关。

地面导航台站的场地要求较高?如果地形起伏较大或有大型建筑物位于附近?则由于反射波的干涉,将引起较大的方位误差。

与同样是测向导航导航设备的ADF相比,VOR具有以下特点:ADF采用地面无方向性天线发射,机上采用方向性天线接收的方法测向,VOR 则采用地面导航台用方向性天线发射,机上采用无方向性天线接收的方法测向。

可以直接提供飞机的方位角,相对于地面导航台?而无需航向基准,且测向精度高于ADF。

VOR的主要功能1. 对飞机进行定位。

VOR机载设备测出从两个已知的VOR台到飞机的磁方位角,便可得到两条位置线?根据位置线相交定位原理即可确定飞机的地理位置。

VOR台通常和测距台(DME)安装在一起(利用VOR测量飞机磁方位角,利用DME测量飞机到VOR/DME台的距离)也可确定飞机的地理位置。

2.沿选定的航路导航。

飞机沿预选的航道飞向或飞离VOR台,通过航道偏离指示指出飞机偏离预选航道的方向和角度,以引导飞机沿预选航道飞往目的地。

浅谈甚高频全向信标(VOR)系统

浅谈甚高频全向信标(VOR)系统

浅谈甚高频全向信标(VOR)系统关键词甚高频全向信标导航摘要甚高频全向信标(VOR)是现代航空无线电测向的一种地面导航设备,被广泛应用于短距及中距制导。

多普勒甚高频全方位信标(DVOR)是常规VOR的进一步发展。

它利用多普勒效应及宽孔径天线系统从而使它能产生更加精密得多的方位角信号。

本文通过对甚高频全向信标原理介绍,使我们能够对其有一个初步的了解。

一、甚高频全向信标系统概念VOR(甚高频全向信标测距)是一种用于航空的无线电导航系统,由美国从20世纪20年代的“旋转信标”发展而来,1946年作为美国航空标准系统,1949年被ICAO采纳为国际标准导航系统。

其工作频段为108.00 兆赫- 117.95 兆赫的甚高频段,并且在全球范围内作为中短距离航空器引导方式的无线电导航设备。

这一设备可以进行远程控制和远程监视。

DVOR导航设备是传统VOR设备的改进。

通过利用多普勒效应和宽幅度天线,它可以提供相对来说更加精确的方位角信息。

DVOR导航系统一般应用于地理条件恶劣的地区。

VOR系统的运行的理论基础是测量地面站发射的2个30Hz的信号的相位偏移。

一个信号(参考信号)在所有方向上的相位都相同。

而对于第2个30Hz的信号(变化信号)来说,它与参考信号之间的相位偏移就是与方位角相关的函数。

机载的接收机通过测量两个信号之间的相位偏移就可以计算得到方位角。

DVOR系统可以和DME(Distance Measuring Equipment)系统联合使用形成DVOR/ DME台站。

这样飞行器就可以通过单个DVOR/DME台站的位置来判定自身的位置。

DVOR设备可以安装在10英尺高的建筑内。

DVOR天线系统则安装在地网上,其高度依据实际情况而定。

二、VOR/DVOR信号的产生VOR台产生的射频信号由2个30Hz的正弦波调制。

这两个30Hz的信号之间有确定的相位关系,与从什么方向接收到此信号有关。

相位关系反映了地面台站的正北方向和飞行器方向相对于地面台站之间的夹角(方向角)。

浅述VOR飞行仪表在飞行过程中具体使用方法以及VOR在导航中的作用

浅述VOR飞行仪表在飞行过程中具体使用方法以及VOR在导航中的作用

浅述 VOR飞行仪表在飞行过程中具体使用方法以及 VOR在导航中的作用摘要:本文通过对导航VOR设备在民航中功能和工作方式的基本介绍,结合飞机仪表系统重点分析飞机VOR在民航中的实际应用过程。

关键词:导航;甚高频全向信标;民航;飞机仪表系统;应用。

1.引言甚高频全向信标(VOR)是目前民用航空最为普及的导航系统,全世界设有相当完善的VOR台网,构成飞行员可信赖的导航设施。

VOR在民航中主要任务是为飞机定位、导航,为飞机整个飞行过程提供保障。

分析飞机飞行过程中飞机如何运用VOR实施定位、导航至关重要。

2.VOR在导航中的基本功能甚高频全向信标(VOR)的基本功用是为机载VOR接收机提供一个复杂的无线电信号,经机载VOR接收机解调后,测出地面VOR台相对于飞机的磁方位--VOR 方位。

所谓VOR方位,实际上是以飞机所在位置的磁方位为基准,顺时针转至飞机与地面VOR信标台之间连线的夹角,并直接显示在飞机上的无线电磁指示器上(RMI)。

如果驾驶员调定某预选航道,在飞机的水平状态指示器(HIS)上还可以显示出此时飞机偏离预选航道的情况及飞机是向台还是背台飞行。

这些信息还可提供给飞机的自动飞行控制等其它系统使用。

(1)定位①. (角一角)定位法使用飞机上的两套VOR接收机,分别接收覆盖范围内的两个地面VOR信标的信号,测得VOR信标台相对于飞机的两条方位位置线,其交点即为飞机的位置,这种方法称为 (角一角)系统。

主要缺点是,飞机离导航台距离越远,由测向误差导致的飞机位置误差将迅速增大。

②. (极坐标)定位法使用一套VOR接收机和一套DME机载设备分别测得对地面信标台的方位位置线和距离位置线的交点,便可确定飞机的位置,这种方法称为( (极坐标)系统定位方法。

这种定位方式是通过飞机接受同台址的测距机和测向机的信号来实现的,对于民用航空而言,同台址的测距机和测向机一般通过DME和VOR同址安装来实现,军用航空为TACAN信标同址提供测距和测向。

vortac航空术语

vortac航空术语

vortac航空术语摘要:一、前言二、VOR 介绍1.VOR 的定义2.VOR 的发展历程3.VOR 系统的基本组成三、VORTAC 航空术语1.VORTAC 的定义2.VORTAC 的作用3.VORTAC 航空术语的分类四、VORTAC 航空术语的应用1.在导航中的应用2.在通信中的应用3.在飞行操作中的应用五、VORTAC 航空术语的重要性六、结论正文:一、前言VORTAC 航空术语是航空领域中一个重要的术语,它涉及到导航、通信和飞行操作等多个方面。

了解这些术语对于飞行员和航空从业人员来说至关重要。

本文将详细介绍VORTAC 航空术语的相关知识。

二、VOR 介绍VOR,全称为VHF Omnidirectional Range,中文名为甚高频全向信标,是一种用于导航的无线电设备。

它通过发送无线电信号,为飞行员提供飞行方向和距离信息。

VOR 的发展历程可以追溯到20 世纪40 年代,经过多年的发展和完善,已经成为航空导航的主要手段之一。

VOR 系统的基本组成包括:发射机、天线、接收机和指示器。

三、VORTAC 航空术语1.VORTAC 的定义VORTAC,全称为VHF Omnidirectional Range and Terminal Area Correction,中文名为甚高频全向信标和终端区修正,是一种结合了VOR 和TACAN(终端区导航设备)的导航设备。

2.VORTAC 的作用VORTAC 主要用于提供精确的空中导航信息,包括航向、距离和高度等。

此外,VORTAC 还可以接收并处理来自地面导航设备的修正数据,提高导航精度。

3.VORTAC 航空术语的分类VORTAC 航空术语主要分为导航术语、通信术语和飞行操作术语。

这些术语在飞行员和航空从业人员的工作中起着关键作用。

四、VORTAC 航空术语的应用1.在导航中的应用VORTAC 航空术语在导航中的应用主要包括:航道、距离、方位等。

这些术语帮助飞行员准确掌握飞机的位置和飞行方向。

MHT 4006.2-1998 航空无线电导航设备 第2部分 甚高频全向信标(VOR)技术要求

MHT 4006.2-1998 航空无线电导航设备 第2部分 甚高频全向信标(VOR)技术要求

MH/T4006.2-1998航空无线电导航设备第2部分;甚高频全向信标(VOR)技术要求1 范围本标准规定了民用航空甚高频全向信标设备的通用技术要求,它是民用航空甚高频全向信标制定规划和更新、设计、制造、检验以及运行的依据。

本标准适用于民用航空行业各类甚高频全向信标设备。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的条方应探讨使用下列要求最新的版本的可能性。

GB6364-86 航空无线电导航台站电磁环境要求MH/T4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范中国民用航空通信导航设备运行维护规程(1985年10月版)国际民用航空公约附件十航空电信(第一卷)(第4版 1985年4月)国际民航组织8071文件无线电导航设备测试手册(第3册 1972年)3 定义本标准采用下列定义。

3.1 甚高全向信标very high frequency omnidirectional range (VOR)一种工作于甚高频波段,提供装有相应设备的航空器相对于该地面设备磁方位信息的导航设备。

3.2 多普勒甚高频全向信标 doppler VOR(DVOR)利用多普勒原理而产生方位信息的甚高频全向信标。

3.3 基准相位 reference phase甚高频全向信标辐射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角无关。

3.4 可变相位 variable phase甚高频全向信标辐,射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角有关,在同一时刻的不同方位上,该调制信号的相位不同。

4 一般技术要求4.1 用途甚高频全向信标是国际民航组织规定的近程导航设备,它提供航空器相对于地面甚高频全向信标台的磁方位。

具体作用如下:a)利用机场范围内的甚高频全向信标,保障飞机的进出港;b)利用两个甚高频全向信标台,可以实现直线位置线定位;c)利用航路上的甚高频全向信标,保证飞机沿航路飞行(甚高频全向信标常和测距仪配合使用,形成极坐标定位系统,直接为民航飞机定位);d)甚高频全向信标还可以作为仪表着陆系统的辅助设备,保障飞机安全着陆。

航空无线电系统简介

航空无线电系统简介

VOR接收机维修所需测试设备
1) 无线电通信监视器(CMS 57) 2) 相对应的专用测试设备 3) ARINC 429收发器(T1200)
2.测距机(DME)
DME系统一般组成:测距机,天线,显示器和控制 盒等.工作于超高频波段,通过接收和发送无线 电脉冲对而提供装有相应设备的航空器至该地 面设备连续而准确斜距的导航设备。机载 DME发射信号给地面台站上的DME,并接收 地面DME应答回来的信号,测量发射信号与 应答信号的时间差,取时间差的一半,就可计 算出飞机与地面台站的直线距离。
(2)勤务内话系统:
是指在飞机上各个服务站位,包括驾驶舱、客 舱、乘务员、地面服务维修人员站位上安装的话 筒或插孔组成的通话系统,机组人员之间和机组 与地面服务人员之间利用它进行联络,如地面维 护服务站位一般是安装在前起落架上方,地面人 员将话筒接头插入插孔就可进行通话。
(3)客舱广播及娱乐内话系统:
每25KHZ为一个频道,可设置720 个频道由飞机和地面控制台选用.
频率具体分配为:
**118.000~121.400MHZ 123.675~128.800MHZ 132.025~135.975MHZ
以上三个频段主要用于空中交通管制人员 与飞机驾驶员间的通话,其中主要集中在 118.000~121.400MHZ;
B747
4.音频综合系统(AIS)
包括飞机内部的通话系统,如机组人员之间的通话 系统,对旅客的广播和电视等娱乐设施以及飞机在 地面时机组和地面维护人员之间的通话系统。
它分为飞行内话系统、勤务内话系统、客舱广播及 娱乐系统、呼唤系统。
(l)飞行内话系统:
主要功能是使驾驶员使用音频选择盒,把话筒 连接到所选择的通信系统,向外发射信号,同 时使这个系统的音频信号输入驾驶员的耳机或 扬声器中,也可以用这个系统选择收听从各种 导航设备来的音频信号或利用相连的线路进行 机组成员之间的通话。

MHT 4006.2-1998 航空无线电导航设备 第2部分 甚高频全向信标(VOR)技术要求

MHT 4006.2-1998 航空无线电导航设备 第2部分 甚高频全向信标(VOR)技术要求

MH/T4006.2-1998航空无线电导航设备第2部分;甚高频全向信标(VOR)技术要求1 范围本标准规定了民用航空甚高频全向信标设备的通用技术要求,它是民用航空甚高频全向信标制定规划和更新、设计、制造、检验以及运行的依据。

本标准适用于民用航空行业各类甚高频全向信标设备。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的条方应探讨使用下列要求最新的版本的可能性。

GB6364-86 航空无线电导航台站电磁环境要求MH/T4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范中国民用航空通信导航设备运行维护规程(1985年10月版)国际民用航空公约附件十航空电信(第一卷)(第4版 1985年4月)国际民航组织8071文件无线电导航设备测试手册(第3册 1972年)3 定义本标准采用下列定义。

3.1 甚高全向信标very high frequency omnidirectional range (VOR)一种工作于甚高频波段,提供装有相应设备的航空器相对于该地面设备磁方位信息的导航设备。

3.2 多普勒甚高频全向信标 doppler VOR(DVOR)利用多普勒原理而产生方位信息的甚高频全向信标。

3.3 基准相位 reference phase甚高频全向信标辐射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角无关。

3.4 可变相位 variable phase甚高频全向信标辐,射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角有关,在同一时刻的不同方位上,该调制信号的相位不同。

4 一般技术要求4.1 用途甚高频全向信标是国际民航组织规定的近程导航设备,它提供航空器相对于地面甚高频全向信标台的磁方位。

具体作用如下:a)利用机场范围内的甚高频全向信标,保障飞机的进出港;b)利用两个甚高频全向信标台,可以实现直线位置线定位;c)利用航路上的甚高频全向信标,保证飞机沿航路飞行(甚高频全向信标常和测距仪配合使用,形成极坐标定位系统,直接为民航飞机定位);d)甚高频全向信标还可以作为仪表着陆系统的辅助设备,保障飞机安全着陆。

甚高频全向信标(VOR)导航基础

甚高频全向信标(VOR)导航基础

甚高频全向信标(VOR)导航教程--不适用于真实飞行教学机型:C172-基本型仪表使用机模:A2A-Cessna172一.关于VOR对于非紧密进近,VOR算是比较普及的一种,导航中常常也会用到VOR导航,许多飞友对各种机型已经非常熟悉了,但是对于VOR导航还是非常头疼的一件事。

1.简介(该段取自百度百科)Very High Frequency Omnidirectional Radio Range是一种用于航空的无线电导航系统。

其工作频段为108.00 兆赫- 117.95 兆赫的甚高频段,故此得名。

VOR是以地面设施上放射出30Hz回转的心型图形后,撘载受讯机会输出30Hz之讯号。

另外,地面设施也会发送出不含方位数据,由基准30Hz讯号变调而成的无向性讯号。

两个30Hz之间之向位差就成为地面上之磁方位。

使用VHF的VOR虽然容易因为地面发送设施附近之地形影响而产生误差,但是由于不受空间波的妨碍而没有传送特性之变动。

地面设施的基地误差是VOR的缺点。

一般来说,在地面发送讯号站半径五百公尺以内没有树木,没有大型反射建筑物的平滑地面,通常是设置VOR基地之地点,但是,由于预定场所通常不得已会选在非良好条件的地方,这时候就可以设置多普勒VOR(D-VOR)。

D-VOR乃利用广开口面天线使误差减小,在其半径6.7公尺的圆周上等间隔地设置50基Alford环型天线,然后在一圆中心设置传统型VOR(Conventional VOR)的天线。

中心天线乃无指向性的放射以30Hz进行振幅调变后所得之连续波,此讯号是方位的基本讯号,至于圆周上配列的Alford环型天线,则由中心所放射的讯号周波数,顺次传送9960Hz高连续波过去。

VOR系统于1949年被国际民航组织批准为国际标准的无线电导航设备,是目前广泛使用的陆基近程测角系统之一。

VOR台的发射机有两种形式即普通VOR(CVOR)和多普勒VOR(DVOR)。

机载VOR接收机对两种VOR台都是兼容的。

自动定向机(ADF)与多普勒甚高频全向信标(VOR)的导航原理分析

自动定向机(ADF)与多普勒甚高频全向信标(VOR)的导航原理分析

⾃动定向机(ADF)与多普勒甚⾼频全向信标(VOR)的导航原理分析导航原理与系统技术报告技术报告题⽬:⾃动定向机(ADF)与多普勒甚⾼频全向信标(VOR)的导航原理分析班级:姓名:学号:指导⽼师:⽬录摘要 (3)ADF/NDB导航系统概述 (4)⼀、ADF系统概述 (4)⼆、ADF/NDB系统组成 (5)(⼀)地⾯发射台 (5)(⼆)机载设备 (5)三、机载设备组成及控制显⽰ (6)(⼀)机载ADF的类型 (6)(⼆)ADF机载设备构成 (6)四、ADF/NDB⼯作原理 (7)(⼀)NDB⼯作原理 (7)(⼆)ADF⼯作原理 (8)1.天线定位 (8)2.测⾓器 (9)3.⽆线电磁指⽰器RMI (9)五、ADF/NDB系统⼩结 (10)(⼀)定向误差 (10)(⼆)特点 (10)(三)缺点 (10)VOR导航系统概述 (11)⼀、VOR系统概述 (11)⼆、VOR系统组成 (12)(⼀)地⾯发射台 (12)1.VOR导航台 (12)2.DME测距仪 (13)(⼆)机载设备 (13)1.VOR控制盒 (13)2.天线 (13)3.接收机 (14)4.指⽰仪表 (14)三、VOR⼯作原理 (15)(⼀)VOR台⼯作原理 (15)(⼆)VOR导航原理 (15)四、VOR系统⼩结 (16)(⼀)定向误差 (17)(⼆)特点 (17)(三)缺点 (17)ADF与VOR导航系统对⽐ (17)⼀、相同点对⽐ (17)⼆、不同点对⽐ (18)三、总结 (18)摘要民⽤航空的基础是导航技术。

对于航空运输系统来说,导航的基本作⽤就是:引导飞机安全准确地沿选定路线、准时到达⽬的地,为空域提供基准,确定空域、航线的关键位置点。

航空导航应⽤的安全性要求⾼,需达到精准导航的要求,空中交通管理可称为航空导航的最⾼端应⽤。

空管的发展推动着航空导航新技术和装备的研发,⽽航空导航技术也不断地满⾜空管的发展需求,从⽽促进了世界民⽤航空事业的发展。

甚高频全向信标(VOR)系统

甚高频全向信标(VOR)系统

浅谈甚高频全向信标(VOR)系统摘要甚高频全向信标(vor)是现代航空无线电测向的一种地面导航设备,被广泛应用于短距及中距制导。

多普勒甚高频全方位信标(dvor)是常规vor的进一步发展。

它利用多普勒效应及宽孔径天线系统从而使它能产生更加精密得多的方位角信号。

本文通过对甚高频全向信标原理介绍,使我们能够对其有一个初步的了解。

关键词甚高频全向信标导航【中图分类号】f764.6一、甚高频全向信标系统概念vor(甚高频全向信标测距)是一种用于航空的无线电导航系统,由美国从20世纪20年代的“旋转信标”发展而来,1946年作为美国航空标准系统,1949年被icao采纳为国际标准导航系统。

其工作频段为108.00 兆赫- 117.95 兆赫的甚高频段,并且在全球范围内作为中短距离航空器引导方式的无线电导航设备。

这一设备可以进行远程控制和远程监视。

dvor导航设备是传统vor设备的改进。

通过利用多普勒效应和宽幅度天线,它可以提供相对来说更加精确的方位角信息。

dvor导航系统一般应用于地理条件恶劣的地区。

vor系统的运行的理论基础是测量地面站发射的2个30hz的信号的相位偏移。

一个信号(参考信号)在所有方向上的相位都相同。

而对于第2个30hz的信号(变化信号)来说,它与参考信号之间的相位偏移就是与方位角相关的函数。

机载的接收机通过测量两个信号之间的相位偏移就可以计算得到方位角。

dvor系统可以和dme(distance measuring equipment)系统联合使用形成dvor/dme台站。

这样飞行器就可以通过单个dvor/dme 台站的位置来判定自身的位置。

dvor设备可以安装在10英尺高的建筑内。

dvor天线系统则安装在地网上,其高度依据实际情况而定。

二、vor/dvor信号的产生vor台产生的射频信号由2个30hz的正弦波调制。

这两个30hz 的信号之间有确定的相位关系,与从什么方向接收到此信号有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MH/T4006.2-1998航空无线电导航设备第2部分;甚高频全向信标(VOR)技术要求1 范围本标准规定了民用航空甚高频全向信标设备的通用技术要求,它是民用航空甚高频全向信标制定规划和更新、设计、制造、检验以及运行的依据。

本标准适用于民用航空行业各类甚高频全向信标设备。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的条方应探讨使用下列要求最新的版本的可能性。

GB6364-86 航空无线电导航台站电磁环境要求MH/T4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范中国民用航空通信导航设备运行维护规程(1985年10月版)国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月)国际民航组织8071文件无线电导航设备测试手册(第3册1972年)3 定义本标准采用下列定义。

3.1 甚高全向信标very high frequency omnidirectional range (VOR)一种工作于甚高频波段,提供装有相应设备的航空器相对于该地面设备磁方位信息的导航设备。

3.2 多普勒甚高频全向信标doppler VOR(DVOR)利用多普勒原理而产生方位信息的甚高频全向信标。

3.3 基准相位reference phase甚高频全向信标辐射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角无关。

3.4 可变相位variable phase甚高频全向信标辐,射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角有关,在同一时刻的不同方位上,该调制信号的相位不同。

4 一般技术要求4.1 用途甚高频全向信标是国际民航组织规定的近程导航设备,它提供航空器相对于地面甚高频全向信标台的磁方位。

具体作用如下:a)利用机场范围内的甚高频全向信标,保障飞机的进出港;b)利用两个甚高频全向信标台,可以实现直线位置线定位;c)利用航路上的甚高频全向信标,保证飞机沿航路飞行(甚高频全向信标常和测距仪配合使用,形成极坐标定位系统,直接为民航飞机定位);d)甚高频全向信标还可以作为仪表着陆系统的辅助设备,保障飞机安全着陆。

4.2 组成甚高频全向信标设备组成如下:a)发射机系统;b)监视系统;c)控制和交换系统;d)天线系统;e)电源系统;f)遥控和状态显示系统4.3 分类甚高频全向信标分为多普勒甚高频全向信标(DVOR)和常规甚高频全向信标(Conventional VOR)二种,对航空器接收机来讲,两者是兼容的。

4.4 台址甚高频全向信标设置于机场、机场进出点和航路(航线)上的某一地点。

甚高频全向信标设置于机场终端时,通常设置在跑道的一侧,也可以设置在跑道中心线延长线上,应符合机场净空要求。

设置在航路时,应设置在航路中心线上,通常设置在航路的转弯点或机场进出点。

4.5 系统要求系统要求如下:a)设备的技术标准应符合《国际民用航空公约》附件十、《航空电信》(第一卷)(第四版1985年4月)规范;b)甚高频全向信标台址周围的电磁环境应符合GB6364的规定;c)甚高频全向信标台址的设置和周围障碍物环境应符合MH/T4003的规定;d)设备应采用全固态器件和双机配置(天线系统除外),在交流电源供电时,设备应能不间断连续工作;e)设备各部分的接地应可靠,接地系统应符合设备厂家以及国家和行业的技术要求。

5 技术性能5.1 方位5.1.1 甚高频全向信标应设计在调整得使航空器上的仪表指示表示从甚高频全向信标处测得的相对于磁北的顺时针方向计算的角位移(方位)。

5.1.2 甚高频全向信标应辐射带有两个独立的30Hz调制的射频载波,其中一个调制的相位应与观察点的方位角无关(基准相位),另一个调制的相位在观察点处应与基准相位不同(可变相位),两个相位相差的角度即等于观察点相对于甚高频全向信标的方位。

5.1.3 基准相位和可变相位的甚高频全向信标台的磁北方向上应为同相。

5.2 射频5.2.1 射频载波的频段为:108MHz~117.975MHz。

5.2.2 射频载波的频率容差≤±0.002%。

5.3 极化和场型准确度5.3.1 甚高频全向信标的辐射应为水平极化波。

辐射的垂极化成分应尽可能地小。

5.3.2 以甚高频全向信标天线系统为中心,在00~400仰角范围内,在大约4个波长的距离上,由甚高频全向信标辐射的水平极化波传播的方位信息准确度应在±20以内。

5.4 覆盖甚高频全向信标提供的信号应在400仰角以下,使一部标准的机载设备能在飞行区域所要求的高度和距离上满意地工作。

在服务区域内,甚高频全向信标空间信号场强或功率密度应为90μV/m或-107dBW/m2。

5.5 导航信号的调制5.5.1 在空间任何点上观察,射频载波应由9960Hz副载波和30Hz两个信号调幅。

5.5.1.1 9960Hz副载波调幅等幅的9960Hz副载波,由30Hz调频,调频谐数为16±1(即15~17);a)对于常规甚高频全向信标调频副载波的30Hz成分的相位是固定的,与方位无关,称为“基准相位”;b)对于多普勒甚高频全向信标,30Hz成分的相位方位变化,称为“可变相位;。

5.5.1.2 30Hz调幅30Hz调幅成分:a)对于常规甚高频全向信标,该成分是由一旋转场型形成,其相位随方位变化,称为“可变相位”;b)对于多普勒甚高频全向信标,该成分在各方位上的相位不变且为等幅,全方向性发射,称为“基准相位”。

5.5.2 9960Hz副载波对射频载波的调制度应在28%~32%以内。

5.5.3 30Hz或9960Hz信号对射频载波的调制度,在50以下任何仰解上观察,都应在28%~32%以内。

5.5.4 可变相位信号和基准相位信号的调制频率应为30Hz±1%以内。

5.5.5 副载波频调制信号的中心频率应为9960Hz±1%以内。

5.5.6 对于常规甚高频全向信标,9960Hz副载波的调幅百分比不应超过5%;对于多普勒甚高频全向信标,9960Hz副载波的调幅百分比,在离甚高频全向信标至少300m(1000ft)处的地点上测量,不应超过40%。

5.5.7 辐射信号中9960Hz成分的谐波边带电平不应超过9960Hz边带电平为基准的下列电平,见表1。

5.6 话音和识别5.6.1 其高频全向信标应能提供一地空话音通信波道,与导航功能在同一射频载波上工作。

该波道的辐射应为水平极化波。

5.6.2 在通信波道上载波的最大调制度不应大于30%。

5.6.3 话音通信波道音频特性,在300Hz~3000Hz范围内相对于1000Hz的电平应在3dB以内。

5.6.4 在甚高频全向信标射频载波上应同时发送一个识别信号,识别信号的辐射应为不平极化波。

5.6.5 识别信号应采用国际莫尔斯电码,通常由3个英文字母组成码组。

发送速率应为每分钟大约7个字,应每30s等间隔地发送1次~3次,其调制单音应为1020Hz~50Hz。

5.6.6 编码的识别信号对射频载波的调制度应接近但不应超过10%。

如不提供通信波道,允许编码识别信号的调制度增加到不超过20%。

5.6.7 如果其高频全向信标同时提供地空话音通信,编码识别信号的调制度应为5%±1%,以便提供满意的话音质量。

5.6.8 话音的发送在任何方面不应干扰基本导航功能。

当发送话音时,编码识别信号不应被抑制。

5.7 监控5.7.1 监控天线应为设备的监控器工作提供信号,当从规定状态发生下列偏差的任何一种或全部时,监控器应向控制单元和遥控器发出告警,并从载波中去掉信号和导航成分,或者停止发射:a)在监控天线处甚高频全向信标发射的方位信息的变化超过10;b)在监控天线处副载波或者30Hz调幅信号,或两者的射频信号电压的调制成分减小15%;c)监控器本射失效时,应向控制单元和遥控器发出告警,同时去掉载波中的识别和导航成分;d)停止辐射。

5.8 发射制式设备应采用双边带发射制式。

5.9 系统可靠性甚高频全向信标系统平均无故障时间应大于5000h。

6 发射机系统6.1载波发射机载波发射机要求如下:a)射频频率范围;108MHz~117.975MHz;b)射频频率容差≤±0.002%;c)波道间隔:50kHz;d)频率控制:晶体控制或频率合成;e)射频输出功率:50W或100W;f)射频输出功率可调范围:-3dB;g)射频输出功率稳定度±0.5dB;h)射频输出阻抗50Ω.6.2 载波调制载波调制要求如下:a)30Hz基准相位信号调制度:30Hz±2%;b)识别码信号调制度:5%~20%;c)话音信号调制度:10%~30%。

6.3 载波调制频率载波调制频率要求如下:a)30Hz基准相位信号30Hz±1%;b)识别码信号:1020Hz±50Hz;c)识别码;国际摩尔斯电码,通常由3个英文字母组成;d)键控速率;每分钟大约7个字;e)重复率;每分钟6次;f)甚高频全向信标的识别信号与合装的测距仪的识别信号应有3:1的同步控制;g)话音信号3dB频带宽度;300Hz~3000Hz;h)话音信号噪声电平:比调制度为10%的识别信号电平低-15dBm。

6.4 边带发射机边带发射机要求如下:a)与载波射频的差频:上边带:+9960Hz±1%;下边带;-9960Hz±1%b)边带输出功率:从0起连续可调,以达到空间调制深度30%为准;上、下边带功率应可以分别调整;c)输出功率稳定性±0.5dB;d)载波抑制≥60dBe)上/下边带抑制≥50dB;f)载波/边带输出功率相对变化量:≤±0.2dB;g)上/下边带输出功率相对变化量:≤±0.2dB;h)载波/边带射频相位相对变化量:≤±20;i)载波/边带射频相位连续可调范围:00~100;j)9960Hz谐波电平应符合5.5.7的要求;k)边带输出阻抗:50Ω。

6.5 边带调制边带信号调制度:100%。

7 监视系统7.1 在以下任一情况发生时,监视系统应具有相应的告警指示,并向控制和交换系统发出告警信号,以产生换机或关机等动作;a)方位准确度变化超过10;b)30Hz基准相位信号电平下降超过15%;c)副载波9960Hz信号电平下降超过15%;d)射频输出功率下降超过20%;e)识别信号丢失或连续f)边带辐射两个轴对称天线故障(多普勒甚高频全向信标)g)监视系统自身故障。

7.2 上述7.1a)、b)、c)三个主要参数的告警门限应可调。

7.3 设备工作时和调整时各主要参数应可由数字或模拟方式指示。

7.4 告警信号可以自动存储和人工旁路。

相关文档
最新文档