板坯连铸粘结漏钢的特点与分析
板坯连铸机漏钢原因分析及控制措施

板坯连铸机漏钢原因分析及控制措施1.操作不当:操作人员操作不规范或经验不足,如操作时间过长、操作不准确等,容易导致板坯连铸机漏钢。
为了避免操作不当导致漏钢,应加强操作人员培训,提高他们的技术水平和操作经验,严格遵循操作规程,并进行必要的考核和监督。
2.连铸结晶器破损:连铸结晶器是冷却板坯的关键部件,如果结晶器破损,冷却水可能会直接进入铸坯中,导致漏钢。
为了避免这种情况,应定期对结晶器进行检查和维修,及时发现并更换破损的部件。
3.气孔:气孔是指铸坯内部存在的空隙,通常由于钢水中的氢气无法完全逸出而形成。
气孔会影响铸坯的质量,导致漏钢。
为了减少气孔,可以采取以下措施:(1)控制钢水的合金成分,控制钢水中的氢含量。
(2)在铸造过程中加入除氧剂,提高钢水中的溶解氧含量,减少气体生成。
(3)合理设计结晶器,使气泡易于从铸坯中升出。
4.结晶器堵塞:连铸结晶器内部可能会堵塞,导致冷却水无法均匀地冷却铸坯,造成漏钢。
为了避免结晶器堵塞,应定期对结晶器进行清洗和维修,保证结晶器内部的冷却水流通畅。
5.铸坯温度过高:铸坯温度过高会导致铸坯内部产生过多的气体,增加气孔的形成,从而引起漏钢。
为了控制铸坯温度,可以在连铸过程中控制冷却水的流量和温度,以达到合理的冷却效果;同时,在连铸过程中加强温度监控,及时调整连铸速度和冷却水的冷却效果。
6.铸模破损:铸模破损会导致铸坯内部形成孔洞和裂缝,导致漏钢。
为了避免铸模破损,应定期进行铸模的检查和维修,及时更换破损的部件。
7.其他原因:除了以上几点外,板坯连铸机漏钢还可能受到其他因素的影响,如连铸设备的老化、设备维护不当等。
为了确保连铸机的正常运行和减少漏钢,应加强设备的维护保养,定期进行设备的检修和更换关键部件。
综上所述,要控制板坯连铸机漏钢,需要从操作规范、设备维护、冷却控制等多个方面着手,以保证连铸过程的正常进行和铸坯质量的提高。
只有在整个生产过程中严格按照操作规程进行操作,定期维护检修设备,并加强钢水质量控制,才能有效控制和减少板坯连铸机漏钢的发生。
板坯连铸机粘结漏钢的原因分析及解决措施

漏 钢是连铸生产的严重事故。在现代化 的钢铁联
板坯 连 铸发 生粘 结 漏 钢 的原 因进 行 分 析 , 找 出保 护 渣及 凝 固坯壳 与 结 晶器 间的作 用力 对粘 结 的影 响规 律, 为连 铸安 全生 产 提供理 论依 据 。
张 勇
( 昆明理 工大 学 冶金 与能 源学 院 , 云南 昆 明 6 5 0 0 9 3 )
摘 要 为 了减 少 大 板 坯 连 铸 机 粘 结 及 粘 结 漏 钢 的 发 生 , 对结 晶器保 护渣 的消耗 量 、 保 护 渣 液 渣 层 厚 度 及 粘 结 的
受 力 机 理 进 行 了研 究 和 分 析 , 认 为保 护 渣 消 耗 量 低 及 保 护 渣 液 渣 层 厚 度 不 够 时 容 易 产 生 粘 结 和 粘 结 漏 钢 。 通 过 采 集 现 场 的参 数 进 行 理 论计 算 并 与 实 际 生 产 值 进 行 对 比 , 结果表 明 , 保 护 渣 的消 耗 量 控 制 在 0 . 4~0 . 6 k g / m 、 保 护 渣
板坯漏钢概述

3)结晶器表面结冷钢(即结壳)造成的漏钢 当低拉速时间长或流场不好时,结晶器内 向上流股小,液面钢水不活跃,保护渣吸收热量 少,故熔渣层薄,钢液散热快;又因钢水在结晶 器内停留时间长,冷却强度大,结晶器的四个角 部或浸入式水口附近,会出现局部结冷钢的现 象,当冷钢块较大时,就可能与结晶器或浸入式 水口连结在一起,致使铸坯向下拉,坯壳被拉断 而漏钢。
板坯漏钢概述
漏钢是连铸生产中的恶性事故 , 不仅影响铸机作业率 , 降低钢水收 得率;而且会造成设备损坏,甚至是 严重损坏 , 尤其是设备较多、较复 杂、造价高的板坯连铸机 , 漏钢造 成的损失更大 , 同时也增加了工人 的劳动强度。因此在组织生产中应 千方百计的避免漏钢事故的发生 , 是降成本增效益的有效途径之一。
• 1.4合理选择第一道渣线位置。 • 浸入式水口的渣线料位于工艺预设的渣线位置, 添加了ZrO2复合材料,耐侵蚀性强,将渣线控制 在渣线料上并适当更换渣线侵蚀位有利于提高水 口的使用寿命,降低更换水口的频率,利于稳定 浇注。而水口的插入深度是有限制的,不能过深 或过浅;能更换出渣线侵蚀位的最短距离也是有 限制的,目前2#、3#机需30mm才能更换出渣线 侵蚀位。这就要求水口插入深度与渣线料宽度之 间形成一定的深度关系,让插入深度较浅时渣线 在预设渣线料的下部,在更换渣线侵蚀位(实际 操作时通过提升结晶器液面来实现)后,渣线在 预设渣线料的上部。这也是确定出合理插入深度 的跨度的一个重要依据。
• 1.2发生粘结漏钢的原因: • 1)结晶器保护渣Al2O3含量高、粘度大、液面 结壳等,使保护渣流动性差,不易流入坯壳与 结晶器间形成润滑渣膜。 • 2)异常情况下的高拉速。如液面波动过大时的 高拉速,中包温度过低时的高拉速。 • 3)结晶器液面波动过大,如塞棒氩气流量过大、 浸入式水口堵塞、水口偏流严重、更换钢包时 水口周围凝结严重等,都会引起液面波动。
板坯连铸机漏钢成因分析及预防措施

;: 常规板坯连铸机参数及漏钢情况
; 5 9: 常规板坯连铸机的主要工艺参数 酒钢第二炼钢常规板坯连铸机主要工艺参数见 表 8。
第 ! 期8 8 8 8 8 8 8 8 8 8 8 8 程子建: 板坯连铸机漏钢成因分析及预防措施8 8 8
表 !" !##$ % !##& 年逐月漏钢情况
项目 产量 ( +) 综合合格率 (, ) 漏钢次数 !""# 年 %月 )’ """ **- )) ’ !月 $* #’* **- ) % &月 )) %#" **- $ ! ’月 $$ ("" **- )# % (月 ** ’&# **- ) % #月 )# &!$ **- )’ % $月 )" ((’ **- *’ & )月 $% $&# **- *& " *月 #% *&* **- *& " %" 月 !* ($& **- *! " %% 月 ($ )&" **- *$ " %! 月 $$ !’) **- *) " !""$ 年 %月 #"#&) **- *) " !月 #"""" **- *( " 合计
(
% "%’ (*" **- )* %&
表 ’" 漏钢情况统计结果
次数 % ! & ’ ( # $ ) * %" %% %! %& 时间 !""#."%."! !""#."%.%" !""#."%.&" !""#."%.&" !""#."!.%! !""#."&.") !""#."&.%# !""#."’.%! !""#."(.%( !""#."#.!( !""#."$."$ !""#."$.%$ !""#."$.%) 钢种 //’"" //’"" //’"" //’"" //’"" //’"" 5!&(67 5!&(6 5!&(6 ( 改) 5!&(67 ( 改) 5!&(67 ( 改) 5!&(67 ( 改) 5!&(67 ( 改) 规格 %#" 0 (!" %#" 0 (!" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" !!" 0 (&" 炉次 换包第 ! 炉 换包第 ! 炉 换包第 ! 炉 第( 炉 第) 炉 第 %& 炉 第( 炉 第# 炉 第 %! 炉 第* 炉 第# 炉 第) 炉 第( 炉 拉速 %- ! 1 2 134 %- !& 1 2 134 %- "( 1 2 134 %- " 1 2 134 %- "( 1 2 134 %- "& 1 2 34 %- "( 1 2 134 "- $( 1 2 134 "- *( 1 2 134 %- ") 1 2 134 %- " 1 2 134 %- " 1 2 134 "- $( 1 2 134 漏钢位置 内弧距坯头 #(" 11, 中间位置 内弧出结晶器, 距坯头 )%" 11, 中间位置 内弧中部距坯头 *"" 11 处 内弧中部偏西距结晶器上口 *"" 11 处 漏钢部位位于窄右出结晶器足辊位置 内外弧距结晶器上口 % &)" 11 外弧正中部, 漏钢点距结晶器上口 )(" 11 外弧中部偏西距结晶器上口 )"" 11 处 内弧出结晶器, 距坯头 )%" 11, 中间位置 内弧出结晶器下口位置 外弧宽面下口处 漏钢位置在结晶器窄左距上口 % 1 处 外弧宽面结晶器下口中部 漏钢形式 粘结漏钢 粘结漏钢 粘结漏钢 粘结漏钢 粘结漏钢 卷渣漏钢 粘结漏钢 粘结漏钢 粘结漏钢 粘结漏钢 粘结漏钢 机械外力划破坯壳 粘结漏钢
连铸机典型漏钢的特征及成因分析

连铸机典型漏钢的特征及成因分析摘要:连铸机在运行过程中,漏钢问题属于常见问题之一,漏钢问题的出现将会严重影响到连铸机运行质量,降低工作效率,所以需要通过分析典型漏钢的特征与出现原因,以此来防止漏钢问题的发生。
本文通过对连铸机的运行进行研究,并结合实际对连铸机漏钢特征、原因提出个人观点,希望为关注连铸机典型漏钢问题的人群提供参考。
关键词:连铸机;典型漏钢;故障分析引言:连铸机的主要作用就是对高温钢水进行持续浇筑,为了保证浇筑质量,需要对漏钢问题进行严格控制,通过控制钢水成分、温度等方式可以较少漏钢带来的危害,进而提高浇筑效果。
因此,有必要对连铸机漏钢特征与原因进行分析。
一、连铸机漏钢类型与原因高温钢水在结晶器内部发生凝固时,将会出现凝固收缩的情况,此时体积将会变小。
通常情况下,凝固收缩问题可以分为相变收缩、温降收缩两个不同的阶段,钢水在凝固时会因为各种原因而导致浇筑出的胚壳出现局部脆弱的问题,进而发生漏钢的情况。
漏钢问题发生时,往往会伴随着非常大的声音,并且在顶弯区域能够看到钢花喷出[1]。
除此之外,还能够在主控室的钢水液位监控中,发现液位大幅下滑,漏钢问题出现时,其曲线多会表现出小幅下降转大幅下降或始终急速下降的趋势。
在钢水浇筑时,漏钢问题非常常见而且很难避免,因为其产生的原因非常复杂,连铸机较为典型的漏钢问题可以分为以下几种。
(一)粘结型漏钢粘结型漏钢是极为常见的漏钢问题,一般会在结晶器出口发生。
在连铸机运行期间,初生坯壳会在结晶器周围生成热点,热点会在拉坯作用下出现破裂,粘结在结晶器钢板上,在坯壳经过下口气隙区时,如果裂口无法及时焊合,就会导致漏钢问题的发生。
在发生粘结型漏钢时,坯壳振痕会出现不对称的情况,而且在多数时间都会在结晶器的内部残留一截坯壳。
粘结型漏钢的出现原因大致可以分为以下几种。
1.保护渣当保护渣自身的理化性能无法与钢种、钢水温度等参数匹配时,就有可能出现粘结型漏钢的问题,因为保护渣的熔化速度、熔点等参数性能都将会影响到连铸机的浇筑质量。
浅析漏钢的原因及预防

浅析漏钢的类型及预防连铸二车间技术组-郭幼永一、前言:板坯漏钢的形式多种多样但重点主要集中在粘结漏钢和开浇起步后的漏钢。
本文简要介绍常见漏钢的类型、漏钢的起因及相应的预防措施。
为各班组在实际浇钢过程中提供参考便于降低漏钢事故的发生。
二、漏钢的类型1、粘结漏钢粘结漏钢是连铸生产过程中的主要漏钢形式,据统计诸多漏钢中粘结漏钢占50%以上。
所谓粘结的引起是由于结晶器液位波动,弯月面的凝固壳与铜板之间没有液渣,严重时发生粘结。
当拉坯时磨擦阻力增大,粘结处被拉断,并向下和两边扩大,形成V型破裂线,到达出结晶器口就发生漏钢。
粘结漏钢的发生有以下情况:内弧宽面漏钢发生率比外弧宽面高(大约3:1);宽面中部附近(约在水口左右300mm)更易发生粘结漏钢;大断面板坯容易发生宽面中部漏钢;而小断面则发生在靠近窄面的区域;铝镇静钢比铝硅镇静钢发生漏钢几率高;保护渣耗量在0.25kg/t钢以下,漏钢几率增加。
2、发生粘结漏钢的原因:1)、形成的渣圈堵塞了液渣进入铜管内壁与坯壳间的通道;2)、结晶器保护渣Al2O3含量高、粘度大、液面结壳等,使渣子流动性差,不易流入坯壳与铜板之间形成润滑渣膜。
3)、异常情况下的高拉速。
如液面波动时的高拉速,钢水温度较低时的高拉速。
4)、结晶器液面波动过大,如浸入式水口堵塞,水口偏流严重,更换钢包时水口凝结等会引起液面波动。
3、防止粘结性漏钢预防措施在浇注过程中防止粘结漏钢的对策有:(1)监视保护渣的使用状况,确保保护渣有良好性能。
如测量结晶器液渣层厚度经常保持在8~15mm,保护渣消耗量不小于0.4kg/t钢,及时捞出渣中的结块等。
(2)提高操作水平,控制液位波动。
(3)确保合适的拉速,拉速变化幅度要小。
升降拉速幅度以0.05m/min为宜。
(4)严格控制钢水质量,提高钢水洁净度,减少钢中夹杂物。
(5)加强对结晶器铜板的检查,发现有龟裂或其他影响铜板平整度的因素,必须进行打磨处理,如果问题严重必须下线。
厚板坯连铸机漏钢原因分析及预防措施

厚板坯连铸机漏钢原因分析及预防措施摘要:针对南阳汉冶特钢有限公司厚板3#厚板坯连铸机近三年发生漏钢事故的实际情况,分析探讨每次漏钢事故的原因,我们工程技术人员认为,3#厚板坯连铸机漏钢原因主要有钢种成分、开浇升速不规范、浸入式水口尺寸设计不合理、结晶器液面波动、钢水温度、结晶器保护渣及异常情况下的操作等,严格控制钢水中的Al2O3含量、控制铸机升速幅度、优化浸入式水口尺寸、避免结晶器液面波动、控制钢水温度、选择适宜的保护渣及加强操作等措施,厚板坯铸机漏钢可以完全避免。
关键词:厚板坯漏钢保护渣浸入式水口措施前言漏钢是板坯连铸生产中的恶性事故,事故危害可造成设备损坏,更换和修复结晶器和直弧段,滞坯处理时可能造成拉矫设备和扇形段辊列损坏,生产非正常中断,造成本炉次及后续炉次钢水回炉或该计划,降低了钢水收得率和合同计划的顺利执行,导致生产成本增加。
事故处理需要24~48小时,降低了连铸作业率。
事故处理时,职工劳动强度大、安全隐患多,增加了管理难度。
一次漏钢事故经济损失300~500 万元,甚至500万元以上。
南阳汉冶特钢炼钢厂3#铸机是西安重型机械研究所设计的全国第一台超厚板板坯连铸机,该铸机于2010年底建成投产后,月产可达5万t以上,至2013年5月,共生产板坯150万t。
随着铸机产能的逐渐释放,因管理和操作经验欠缺,漏钢成为威胁板坯生产稳定的首要问题。
不断总结教训、积累经验,降低漏钢事故率,是稳定连铸机生产、节能降耗、降低成本、增加效益的有效途径之一。
1汉冶特钢厚板板坯连铸机参数及漏钢情况1.1汉冶特钢厚板板坯铸机主要工艺参数,见表1。
1.2粘结漏钢事故分析表2010~2013年常规板坯连铸机粘结漏钢情况分析表,见表2。
2板坯连铸机漏钢原因分析2.1粘结漏钢的机理在钢水浇注过程中,结晶器弯月面的钢水处于异常活跃的状态。
由于各种原因,浇铸过程中流入坯壳与结晶器铜壁之间的液态渣被阻断,当结晶器铜板与初生坯壳的摩擦力大于初生坯壳的强度时,初生坯壳被撕裂与铜板产生粘结。
双流板坯连铸机漏钢率分析

双流板坯连铸机漏钢率的分析【摘要】自投产以来,漏钢率一直比较高,严重影响了生产的顺行,通过对近年来漏钢事故数据的分析,采取了一系列措施,在降低漏钢率方面发挥了有效的作用,很好地控制了漏钢事故的发生。
【关键词】漏钢;热流;摩擦力前言在连铸生产过程中,漏钢作为最严重的生产事故,会对整个生产过程造成重大影响,在处理漏钢过程中工人劳动强度增大,还极易发生安全事故。
因此,必须对各种形势的漏钢进行分析和研究,找出预防和减少漏钢事故的发生的措施。
1.2010年漏钢的统计与分析2.漏钢形式及原因分析连铸漏钢的形式较多,主要有开浇漏钢、悬挂漏钢、裂纹漏钢、粘结漏钢、卷渣漏钢等。
2.1开浇漏钢原:开浇漏钢是指引锭头刚拉出结晶器即发生的漏钢事故,主要是由操作的原因引起。
主要原因有:(1).结晶器密封不良,冷料加入不合适,铁屑层过薄等,钢水从缝隙入渗出。
(2).起步时间过早,凝固坯壳强度不够,造成起步拉断。
(3).起步过程中有异物随钢流进入结晶器坯壳处,造成坯壳出结晶器后漏钢。
2.2悬挂漏钢:结晶器角缝过大,铜板划伤,致使在结晶拉坯阻力增大造成坯壳拉断漏钢2.3裂纹漏钢:纵裂漏钢是由于保护渣选择不当,保护渣流动不均匀,结晶器传热不均导致坯壳厚度不均匀,冷却时坯壳破裂而产生的。
角部裂纹是沿结晶器窄面凝固厚度不够的坯壳收缩时受到拉伸应力而破裂,拉伸应力是由结晶器窄面锥度减小和窄面传热不均造成的。
2.4卷渣漏钢:由于结晶器渣块或异物裹入凝固壳局部区域,使坯壳厚度太薄造成。
2.5粘结漏钢:粘结性漏钢主要是指结晶器液面波动或者其它原因,导致弯月面附近润滑效果不好,坯壳与结晶器壁之间发生粘结,拉坯摩擦阻力增大,粘结处被拉裂,并向下和两侧扩展,形成“v”破裂线,随着铸坯往下移动,钢水直接与铜板接触,由于冷却水的作用,形成新的坯壳,随着结晶器的振动和铸坯的继续下移,此过程重复出现,直到薄坯壳在出结晶器下口时被拉裂,出现漏钢现象。
漏钢后坯壳四周明显不均匀。
板坯连铸粘结漏钢的特点与分析

2 粘结漏钢
粘结漏钢是浇注过程中主要的漏钢事故。 粘 结性漏钢主要是指结晶器液面波动或者其它原 因, 导致弯月面附近润滑效果不好, 坯壳与结晶器 壁之间发生粘结, 如图 1 (a) ; 拉坯摩擦阻力增大, 粘结处被拉裂, 并向下和两侧扩展, 形成“V ”破裂 线, 如图 1 (b) ; 随着铸坯往下移动, 钢水直接与铜 板接触, 由于冷却水的作用, 形成新的坯壳, 如图1 (c) ; 随着结晶器的振动和铸坯的继续下移, 此过 程重复出现, 如图1 (d) ; 直到薄坯壳在出结晶器下 口时被拉裂, 出现漏钢现象, 如图 1 (e)。
图 4 钢中含碳量与热流关系
硫在钢中的溶解度很大, 而在固态钢中的溶 解度很小, 而且随着温度降低而降低, 析出硫化
·26·
宽厚板
第 13 卷
铁; 当硫化铁结晶时, 在初生晶粒边界上析出, 形 成包围铁素体的连续或不连续的网状组织, 引起 晶界脆性。
磷是降低钢液表面张力的元素, 易聚在晶粒 边界处, 随着含磷量的增加, 钢的表面张力降低, 从而降低了钢的热裂纹性能。
现在公认为液渣层的厚度在 10~ 15 mm 是 最理想的。Koyam a 等人提出了下面的经验公式, 建立了液渣层厚度与玻璃相比率、结晶器尺寸、浇
注速度和保护渣消耗量的关系:
d=
0.
02
(
a
SR bVW
)
式中: d —— 液渣层厚度 (mm ) ; SR —— 渣化 率; a、b ——结晶器尺寸 (m ) ; V ——浇注速度 (m m in) ;W ——保护渣消耗量 (kg t)。
板坯粘结漏钢分析

5 结束语
1)降低保护渣熔化温度、粘度,提高熔速, 对减少粘结漏钢有利; 2)采用非正弦振动,对减少粘结漏钢有利; 3)提高钢水纯净度,对避免粘结漏钢有利; 4)稳定拉速和液面,“黑渣”操作,可减少粘 结漏钢; 5)温度过低,拉速不宜过高。
3.1 保护渣性能及耗量的影响 3.2 钢水纯净度的影响 3.3 结晶器液面波动的影响 当结晶器内钢液面上升到与渣圈相接触时,液 渣向下的通道将被堵住,当钢液面继续上升时, 会把渣圈向上推,将渣圈与固态渣膜分开,使钢 液直接和结晶器壁接触,并粘结在一起;正滑脱 时,坯壳强度大于粘结力,坯壳被拉走,如果坯 壳强度小于粘结力时,坯壳被拉断,在结晶器出 口产生漏钢。 3.4 拉速变化的影响 拉速发生变化后,温度变化滞后,液渣层厚度 变化、固态渣膜变化和恢复到最佳状态所需时间 推迟,在高拉速时,更易出现这种漏钢。
Nhomakorabea保护渣熔化速度低,单位时间内熔化的保护渣量小,进入铸坯与铜板缝隙的 液渣量就少。 保护渣熔化温度对钢液面上溶渣层厚度的影响如图1。 保护渣熔化温度h、钢液面温度t,、保护渣表面温度h。在钢液面上的熔渣层 与粉渣层间形成一个温度为t:的等温面,在稳定态传热的条件下,通过双层 平板的传热,在粉渣层内带走的热量应等于熔渣层所传导的热量。 即 通过粉渣层传热 q1= 1(t 2 t1); (1) S1 通过熔渣层传热 q2= 2(t 3 t 2 ) ; (2) S2 按稳定态传热条件,则ql=q2由此得出:
板坯粘结漏钢分析
1 2 3 4 5
前言 生产条件 影响粘结漏钢的因素及原因 粘结漏钢的预防措施 结束语
1 前言
漏钢是连铸生产中严重的生产事故, 影响铸机作业率,降低钢水收得率并 使设备严重损坏。 粘结漏钢在板坯连铸漏钢原因中所 占比例大,2000年我厂板坯连铸漏钢 25次,其中粘结漏钢13次,占漏钢次 数的52%。
3%b8Q345B板坯粘结漏钢的原因分析和预防措施

晶器的倒锥度比较大。有关文献表明:在拉钢 过程中。结晶器的振动有防止初生坯壳同结晶
器壁发生粘结而被拉破以及在负滑脱期间愈合 已拉裂坯壳的作用,因此,合理的振动参数是 稳定连铸拉钢的必要条件。结晶器振动对结晶
铺展性变差,摩擦力增大。
4.2钢水的影响 钢水过热度的高低和钢水中夹杂物的含量
对钢水在结晶器中是否发生粘结甚至漏钢有直 接的影响,钢水过热度对粘结漏钢的影响主要反 映在钢液表面张力上。一般认为,随着温度的
升高。钢液表面张力逐渐减少。Eotvos提出的实
器保护渣的消耗量有影响,而保护渣消耗量又 对铸坯的表面质量产生影响:消耗量过大。振
流量偏大(达O.41Ⅱ13/h)。
表5
韶钢现用Q345B保护渣(D1)的理化指标
(2)提供温度、成分合格的钢水。改进了 中间包的结构(见图4)。提高转炉冶炼钢水命 中率,避免拉后吹,优化脱氧工艺,减少钢水
中的氧含量,严格控制钢中的Al:O,夹杂含量,
l
\下挡渣墙
提高钢水的纯净度和到站温度,LF炉保证一定 的白渣时间和软吹时间,保证钢水质量和钢水 温度稳定良好。严格控制中间包温度,避免浇 注温度过低,保证保护渣的化渣良好。同时还 改进了中间包的结构。在中间包内的钢包注流 区,采用一种新的控流装置一湍流控制器限制 钢包长水口的高速注流对中间包钢水流动的不 利影响;同时,将中间包的下挡渣墙移至上挡 渣墙和塞棒间位置砌筑,使夹杂物充分上浮。 增加钢水停留时间,减少中间包钢水死区面积.
合理、结晶器液面波动(如水口插入深度不合 要求、吹氩过大等)、钢水条件、拉速变化及操
作不当等。
韶钢板坯连铸机粘结漏钢情况
大板坯连铸机粘结漏钢的原因分析及预防

大板坯连铸机粘结漏钢的原因分析及预防发表日期:2007-3-31 阅读次数:173摘要:漏钢是对连铸机损害最大的恶性生产事故,漏钢不仅造成生产中断,铸机作业率下降,更为严重的是损坏设备。
对济钢大板坯连铸机出现的粘结漏钢进行了分析,并提出相应的改进和预防措施,取得了良好效果。
济南钢铁集团总公司第三炼钢厂(以下简称济钢三炼钢)连铸机自2003年3月1 日投产至2004年8月31日,共发生5次漏钢,漏钢率为0.039 5%,其中粘结漏钢4次,占漏钢总数的80%,是影响连铸机正常生产的重要因素。
通过分析济南三炼钢粘结漏钢的具体原因,并采取相应的措施后,至今未发生1次漏钢。
1 连铸机的主要工艺参数现有连铸机实现了与120 t转炉和中厚板轧机的良好匹配,其主要工艺参数如下。
连铸机类型直弧形板坯连铸机流数1机1流生产能力125万t/a铸坯尺寸厚度200mm、270mm宽度1200~2lOOmm结晶器铜板长度900mm辅助设施漏钢报警系统和磨擦力监控系统冶金长度34.2mm弧形半径10m2 粘结漏钢的形成保护渣在连铸生产中起到非常重要的作用。
保护渣填充到结晶器铜板和初生坯壳之间,促进坯壳的生长,使坯壳具有足够的强度,以满足拉坯的需要;如果保护渣不能及时渗透到坯壳和结晶器铜板之间,会使坯壳与结晶器铜板之间的热阻增大,坯壳变薄,在钢水的静压力作用下,坯壳与铜板粘结,坯壳被撕裂,出结晶器后造成漏钢。
3 粘结漏钢坯壳的表征由于粘结的坯壳与结晶器保持同步,而其它部位的坯壳向下运动,在这种情况下,已粘结处会形成一个“倒V”型振痕(见图1)。
而在粘结处几乎看不到振痕,形成明显的粘结点。
图1 粘结形成的倒V 振痕漏钢坯壳的实际测量数据表明,粘结处的坯壳明显的比相邻的坯壳厚。
如在2004年6月份的窄面粘结漏钢中,离液面100mm,距离边部400mm处,坯壳厚度达到了24mm,其余部位坯壳厚度逐渐减薄到4~6mm的正常厚度,这个数据与理论符合的很好。
板坯连铸机漏钢原因分析及控制措施

钢种优化
钢种选择与优化
根据实际生产需求,选择合适的钢种,并进行优化,以降低因钢种问题导致的漏钢风险 。
钢种质量检测与控制
加强钢种的质量检测和控制,确保钢种的质量稳定,降低因钢种质量波动导致的漏钢风 险。
04
结论与展望
研究结论
板坯连铸机漏钢的主要原因包括:钢 水成分、温度和浇注工艺控制不当, 结晶器设计、维护和操作不当,以及 保护渣性能和质量问题等。
设备老化
随着设备使用年限的增加,铸机 内部零件可能发生磨损、老化或 疲劳断裂,导致设备性能下降, 容易出现漏钢事故。
设备维护不当
缺乏定期的设备检查和维护,可 能导致铸机内部零件出现故障或 潜在的安全隐患,从而引发漏钢 事故。
操作因素
操作失误
操作工人在生产过程中出现失误,如 错误地调整铸机参数、操作顺序不当 等,可能导致铸机运行异常,引发漏 钢事故。
操作不规范
操作工人未按照规定的操作规程进行 操作,可能对铸机造成损伤或引发漏 钢事故。
钢种因素
钢种特性
某些特殊钢种可能具有较高的结晶温度和凝固温度范围,增加了铸机操作的难 度,容易引发漏钢事故。
钢水成分
钢水中含有杂质或有害元素,可能影响钢的流动性和铸机的正常操作,从而增 加漏钢的风险。
03
控制措施
02
在控制措施方面,虽然本文提出了一些具体的建议,但实 际应用效果还需要进一步验证和完善。
03
未来研究可以针对不同类型的板坯连铸机进行更深入的调 查和研究,以制定更加具体和针对性的控制措施,提高铸 机的生产效率和产品质量。同时,可以探索更加智能和自 动化的监测和控制系统,实现铸机生产的全面优化和升级 。
THANKS
谢谢您的观看
方坯连铸机漏钢原因分析及改进措施

方坯连铸机漏钢原因分析及改进措施摘要:近年来,随着社会经济的迅猛发展,钢铁工业中的连铸工艺技术也随之不断提升,漏钢事故的发生率虽日趋下降,但仍然还存在隐患。
本文就钢厂的方坯连铸机漏钢的各种原因进行详细分析,比如保护渣的性能情况、钢水过热、结晶器的精准度以及操作失误等。
并针对漏钢源头提供相应的解决措施,最大限度的降低连铸机的漏钢率。
关键词:方坯连铸机;漏钢;粘结;角部纵裂;夹渣1 前言在钢铁工业的连铸生产过程中,一旦发生漏钢事故,产生的影响是巨大的。
轻度的漏钢会导致铸坯质量受损从而无法投入使用,若是严重的漏钢,则会破坏设备,甚至危及工作人员的安全。
在当前连铸工艺技术日益高效的大背景下,只有最大限度的减轻和限制漏钢次数,才能够不断提升连铸机器的作业率,从而更好的保证一切生产操作的顺利运行。
2 连铸机的参数某一炼钢厂有两台4机4流全弧型单点矫直连铸机,年生产力在200万T,浇铸的断面有四种,所生产的主要钢种包括:建筑用钢、低合金钢以及焊接钢等。
连铸机是使用浸入式水口加保护渣的方式进行操作。
3 夹渣漏钢、粘结漏钢和角部裂纹的原因分析3.1 夹渣漏钢的特点和原因夹渣漏钢的主要特点是,坯壳是有一定的弯弧,给人撕裂的印象,但又与裂纹漏钢并不相似。
并且,在漏钢后,结晶器内一般没有残留的坯壳。
连铸坯壳在形成的时候夹杂着保护渣或是有极大颗粒的高熔点杂物,从而造成热的传递大大减少而形成了坯壳漏钢。
出现夹渣漏钢的主要因素有以下几点:第一,当结晶器发生震动的时候,平衡度不够而造成的左右摆度不均衡,结晶器内部的渣子因此被带入钢水中,当其临近坯壳的时候,就会导致传热过低的情况,从而造成坯壳根本不能够耐受钢水所产生的压力,就出现了漏钢事故。
第二,操作人员的操作不当,导致结晶器的钢水液面波过大,因此而产生卷渣漏钢情况。
第三,钢水不够纯净。
冶炼过程中,如果钢水的纯净度不够或者被二次氧化,导致杂质不断增多,当杂质积累到一定的数量,就会被卷入结晶器的钢水当中,于是就会产生与结晶器震动不平稳的时候相类似的漏钢情况。
板坯连铸机漏钢原因分析及控制措施

⑦液面不稳,波动较大,破坏了保护渣的正常流入和弯月面处初生坯壳的 形成条件。
⑧浇钢操作不规范:保护渣加入不均匀;挑渣条过深,破坏了初生坯壳; 给Ar气量不够或过大,造成液面死板或大翻等。
⑨钢水成分: 包晶钢及裂纹敏感钢,钢中S、P含量高等
三、漏钢的识别和控制
2、由设备原因造成的漏钢
跑锥度和偏振等设备故障是常见的引起漏钢的因素。
•跑锥度引起的漏钢 在结晶器液面和铸坯上没有黏结漏钢的特征,而在漏钢后的结晶器 上,可以测得窄面锥度较明显的变小(负锥度)。其控制是采取措施,固定好窄面锥 度。 •偏振引起的漏钢 产生偏振有如下三个原因: ①偏心轮轴承间隙大或轴承磨损 由于偏心轮轴承间隙大或轴承磨损,造成四个偏心轮在同一时刻不能产生相等的振幅,造
③拉速或温度的波动较大,造成保护渣无法适应Байду номын сангаас注条件的急剧变化
④推渣工不按要求加入保护渣,液面覆盖不均匀,时多时少,人为造成保 护渣性能不良。 ⑤浸入式水口的插入深度不合适,引起结晶器内流场状态不良, 造成保护渣融化不好,甚至卷渣,产生了可能漏钢的条件。
二、造成漏钢的原因
A、工艺及操作原因造成的漏钢:
产生表面裂纹或坯壳脱离不彻底,严重时,会产生漏钢
⑦结晶器宽、窄面水量不匹配,产生较严重的角部裂纹,引起漏钢。 ⑧结晶器冷却水水质差,造成结晶器铜板水槽结垢、藻类堵塞等,引起坯壳冷却 不均匀,甚至坯壳脱离不彻底,导致漏钢。
三、漏钢的识别和控制
1、由保护渣熔化不良造成的漏钢
•看渣面
• 性能好的保护渣 ①粉渣的铺展性好,渣面平整而均匀,②渣面活跃,有小火苗均匀跳 动,③渣层具有均匀的三层结构:30毫米左右的粉渣层、5毫米左右的烧结层、15毫米
板坯连铸机粘接漏钢的原因与预防措施

分 的检测结 果 ( 表2 、表3),可 以看 出理化指 标均 达 到技 术 要 求 ,而水 分 则 较要 求 的05 .%偏 高 ,通
过调 查 发 现水 分 高 的 主要 原 因有 :① 由于Q3 5 4 产
接 ,拉坯 阻力增 大 ,粘 接处被 拉裂 而产生 的漏 钢 。 除 Q 4 低 合金 钢 钢水 在 凝 固过程 中发 生 6— 相 35 变 。体 积强烈 收缩 ,裂纹 敏感性 大 ,容易产 生表 面 裂 纹 的原 因外 ,粘 结漏 钢 的影 响 因素具 有一 定 的 综 合性 ,包 括保 护渣 的性能 及工艺 、操 作 因素 的影
昆钢 科 技
21年第3 00 期 K n a g K j u g n e i 21年7 0 0 月
板 坯 连 铸 机 粘 接 漏 钢 的 原 因与 预 防措 施
姚 云 苗 杨 国 涛 苏本 红
( 钢厂 ) 炼
摘 要 对 昆铜 炼 钢 厂 9 板 坯 连 铸 机 生 产 Q3 5 合 金 钢 产 生 粘 接 漏 铜 进 行 了分 析 ,找 到 了粘 结 漏 钢 的 具 号 4低 体 原 因 ,通 过 制 定 实 施 相 应 的 工 艺 、设 备 改 进 措 施 ,低 合 金 钢 粘 接 漏钢 的 频 次减 少 ,确 保 了连 铸 生 产 的 顺
行。
关 键 词 板 坯 低 合 金 钢 粘 结 漏铜
Ca eAnay i n Br a o to l b Co tn us us l sso e k u fS a n i uo
Ca t rDuet tc i g o o i i e h l se o S i k n fS l f d S e l di
Ya n m io Ya gGu — a S u Be — o g oYu - a n o— o h n — n t h
承钢板坯粘结漏钢的原因分析

承钢板坯粘结漏钢的原因分析周学禹、徐立山、梁静召、徐海斌、李鹏(河北钢铁集团承钢公司承德067002)摘要:承钢1650mm板坯连铸机在生产初期存在粘结漏钢现象,针对漏钢的原因进入深入的分析和研究,找出了粘结漏钢的主要原因,并制定了详细的措施,确保生产能顺利的进行。
关键词:板坯;粘结漏钢;分析总结;措施执行1前言承钢公司1650mm直弧形板坯连铸机投产于2008年7月,铸机半径8 m,冶金长41m,工作拉速0.8-1.4m/min,断面为180mm、200m m×(900-1650)mm,连铸机设计年产量为300万吨,定尺为6-12m。
从2008年7月投产初期,由于钢水质量,设备磨合和工艺操作等诸多因素影响,导致漏钢事故较多,其中粘结漏钢占漏钢总数的80%,粘结漏钢严重影响生产的顺行,如何解决粘结漏钢问题成为顺产的首要问题。
通过有关技术人员的共同努力,终于找出漏钢的真正原因,并针对具体问题制定了详细的预防措施,通过各项措施的落实和执行,粘结漏钢的次数明显减少,为生产的顺行奠定了良好的基础。
2 漏钢类别与原因2.1 开浇漏钢开浇漏钢是指引锭头刚拉出结晶器下口即漏钢。
主要原因是,塞引锭头时加入冷料过多或过少,杂质过多行或有油污;引锭头与结晶器壁间的缝隙没有塞严;出苗时间短,开浇时钢流过大将冷料冲散等。
设备原因有结晶器与扇形段对弧不准都极易产生开浇漏钢。
2.2 悬挂漏钢结晶器内初生坯壳局部和结晶器内腔铜板或角缝挂住,或冒钢、坯壳与结晶器上沿挂住而引起的漏钢。
通常是由于结晶器角缝过大;内腔铜板表面变形;保护渣润滑中断等原因均会导致悬挂漏钢。
2.3 粘结漏钢由于结晶器液位波动,凝固坯壳与铜板之间无液渣,严重时粘结,使得摩擦阻力增大,粘结处被拉断,并向下和两边扩大,形成“V”型破裂线,到达出结晶器口即漏钢。
3、粘结漏钢产生机理粘结漏钢产生机理见图1。
在浇注过程中,结晶器弯月面的钢水处于异常活跃的状态,在钢水进入结晶器后开始形成凝固坯壳,由于流入坯壳与结晶器铜壁之间的液渣被阻断,当结晶器铜板与初生坯壳的摩擦力大于初生坯壳的强度时,与铜板产生粘结,被粘着的部分和向下拉的铸坯的界面凝固壳破振动和滑动时坯壳被拉断,在破断处流入钢液,重新形成新的薄坯壳。
板坯连铸机漏钢原因分析及控制措施

板坯连铸机漏钢原因分析及控制措施汇报人:日期:•板坯连铸机漏钢现象概述•漏钢原因分析•控制措施目录•实际应用与效果评估板坯连铸机漏钢现象概述01•漏钢现象:在板坯连铸过程中,高温钢水从铸机内部的裂缝或缺陷处泄漏出来的现象。
漏钢可能导致高温钢水接触工人或设备,引发严重的人身伤害和设备损坏。
安全风险产品质量下降生产效率降低漏钢会造成铸坯表面缺陷,严重影响板坯的质量和后续加工性能。
漏钢事故会中断连铸生产,导致生产效率降低,增加生产成本。
030201铸坯表面出现裂纹、孔洞或凹陷。
钢水泄漏导致的烟雾、火花或燃烧现象。
铸坯局部或整体形状变形。
设备异常声音或振动。
漏钢现象的常见表现漏钢原因分析02设备老化01连铸机设备长时间运行,关键部件磨损严重,未能及时更换或维修,容易导致漏钢。
设备安装精度02设备在安装过程中,如果存在安装精度不达标或者关键部位的紧固不牢固,会在运行过程中产生缝隙,进而导致漏钢。
冷却系统失效03连铸机的冷却系统对于防止漏钢起到关键作用,如果冷却系统发生故障,如冷却水流量不足、冷却水管破裂等,都会导致铸坯在凝固过程中受热不均,产生裂纹,从而引起漏钢。
拉坯速度过快在追求高效率的生产过程中,如果拉坯速度过快,会导致铸坯在凝固过程中的应力分布不均,增加漏钢的风险。
浇注温度过高如果浇注温度过高,超过了连铸机的设计能力,会导致铸坯在凝固过程中内部应力增大,容易产生裂纹,进而引发漏钢。
保护渣性能不佳保护渣对于防止铸坯表面氧化和吸气具有重要作用,如果保护渣的性能不佳,会导致铸坯表面质量下降,容易产生裂纹,从而引发漏钢。
操作人员在操作过程中,如果没有按照操作规程进行,如浇注速度控制不当、冷却水调节不及时等,都会导致连铸机运行不稳定,增加漏钢的风险。
操作不规范对于新上岗的操作人员,由于缺乏经验,对于异常情况反应不及时,也容易导致漏钢事故的发生。
缺乏经验在生产过程中,如果监控人员对于连铸机的运行状态监控不到位,如未能及时发现设备异常、工艺参数偏离等情况,也会导致漏钢事故的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板坯连铸粘结漏钢的特点与分析
作者:蒋亚强
来源:《科学与财富》2017年第36期
摘要:针对连铸过程中时常发生的粘结漏钢情况,分析了造成粘结漏钢的各种因素,为预防粘结漏钢的发生提供参考。
关键词:连铸;板坯;粘结;漏钢
引言
漏钢事故是连铸生产中危害性很大的生产事故。
漏钢是对连铸机损害最大的恶性生产事故。
漏钢不仅造成生产中断,连铸机作业率下降,更为严重的是损坏设备,造成结晶器、结晶器振动机构、扇形段等关键设备报废,增加连铸设备的维修成本,造成巨大的经济损失。
因此,能够有效预防漏钢事故的发生成为现代化钢厂的必然需求。
1 粘结漏钢
由于结晶器液位波动,凝固坯壳与铜板之间无液渣,严重时粘结使得摩擦阻力增大,粘结处被拉断,并向下和两边扩大,形成“V”形破裂线,到达出结晶器口即漏钢。
2 粘结漏钢产生的机理
粘结漏钢产生的机理见图l。
在浇注过程中,结晶器弯月面的钢水处于异常活跃的状态,在钢水进入结晶器后开始形成凝固坯壳,由于流入坯壳与结晶器铜壁之间的液渣被阻断,当结晶器铜板与初生坯壳的摩擦力大于初生坯壳的强度时,与铜板产生粘结,被粘结的部分和向下拉的铸坯的界面凝固壳处振动和滑动时坯壳被拉断,钢水流人破裂的坯壳,重新形成新的薄坯壳。
这一过程如此反复的进行,直到新坯壳到达结晶器出口时产生漏钢。
粘结漏钢和保护渣的关系是不可忽视的,熔融的保护渣会填充在结晶器铜板和板坯坯壳之间进行传热和润滑,粘结漏钢与钢水成分、温度、拉速、保护渣的性能以及结晶器振动参数之间存在较大关系。
3 板坯连铸诱发粘结的因素和预防措施
由粘结导致的漏钢在各类漏钢中占据很大比重,因此明确铸坯与结晶器粘结的各主要因素,采用必要合理的对策和措施防止粘结的产生,对于保证连铸生产的顺行具有重要意义。
导致粘结产生的原因很复杂,归纳起来有以下几点:
(1)结晶器液面波动
保持结晶器液面的稳定性至关重要,液面的波动直接威胁弯月面。
结晶器液面波动是坯壳粘结的开始,当液面波动很大时,又提拉速,这时粘结的几率大大增加。
2014年6月份,济钢的达涅利连铸机出现的粘结漏钢就是因为在涮棒时,提拉速,此时液面波动非常大,又提拉速,显然保护渣的液渣跟不上,导致粘结漏钢。
(2)结晶器倒锥度
结晶器传热过程中,气隙热阻最大,占总热阻的70-90%。
结晶器设计上大下小的具有合适的倒锥度,可以减小下部气隙厚度,改善传热。
如果锥度过大,则会增加结晶器铜板与初生坯壳的摩擦力,不仅破坏保护渣层的稳定,易导致发生粘结,而且使结晶器下部磨损加快;如果锥度过小,则热阻很大,不利于传热,坯壳比较薄,当出结晶器下口的时候,如果坯壳经受不住钢水的静压力,就容易造成漏钢。
2015年1月份济钢的达涅利连铸机因为快换导致右窄边锥度大大减小,幸亏发现的早,立即停机,避免了一次恶性事故的发生
(3)钢水的温度(过热度)
钢水的过热度对粘结的影响可以反映在钢液弯月面表面张力上。
一般来说,随着温度的升高,弯月面的表面张力减小。
钢水的过热度越小,对防止粘结的产生越有利;适当的过热度有利于保护渣的熔化和润滑,增强保护渣膜在结晶器铜板上的分布均匀性。
根据经验值得出,过热度每增加10"C,出结晶器的坯壳厚度约减少3%。
由此可见,适当的过热度不仅有利于铜板传热,而且有助于坯壳生长。
(4)拉坯速度
拉坯速度越大,弯月面液态金属的波动程度越大,对铸坯的表面越不利,极易导致粘结的发生。
在正常拉速情况下,中间包水口的钢液流速、保护渣的供应速度以及结晶器铜板冷却水的流量都保持在一个稳定的状态。
当拉速变化时,上述各个环节都需要一个缓冲调节的过程,表现为结晶器铜板某处的温度波动或保护渣供给的不连续性。
所以当拉速突然改变,导致保护渣供应不连续时,粘结产生的可能性也就增大。
拉速调整过快,驱动辊迅速提速,易引起结晶器液面波动,而使保护渣供应不足,造成粘结。
而迅速提速后的结晶器保护渣液渣层的变化,使粘结现象更加容易出现。
一般情况下,提速后,结晶器内的热流量增大,保护渣熔化较好,液渣层变厚,有利于浇注。
而实际测量的数据表明,这需要一个稳定的过程。
拉速由0.8m /min提速到1.0m/min后液渣层的变化见图1。
由图1可知,提速过快时结晶器内的保护渣液渣层迅速下降,结晶器的融池属于“缺渣”状态。
由于液渣层的减少,结晶器出现粘结的几率大大增加。
(5)保护渣
良好的结晶器润滑和保持熔渣流入通道的通畅是减少粘结漏钢发生的重要前提,保护渣在结晶器内发挥着绝热保温、防止钢液氧化、吸收夹杂、控制传热、润滑铸坯等五大基本功能,
对连铸过程起着至关重要的作用。
保护渣熔融特性不足、绝热不良、钢液面温度过低及弯月面水平波动过大都会造成渣圈的长大,液渣流入通道阻塞,从而导致润滑不良而产生粘结漏钢。
减少保护渣的粘度可增大保护渣的消耗量,增强液体润滑,减小结晶器壁和坯壳间的摩擦力,从而减少粘结漏钢的频率,所以在实验新的保护渣时,应该更密切地关注热电偶的变化,防止事故的发生。
(6)结晶器的振动
结晶器的振动装置是连铸非常重要的设备,结晶器实施有规律的往复振动可以防止坯壳与铜板发生粘结,同时还可以减少铸坯表面缺陷。
但是结晶器的振幅越大,弯月面处液态金属波动程度越大,因此小幅振动对防止粘结漏钢有利。
对于高速连铸,结晶器振动要求高频率、小振幅、负滑脱时间不宜太长,正滑脱时间内振动速度与拉坯速度之差要小。
同时在开浇、快换、换水口、封顶、淌浇或者其它异常情况下,结晶器内是一个很不稳定的状况,此时应更加密切关注热电偶的变化和试探坯壳,防止粘结事故发生。
综上所述,粘结的原因主要归诸于保护渣的润滑不好,结晶器液面波动太大和不恰当的锥度调节,也可由一般的不稳定条件或操作行为导致,如拉坯速度的突变。
连铸生产过程中,应避免易导致粘结产生的各种因素,同时若己监测到粘结的产生,漏钢预报系统报警,应立即采取急降拉速的措施,使撕裂的坯壳得到弥补和修复,才能避免漏钢的发生。
■
参考文献
[1]蔡开科,连续铸钢原理与工艺[M]北京:冶金工业出版社,1999.
[2]马学忠.板坯连铸机粘结漏钢和保护渣的关系[J].炼钢,1996.
[3]卢盛意.连铸坯质量[M].北京:冶金工业出版社,1994.。