完整word沪教版七年级数学知识点总结

合集下载

沪教初一数学知识点整理

沪教初一数学知识点整理
p
11.1 平移 1. 将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为 平移 2. 图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等。图形平移后,图 形的大小、形状都不变。 3. 平移后各对应点之间的距离叫做图形平移的距离。
11.2 旋转 1. 在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的运动叫做图形的旋转。 这个定点叫做旋转中心,转动的角度叫做旋转角。 2. 图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对 应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小 和形状没有改变。
9.5 合并同类项 1. 所含的字母相同,且相同字母的指数也相同的单项式叫做同类项。 2. 把多项式中的同类项合并成一项,叫做合并同类项。一个多项式合并后含有几项,这个多 项式就叫做几项式。 3. 把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变。 4. 多项式的同类项可以运用交换率、结合律、分配率合并。 9.6 整式的加减 1. 括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号, 去掉“-”号和括号,括号里的各项都变号。
9.17 同底数幂的除法 1. am ÷an=am-n(m、n是正整数且m>n, a ≠0).同底数幂相除,底数不变,指数相减。 2. 任何不等于零的数的零次幂为1,即a0=1(a ≠0). 9.18 单项式除以单项式 1. 两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的自 母,则连同它的指数作为商的一个因式。 9.19 多项式除以单项式 1. 多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加。

沪教版七年级数学知识点总结

沪教版七年级数学知识点总结

沪教版七年级数学知识点总结沪教版七年级数学知识点总结作为初中数学的入门课程,七年级数学涉及到了许多基础知识点,是整个数学学科中的关键一环。

在学习初中数学的过程中,学生需要逐渐掌握数学中的各种知识点和技巧,才能够走向更高层次的学习。

以下是沪教版七年级数学知识点的总结,希望能够对初中生的学习有所帮助。

1. 整数与分数整数与分数是数学中最基础的两种数的概念。

七年级数学主要学习了正整数、负整数和半正半负整数的加减乘除法,以及分数的化简、分数的四则运算等。

2. 平面图形平面图形也是七年级数学中非常重要的考点。

主要学习了各种图形的名称、特征和性质,并在此基础上练习了计算图形面积和周长的方式。

3. 代数表达式代数表达式是初中数学中的一个非常重要的知识点,七年级主要学习了代数式的概念、化简和展开公式。

比如,我们学习了两个相同代数式的因式分解,以及一些基础的公式计算,如“一元二次方程的解法”等。

4. 空间几何空间几何也是初中数学中重要的一部分,它主要围绕立体几何的概念和计算展开。

在七年级数学中,我们学习了正方体、长方体、球体、圆锥、棱台的面积和体积等。

5. 统计图表统计学是数学中的一个重要分支,它给我们提供了解决问题的方法和思路。

在七年级数学中,我们学习了各种统计图表的概念和用法。

通过图表统计数据,我们可以更加清晰地认识到各种数据特征,并进行更深入的分析和比较。

6. 方程和不等式方程和不等式也是数学中的重要知识点之一。

七年级数学主要学习了一元一次方程和一元一次不等式。

学生需要具备化简、解方程和解不等式的能力,并且能够熟练运用到日常生活和学习中。

总的来说,沪教版七年级数学知识点非常丰富,涵盖了整数与分数、平面图形、代数表达式、空间几何、统计图表、方程和不等式等各方面的内容。

学生需要对每个知识点进行深入思考和反复练习,才能够掌握数学的基本技能和思维方式,为未来高中数学的学习打下坚实的基础。

沪教版七年级数学上册的知识点总结

沪教版七年级数学上册的知识点总结

实用文档沪教版七年级数学上册的知识点总结第九章整式第一节整式的概念9.1 字母表示数字母可以表示任意的数或符合某种条件的某个数,还可以表示具有某种规律的数,甚至可以表示特定意义的公式。

在省略乘号时,要把数字写在字母前面,×用•来代替。

例如,2×a 写成2a,除法运算要用分数线来表示。

例如,C÷2r要写成C/2r。

9.2 代数式代数式是由运算符号和括号把数或表示数的字母连接而成的式子。

单独的一个数或者一个字母也是代数式。

例如,a。

等号和不等号都不属于运算符号,所以它们都不是代数式。

实用文档9.3 代数式的值代数式的值是用数值代替代数式里的字母,按代数式中的运算关系计算得出的结果。

如果代数式中省略乘号,代入后要添上“×”。

如果字母的取值是分数,做乘方运算时要加上括号。

例如,(C/2r)²。

如果字母的取值是负数,代入后也要加上括号。

如果代数式表示的是一个具体的实际问题,那么不能使代数式失去实际意义。

例如,某班有a人,则a必须是正整数。

求代数式的值的步骤:(1) 代入数值;(2) 计算出结果。

9.4 整式一、单项式单项式是由数与字母的积或者字母与字母的积所组成的代数式。

例如,a。

单项式的系数是单项式中的数字因数。

例如,5m。

一个单项式中,所有字母的指数的和叫做这个单项式的实用文档次数。

例如,x²y³。

注意:单项式中不能含有加减运算。

如果分母中含有字母,也算单项式。

二、多项式多项式是由单项式相加或相减而成的代数式。

例如,3x²+2y-5.多项式中次数最高的单项式的次数叫做多项式的次数。

例如,2x³+5x²y-3xy²+4y³的次数是3.多项式是由几个单项式相加而成的代数式。

其中,每个单项式称为多项式的项,不含字母的项称为常数项。

多项式的次数是指最高次项的次数,而一个多项式中的最高次项可能不止一个。

沪教版初一数学知识点整理

沪教版初一数学知识点整理

沪教版初一数学知识点整理初一下册数学《三角形》知识点一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。

三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

七年级沪科数学知识点总结

七年级沪科数学知识点总结

七年级沪科数学知识点总结一、整数1. 正整数和负整数2. 整数的比较和大小关系3. 整数的加法和减法4. 整数的乘法和除法5. 整数的绝对值和相反数二、分数1. 分数的概念和表示2. 分数的化简3. 分数的加法和减法4. 分数的乘法和除法5. 分数和整数的关系6. 分数的大小比较7. 分数的应用问题三、小数1. 小数的概念和表示2. 小数的加法和减法3. 小数的乘法和除法4. 小数和分数的关系5. 小数的大小比较6. 小数的应用问题四、代数表达式1. 代数变量和常数2. 代数表达式的概念和表示3. 代数表达式的加法和减法4. 代数表达式的乘法5. 代数表达式的应用问题五、方程1. 一元一次方程的概念2. 一元一次方程的解法3. 一元一次方程的应用问题4. 一元一次方程组的概念和表示5. 一元一次方程组的解法6. 一元一次方程组的应用问题六、图形1. 平面图形的概念和分类2. 直角三角形和等腰三角形3. 平行四边形和梯形4. 圆的概念和性质5. 圆的周长和面积6. 三角形的周长和面积七、几何变换1. 平移、旋转和翻转2. 几何图形的不变性3. 几何变换的组合4. 几何变换的应用问题八、统计与概率1. 统计图的绘制和分析2. 数据的中心性和离散性3. 概率的概念和表示4. 概率的计算和应用问题以上是七年级数学的主要知识点总结。

在学习过程中,同学们要加强对基础知识的掌握,同时要注重知识的应用和实际解决问题的能力。

通过课堂学习和课后练习,同学们一定能够掌握这些知识,取得优异的成绩。

沪教版七年级数学知识点总结

沪教版七年级数学知识点总结

沪教版七年级数学知识点总结沪教版的数学期末考试就快要到来了,七年级的同学们要如何准备复习呢?接下来是店铺为大家带来的关于沪教版七年级数学的知识点总结,希望会给大家带来帮助。

沪教版七年级数学知识点总结(一)第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:1.正数(position number):大于0的数叫做正数。

2.负数(negation number):在正数前面加上负号“-”的数叫做负数。

3.0既不是正数也不是负数。

4.有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5.数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。

6.相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7.绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8.有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。

沪教版初一数学上册知识点

沪教版初一数学上册知识点

沪教版初一数学上册知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!沪教版初一数学上册知识点天才就是勤奋曾经有人这样说过。

初一数学知识点沪教版

初一数学知识点沪教版

初一数学知识点沪教版学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。

任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。

下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。

七年级数学知识点三角形1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

2、判断三条线段能否组成三角形。

①a+b>c(ab为最短的两条线段)②a-b3、第三边取值范围:a-b4、对应周长取值范围若两边分别为a,b则周长的取值范围是2a如两边分别为5和7则周长的取值范围是145、三角形中三角的关系(1)、三角形内角和定理:三角形的三个内角的和等于1800。

n边行内角和公式(n-2)(2)、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。

注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

(3)、判定一个三角形的形状主要看三角形中角的度数。

(4)、直角三角形的面积等于两直角边乘积的一半。

6、三角形的三条重要线段(1)、三角形的角平分线:1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。

(内心)(2)、三角形的中线:1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

2、三角形有三条中线,它们相交于三角形内一点。

(重心)3、三角形的中线把这个三角形分成面积相等的两个三角形(3)、三角形的高线:1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

2、任意三角形都有三条高线,它们所在的直线相交于一点。

七年级沪科版数学重点知识点归纳

七年级沪科版数学重点知识点归纳

七年级沪科版数学重点知识点归纳在七年级的数学学习中,掌握重要的知识点是非常关键的。

本文将会对沪科版七年级数学的重点知识点进行归纳介绍。

整数的概念与运算
在数学中,整数是十分重要的基础概念。

我们需要学习整数的运算法则及其在实际生活中的应用场景。

整数的加减乘除、乘方与开方等运算也需要掌握。

比例与图形的相似性
比例也是我们数学学习的重要内容之一,需要学习比例的各种性质及其在实际生活中的应用场景。

同时,图形的相似性也是重点之一,需要掌握相似图形的判定、面积比与周长比等概念。

代数式与方程式
代数式与方程式也是七年级数学学习的重点内容,需要学习代数式的基本概念及其运算法则,同时掌握方程式的解法和应用技巧。

函数的概念与性质
在七年级数学学习中,函数也是重要的内容之一。

需要学习函数的基本概念、图形特征以及函数的应用等知识点。

掌握函数的性质对数学学习和实际应用都是有益的。

几何学的基本概念和性质
七年级几何学的学习着重于基本概念和性质的学习。

需要掌握线段、角度、三角形、四边形等图形的基本概念,以及这些图形的性质和特征。

统计学的基本概念
在统计学中,七年级需要学习基本的统计学概念,包括统计数据、频数统计、频率统计等等。

同时,学习数据的收集、整理、分析和呈现也是重要的。

以上为沪科版七年级数学的重点知识点,当然数学知识的学习和掌握是需要不断的练习和巩固的。

希望大家在学习数学的过程中,能够勤奋努力,持之以恒。

沪科版初一数学知识点总结

沪科版初一数学知识点总结

沪科版初一数学知识点总结初一数学下册知识点总结篇一:直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外。

篇二:两点间的距离(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

篇三:正方体(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.篇四:一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13、解一元一次方程:1.解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

(完整版)沪教版七年级数学知识点总结

(完整版)沪教版七年级数学知识点总结

(完整版)沪教版七年级数学知识点总结第九章整式第⼀节整式的概念9.1.2.3、字母表⽰数代数式:⽤括号和运算符号把数或表⽰数的字母连接⽽成的式⼦叫代数式。

单独的数或字母也是代数式。

代数式的书写:1、代数式中出现乘号通常写作“*”或省略不写,但数与数相乘不遵循此原则。

2、数字与字母相乘,数字写在字母前⾯,⽽有理数要写在⽆理数的前⾯。

3、带分数应写成假分数的形式,除法运算写成分数形式。

4、相同字母相乘通常不把每个因式写出来,⽽写成幂的形式。

5、代数式不能含有“=、≠、<、>、≥、≤”符号。

代数式的值:⽤数值代替代数式中的字母,按照代数式的运算关系计算出的结果,叫代数式的值。

注意:1、代数式中省略了乘号,带⼊数值后应添加×。

2、若带⼊的值是负数时,应添上括号。

3、注意解题格式规范,应写“当…..时,原式=……..”.4、在实际问题中代数式所取的值应使实际问题有意义。

9.4整式1、由数与字母的乘积组成的代数式称为单项式。

单独⼀个数或字母也是单项式。

2、系数:单项式中的数字因数叫做这个单项式的系数。

3、单项式的次数:⼀个单项式中所有字母的指数的和叫做这个单项式的次数。

4、多项式:⼏个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

5、多项式的次数:多项式⾥次数最⾼的项的次数叫做这个多项式的次数6、整式:单项式和多项式统称为整式。

9.5合并同类项1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

2、合并同类项:把多项式中的同类项合并成⼀项叫做合并同类项。

⼀个多项式合并后含有⼏项,这个多项式就叫做⼏项式。

3、合并同类项的法则是:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变。

第⼆节9.6整式的加减:去括号法则:(1)括号前⾯是"+"号,去掉"+"号和括号,括号⾥各项的不变号;(2)括号前⾯是"-"号,去掉"-"号和括号,括号⾥的各项都变号。

初一数学沪教版知识点

初一数学沪教版知识点

初一数学沪教版知识点初一下册数学知识点总结1.1正数与负数在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。

1.2有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rationalnumber)。

通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(oppositenumber)。

(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。

沪教版七年级上册的知识点总结.docx

沪教版七年级上册的知识点总结.docx

第九章整式第一节整式的概念9.1字母表示数1、字母可以表示任意的数或符合某种条件的某个数,还可以表示具有某种规律的数,甚至可以表示特定意义的公式。

2、在省略乘号时,要把数字写在字母前面,×用?来代替。

如: 2×a 写成 2aC2r9.2 代数式1、用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。

2、单独的一个数或者一个字母也是代数式。

如:a、03、等号和不等号都不属于运算符号,所以它们都不是代数式9.3代数式的值1、概念:用数值代替代数式里的字母,按代数式中的运算关系计算得出的结果2、注意:(1)如果代数式中省略乘号,代入后要添上“×”1 3(2)如果字母的取值是分数,做乘方运算时要加上括号。

如()2(3)如果字母的取值是负数,代入后也要加上括号(4)如果代数式表示的是一个具体的实际问题,那么不能使代数式失去实际意义。

如某班有 a 人,则 a 必须是正整数3、求代数式的值的步骤:(1)代入数值;(2)计算出结果9.4整式一、单项式a1、单项式的概念:由数与字母的积或者字母与字母的积所组成的代数式。

如42、单项式的类型:①数字与字母相乘或字母与字母相乘组成的式子, 如 2a、ab②单独的一个数;如 -1③单独的一个字母.如m5注意: (1) 单项式中不能含有加减运算(2) 但若分母中含有字母,如m3、单项式的系数:单项式中的数字因数叫做这个单项式的系数.4、如何确定单项式的系数:先将单项式写成数与字母的乘积的形式,再确定。

注意:(1)圆周率π是常数.单项式中出现π时,应看作系数;(2)当一个单项式的系数是 1 或-1 时,“1”通常省略不写;(3)单项式的系数是带分数时,通常写成假分数,如:11x2y写成5x2y.445、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.注意:(1)没有写指数的字母,实际上其指数是 1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.二、多项式1、多项式的概念:几个单项式的和叫做多项式.“几个”是指两个或两个以上.2、多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项.注意:(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:6x22x7 是一个三项式.3、多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.(不是所有项的次数之和)注意:一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.4、多项式没有系数,但对多项式的每一项来说都要系数,都要带上前面的符号5、多项式的排列:按某个字母的指数从大到小的顺序排列,叫降幂排列按某个字母的指数从小到大的顺序排列,叫升幂排列三、整式1、单项式与多项式统称为整式.2、单项式、多项式、整式这三者之间的关系如图所示.即单项式、多项式必是整式,但反过来就不一定成立.3、分母中含有字母的式子一定不是整式.第二节整式的加减9.5合并同类项1、同类项:所含的字母相同,并且相同字母的指数也相同的单项式,几个常数项也叫同类项。

沪教版七年级数学知识点总结

沪教版七年级数学知识点总结

第九章整式第一节整式得概念9、1、2、3、字母表示数代数式:用括号与运算符号把数或表示数得字母连接而成得式子叫代数式。

单独得数或字母也就是代数式。

代数式得书写:1、代数式中出现乘号通常写作“*”或省略不写,但数与数相乘不遵循此原则。

2、数字与字母相乘,数字写在字母前面,而有理数要写在无理数得前面。

3、带分数应写成假分数得形式,除法运算写成分数形式。

4、相同字母相乘通常不把每个因式写出来,而写成幂得形式。

5、代数式不能含有“=、≠、<、>、≥、≤”符号。

代数式得值:用数值代替代数式中得字母,按照代数式得运算关系计算出得结果,叫代数式得值。

注意:1、代数式中省略了乘号,带入数值后应添加×。

2、若带入得值就是负数时,应添上括号。

3、注意解题格式规范,应写“当…、、时,原式=……、、”、4、在实际问题中代数式所取得值应使实际问题有意义。

9、4整式1、由数与字母得乘积组成得代数式称为单项式。

单独一个数或字母也就是单项式。

2、系数:单项式中得数字因数叫做这个单项式得系数。

3、单项式得次数:一个单项式中所有字母得指数得与叫做这个单项式得次数。

4、多项式:几个单项式得与叫做多项式。

其中,每个单项式叫做多项式得项,不含字母得项叫做常数项。

5、多项式得次数:多项式里次数最高得项得次数叫做这个多项式得次数6、整式:单项式与多项式统称为整式。

9、5合并同类项1、同类项:所含字母相同,并且相同字母得指数也相同得项叫做同类项。

2、合并同类项:把多项式中得同类项合并成一项叫做合并同类项。

一个多项式合并后含有几项,这个多项式就叫做几项式。

3、合并同类项得法则就是:把同类项得系数相加得结果作为合并后得系数,字母与字母得指数不变。

第二节9、6整式得加减:去括号法则:(1)括号前面就是"+"号,去掉"+"号与括号,括号里各项得不变号;(2)括号前面就是"-"号,去掉"-"号与括号,括号里得各项都变号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章整式第一节整式的概念9.1.2.3、字母表示数代数式:用括号和运算符号把数或表示数的字母连接而成的式子叫代数式。

单独的数或字母也是代数式。

代数式的书写:1、代数式中出现乘号通常写作“*”或省略不写,但数与数相乘不遵循此原则。

2、数字与字母相乘,数字写在字母前面,而有理数要写在无理数的前面。

3、带分数应写成假分数的形式,除法运算写成分数形式。

4、相同字母相乘通常不把每个因式写出来,而写成幂的形式。

5、代数式不能含有“=、≠、<、>、≥、≤”符号。

代数式的值:用数值代替代数式中的字母,按照代数式的运算关系计算出的结果,叫代数式的值。

注意:1、代数式中省略了乘号,带入数值后应添加×。

2、若带入的值是负数时,应添上括号。

3、注意解题格式规范,应写“当…..时,原式=……..”.4、在实际问题中代数式所取的值应使实际问题有意义。

整式9.4.1、由数与字母的乘积组成的代数式称为单项式。

单独一个数或字母也是单项式。

2、系数:单项式中的数字因数叫做这个单项式的系数。

3、单项式的次数:一个单项式中所有字母的指数的和叫做这个单项式的次数。

4、多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

5、多项式的次数:多项式里次数最高的项的次数叫做这个多项式的次数6、整式:单项式和多项式统称为整式。

9.5合并同类项1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项。

一个多项式合并后含有几项,这个多项式就叫做几项式。

3、合并同类项的法则是:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变。

第二节9.6整式的加减:去括号法则:(1)括号前面是+号,去掉+号和括号,括号里各项的不变号;(2)括号前面是-号,去掉-号和括号,括号里的各项都变号。

添括号法则(1)所添括号前面是“+”号,括到括号里的各项都不变符号;(2)所添括号前面是“-”号,括到括号里的各项都改变符号。

第三节整式的乘法9.7同底数幂的乘法、9.8幂的乘方、9.9积的乘方:①同底数幂的乘法mnm+n(m、n都是正整数=a)。

a·a同底数幂相乘,底数不变,指数相加。

②幂的乘方与积的乘方mnmn(m、n)都是正整数=a(a)幂的乘方,底数不变,指数相乘。

nnn(n都是正整数=a) b (ab)积的乘方等于各因式乘方的积。

③同底数幂的除法mnm-n(a≠0,mn都是正整数,且m=a>n) a ÷a同底数幂相除,底数不变,指数相减。

0=1(a≠0)任何一个不等于零的数的零指数幂都等于1。

a 1 任何一个不等零的数是正整数a= (a≠0,p)p a-pp-p(p的是正整数)指数幂,等这个数的指数幂的倒数。

9.10整式的乘法:⑴单项式与单项式相乘:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

⑵单项式与多项式相乘:单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加,即。

注意:单项式乘多项式实际上是用分配率向单项式相乘转化。

⑶多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(a+b)(m+n)=am+bm+an+bn。

第四节、乘法公式9.11平方差公式①内容:(a+b)·(a-b)=a2-b2②意义:两个数的和与这两个数的差的乘积,等于这两个数的平方差。

③特征:Ⅰ.左边是两个二项式相乘,这两项中有一项相同,另一项互为相反数;Ⅱ.右边是乘式中两项的平方差;Ⅲ.公式中的a和b可以使有理数,也可以是单项式或多项式。

④几何意义:平方差公式的几何意义也就是图形变换过程中面积相等的表达式。

⑤拓展:Ⅰ.立方和公式:(a+b)(a2-ab+b2)=a3+b3;Ⅱ.立方差公式:(a-b)(a2+ab+b2)=a3-b3。

(a-b)(a+ab+ab2+…+a2b+ab+b)=a-b。

9.12完全平方公式:①内容:(a+b)2=a2+b2+2ab;(a-b)2=a2+b2-2ab。

②意义:两数和的平方,等于它们的平方和,加上它们积的2倍。

两数差的平方,等于它们的平方和,减去它们积的2倍。

③特征:Ⅰ.左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍,可简记为“首平方,尾平方,积的2倍在中央。

”Ⅱ.公式中的a、b可以是单项式,也可以是多项式。

④推广:Ⅰ.(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;Ⅱ.(a+b)3=a3+b3+3a2b+3ab2;Ⅲ.(a-b)3=a3-b3-3a2b+3ab2。

第五节因式分解⑴因式分解的意义:把一个多项式化为几个整式积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,即多项式化为几个整式的积。

注意:①因式分解的要求:Ⅰ.结果一定是积的形式,分解的对象是多项式;Ⅱ.每个因式必须是整式;Ⅲ.各因式要分解到不能分解为止。

②因式分解与整式乘法的关系:是两种不同的变形过程,即互逆关系。

9.13提取公因式法:①提公因式法分解因式:ma+mb+mc=m(a+b+c),这个变形就是提公因式法分解因式。

这里的m可以代表单项式,也可以代表多项式,m称为公因式。

确定公因式方法:系数:取多项式各项系数的最大公约数。

字母(或多项式因式):取各项都含有的字母(或多项式因式)的最低次幂。

9.14公式法②利用公式法分解因式:Ⅰ.平方差公式:a2-b2=(a+b)·(a-b)。

完全平方公式:a2+b2+2ab=(a+b)2;.Ⅱ.a2+b2-2ab=(a-b)2。

Ⅲ.立方和与立方差公式:a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

注意:(1)公式中的字母a、b可代表一个数、一个单项式或一个多项式。

(2)选择使用公式的方法:主要从项数上看,若多项式是二项式应考虑平方差或立方和、立方差公式;若多项式是三项式,可考虑用完全平方公式。

9.15.十字相乘法:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。

x2+(a+b)x+ab=(x+a)(x+b)。

9.16分组分解法:Ⅰ.将多项式的项适当的分组后,组与组之间能提公因式或运用公式分解。

Ⅱ.适用范围:适合四项以上的多项式的分解。

分组的标准为:分组后能提公因式或分组后能运用公式。

④其他方法:.求根公式法:若ax2+bx+c=0(a≠0)的两根是x1、x2,ax2+bx+c=a(x-x1)(x-x2)。

⑶因式分解的一般步骤及注意问题:①对多项式各项有公因式时,应先提供因式。

②多项式各项没有公因式时,如果是二项式就考虑是否符合平方差公式;如果是三项式就考虑是否符合完全平方公式或二次三项式的因式分解;如果是四项或四项以上的多项式,通常采用分组分解法。

分解因式,必须进行到每一个多项式都不能再分解为止。

整式除法:第六节9.17同底数幂的除法同底数幂相除,底数不变,指数相减。

任何不等于零的数的零次幂为1,既:9.18单项式除以单项式:单项式与单项式相除的法则:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:①两个单项式相除,只要将系数及同底数幂分别相除即可。

②只在被除式里含有的字母不不要漏掉。

9.19多项式与单项式相除:多项式与单项式相除的法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,即(ma+mb+mc+dm)÷m=am÷m+bm÷m+cm÷m+dm÷m。

注意:这个法则的使用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这样计算的。

⑶整式的混合运算:关键是注意运算顺序,先乘方,在乘除,后加减,有括号时,先去小括号,再去中括号,最后去大括号,先做括号里的。

※内容整理mnm+n·a=aa幂mnmn )=a(a提公因式法单项式的乘法因的式运多项式的乘法分nnn (ab)=ab 算乘法公式解公式法m-nmn÷aa=a多项式除以单项式单项式的除法第十章分式10.1、(1)、分式的意义两个整式A/B相除,即A÷B时,可以表示为A/B.如果B叫做分B叫做分式的分子,A叫做分式。

A/B中含有字母,那么.式的分母。

如果一个分式的分母为零,那么这个分式无意义。

、分式的基本性质2)(10.2整式整式和分式统称为有理式::即有理式分式分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且B、C≠0)①约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.②分式的约分步骤:(1)如果分式的分子和分母都是或者是几个乘积的形式,将它们的公因式约去(2)分式的分子和分母都是将分子和分母分别,再将公因式约去.注:公因式的提取方法:取分子和分母系数的,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.③一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式。

④通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分。

再将所有分,先求出所有分式分母的最简公分母:⑤分式的通分步骤.相应,.式的分母变为最简公分母同时各分式按照分母所扩大的倍数扩大各自的分子.相同字,注:最简公分母的确定方法:系数取各因式系数的最小公倍数母的及单独字母的幂的乘积。

约分和通分的依据都是分式的基本性质。

注:(1)分式的约分和通分都是互逆运算过程。

(2)、分式的运算:10.3把,:①分式的乘法法则两个分式相乘,把分子相乘的积作为积的分子分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd:②分式的除法法则把除式的分子和分母颠倒位置后再与被除式相乘Ⅰ.两个分式相除, a/b÷c/d=ad/bc :异分除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/cⅡ.母分式通分时,关键是确定公分母,通常取各分母所有因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。

10.4分式的加减③同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c④异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd分式方程:10.5分母中含有未知数的方程叫做分式方程. ①分式方程的意义::分式方程的解法②将分式方程化为整式方方程两边同时乘以最简公分母,Ⅰ.去分母();程;.按解整式方程的步骤求出未知数的值Ⅱ因为在把分式方程化为整式求出未知数的值后必须验根,Ⅲ.验根( ). 可能产生增根,扩大了未知数的取值范围,方程的过程中整数指数幂及其运算10.6※内容整理约分式的性通分乘除法分式运算式加减法分式方程第十一章图形的运动1、平移定义和规律(1)平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(Translation)。

相关文档
最新文档