概率论单元测试三

合集下载

概率论和统计学的原理单元测试

概率论和统计学的原理单元测试

概率论和统计学的原理单元测试概率论和统计学是现代数学中非常重要的分支,在各个领域都有着广泛的应用。

为了检验学生对概率论和统计学原理的掌握程度,下面将进行一次单元测试,涵盖基本概念、常见概率分布、假设检验等内容。

请认真作答,答案要清晰明了。

1.下面哪个不是概率论的基本概念?A. 样本空间B. 事件C. 随机变量D. 标准差2.设A、B为两个事件,P(A)=0.4,P(B)=0.3,P(A∩B)=0.1,则P(A∪B)等于多少?A. 0.6B. 0.7C. 0.8D. 0.93.对于正态分布N(μ,σ²),当μ=0,σ²=1时,即标准正态分布,其累积分布函数值Z(0)=?A. 0B. 0.25C. 0.5D. 14.某地区男生身高服从均值175cm,标准差6cm的正态分布,某男生身高超过180cm的概率约为多少?A. 16%B. 21%C. 34%D. 42%5.在显著性水平α=0.05下,进行双侧假设检验,检验统计量为Z=2.33,对应的P值约为多少?A. 0.0107B. 0.0256C. 0.0477D. 0.08236.在一次投掷公平硬币的实验中,出现正面次数大致符合什么分布?A. 泊松分布B. 二项分布C. 正态分布D. 均匀分布7.对于统计推断的置信区间,95%置信水平对应的置信区间是多少?A. (μ-1.96σ, μ+1.96σ)B. (μ-1.64σ, μ+1.64σ)C. (μ-1.28σ, μ+1.28σ)D. (μ-2.58σ, μ+2.58σ)8.下列哪种分布适用于描述单位时间内到达事件的次数?A. 泊松分布B. 二项分布C. 正态分布D. 负二项分布9.在一个回归模型中,拟合优度R²的取值范围是?A. [0, 1]B. (-∞, +∞)C. [0, ∞)D. (-∞, 1]10.在两个总体均值差异检验中,当样本容量增大时,t检验统计量的分布会趋近于什么分布?A. t分布B. 均值分布C. 正态分布D. 偏态分布希望通过这次单元测试,能够检验出你对概率论和统计学原理的掌握程度。

高中数学必修三第三章《概率》单元测试题

高中数学必修三第三章《概率》单元测试题

高中数学必修三第三章《概率》单元测试题(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P16.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-10.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间[0,20) [20,40) [40,60) [60,80) [80,100) (分钟)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.高中数学必修三第三章《概率》单元测试题参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一 3 0二 2 1三 1 2四0 3对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20) [20,40) [40,60) [60,80) [80,100) 人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=.答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为. 【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量100~150 150~200 200~250 250~300 (单位:mm)概率0.12 0.25 0.16 0.14(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.。

概率论单元测试题标准答案

概率论单元测试题标准答案

概率论单元测试题第一章 预备知识第二章 随机事件一、填空题1、在0,1,2,3,4中任取三个,能排成是偶数的三位数有 30 个。

个位数有3种排法,十位数、百位数共有24P ,计有36种排成是偶数。

再减去0在百位上,个位上有2种排法,十位上有3种排法。

所以有30个三位数的偶数。

2、有三本不同的数学书、五本不同的物理书,从中任取两本数学书、三本物理书,有 30 种取法。

从三本不同的数学书任取两本数学书有23C ,从五本不同的数学书任取三本数学书有35C ,所以有301233451223=⨯⨯⨯⨯⋅⨯⨯ 3、设A ,B ,C 表示三个事件,则C B A 表示A 发生且B 和C 都不发生事件。

4、设A ,B ,C 表示三个事件,则该三个事件中至少有一个出现用C B A表示。

5、设{}6,5,4,3,2,1=U 、{}4,3,2=A 、{}5,4,3=B ,则=B A {}6,5,4,3,1。

因为{}6,5,1=A ,{}5,4,3=B ,所以=B A {}6,5,4,3,1 二、选择题1、由0,1,2,3,4,5能组成 C 个没有重复数字的五位数。

A 、66PB 、56PC 、4515P PD 、55P因为万位上有15P 种排法,其余四个位上有45P 种排法,所以有4515P P 个没有重复数字的五位数。

故选C 。

2、从100件产品中抽出4件进行检查,有 B 种不同的抽取方法。

A 、4100PB 、4100C C 、100100PD 、44C 因为这是一个组合问题,所以选B 。

3、设{}6,5,4,3,2=U 、{}4,3,2=A 、{}5,4,3=B ,则=B A A 。

A 、{}5B 、{}6,5C 、 {}4,3D 、{}2因为=A {}6,5,{}5,4,3=B ,所以=B A {}5。

选A4、向指定的目标射三枪。

以A ,B ,C 分别表示事件“第一、二、三枪击中目标”。

则C B A 表达是下列 C 事件。

北师大新版数学九年级上学期《第3章概率的进一步认识》单元测试

北师大新版数学九年级上学期《第3章概率的进一步认识》单元测试

北师大新版数学九年级上学期《第 3 章概率的进一步认识》单元测试一.选择题(共12 小题)1.在某校运动会 4×400m 接力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰巧抽中相邻赛道的概率为()A.B.C.D.2.有大小、形状、颜色完好同样的 3 个乒乓球,每个球上分别标有数字1,2,3 中的一个,将这 3 个球放入不透明的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.B.C.D.3.小茜课间活动中,上午大课间活动时能够先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A.B.C.D.4.在一个不透明的袋子里共有 2 个黄球和 3 个白球,每个球除颜色外都同样,小亮从袋子中随意摸出一个球,结果是白球,则下边对于小亮从袋中摸出白球的概率和频次的说明正确的选项是()A.小亮从袋中随意摸出一个球,摸出白球的概率是 1B.小亮从袋中随意摸出一个球,摸出白球的概率是0C.在此次实验中,小亮摸出白球的频次是 1D.由此次实验的频次去预计小亮从袋中随意摸出一个球,摸出白球的概率是 1 5.点 P 的坐标是( x,y),从﹣ 3、﹣ 2、0、2、3 这五个数中任取一个数作为x 的值,再从余下的四个数中任取一个数作为y 的值,则点 P(x,y)在平面直角坐标系中第四象限内的概率是()A.B.C.D.6.同时转动以下图的两个转盘,则转盘停止转动后,指针同时落在红色地区的概率为()A.B.C.D.7.从﹣ 2,﹣1,2 这三个数中任取两个不一样的数相乘,积为正数的概率是()A.B.C.D.8.从 3、1、﹣ 2 这三个数中任取两个不一样的数作为P 点的坐标,则 P 点恰巧落在第四象限的概率是()A.B.C.D.9.某中学初三年级四个班,四个数学老师分别任教不一样的班.期末考试时,学校安排一致监考,要求同年级数学老师互换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.1210.已知 | a| =2,| b| =3,则 | a﹣ b| =5 的概率为()A.0B.C.D.11.从 2 种不一样样式的衬衣和 2 种不一样样式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1B.2C.3D.412.不透明的袋子里装有 2 个红球和 1 个白球,这些球除了颜色外都同样.从中随意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色同样的概率是()A.B.C.D.二.填空题(共7 小题)13.甲、乙、丙 3 名学生随机排成一排摄影,此中甲排在中间的概率是.14.在一个不透明的布袋中装有标着数字2,3,4,5 的 4 个小球,这 4 个小球的材质、大小和形状完好同样,现从中随机摸出两个小球,这两个小球上的数字之积大于 9 的概率为15.从 2019 年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,能够依据高校有关专业的选课要乞降自己兴趣、理想、优势,从思想政治、历史、地理、物理、化学、生物 6 个科目中,自主选择3 个科目参加等级考试.学生 A 已选物理,还从思想政治、历史、地理 3 个文科科目中选 1能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.从﹣ 2,﹣ 8,5 中任取两个不一样的数作为点的横纵坐标,该点在第三象限的概率为.17.同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数同样的概率是.18.某批足球的质量查验结果以下:抽取的蓝球数 n 100 200 400 600 800 1000 1200优等品频数 m 93 192 380 561 752 941 1128优等品频次从这批足球中,随意抽取的一只足球是优等品的概率的预计值是.bx c( a≠ 0)与 x 轴有两个交点,那么以该抛物线的219.假如一条抛物线 y=ax + +极点和这两个交点为极点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数 a、b、c 为绝对值不大于 1 的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.三.解答题(共9 小题)20.一个不透明的口袋里装有分别标有汉字“书”、“香”、“历”、“城”的四个小球,除汉字不一样以外,小球没有任何差别,每次摸球前先搅拌均匀.( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为.(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求拿出的两个球上的汉字能构成“历城”的概率.21.“食品安全”遇到全社会的宽泛关注,济南市某中学对部分学生就食品安全知识的认识程度,采纳随机抽样检查的方式,并依据采集到的信息进行统计,绘制了下边两幅尚不完好的统计图.请你依据统计图中所供给的信息解答以下问题:( 1)接受问卷检查的学生共有人,扇形统计图中“基本认识”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生 900 人,请依据上述检查结果,预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数;( 4)若从对食品安全知识达到“认识”程度的2个女生和2个男生中随机抽取 2人参加食品安全知识比赛,请用树状图或列表法求出恰巧抽到 1 个男生和 1 个女生的概率.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为: A.唐诗; B.宋词; C.论语; D.三字经.比赛形式为两人抗衡赛,即把四种比赛项目写在 4 张完好同样的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只好抽取一次)比赛时,小红和小明分到一组.( 1)小明先抽取,那么小明抽到唐诗的概率是多少?(2)小红善于唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不一样的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗?23.小明手中有一根长为5cm 的细木棒,桌上有四个完好同样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、 4、5(单位: cm).小明从中随意抽取两个信封,而后把这 3 根细木棒首尾按序相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出剖析过程)24.如图,有一个能够自由转动的转盘被均匀分红 3 个扇形,分别标有 1、2、3 三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束获得一组数(若指针指在分界限时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的全部结果;(2)求每次游戏结束获得的一组数恰巧是方程 x2﹣3x+2=0 的解的概率.25.某工厂甲、乙两个部门各有职工200 人,为认识这两个部门职工的生产技术状况,有关部门进行了抽样检查,过程以下.从甲、乙两个部门各随机抽取20 名职工,进行了生产技术测试,测试成绩(百分制,单位:分)以下:甲: 78 86 74 81 75 76 87 70 75 9075 79 81 70 75 80 85 70 83 77乙: 92 71 83 81 72 81 91 83 75 8280 81 69 81 73 74 82 80 70 59整理、描绘数据按以下分数段整理、描绘这两组样本数据:成绩 x 50≤x≤59 60≤x≤69 70≤x≤ 79 80≤x≤89 90≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6(说明:成绩 80 分及以上为生产技术优异, 70﹣﹣ 79 分为生产技术优异, 60﹣﹣69 分为生产技术合格)依据上述表格绘制甲、乙两部门职工成绩的频数散布图.剖析数据两组样本数据的均匀数、中位数、众数以下表所示:部门均匀数中位数众数甲 78.35 77.5 75乙7881(1)请将上述不完好的统计表和统计图增补完好;(2)请依据以上统计过程进行以下推测;①预计乙部弟子产技术优异的职工人数是多少;②你以为甲、乙哪个部门职工的生产技术水平较高,说明原因.(起码从两个不一样的角度说明推测的合理性)26.某商场在端午节时期展开优惠活动,凡购物者能够经过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A 地区时,所购置物件享受 9 折优惠、指针指向其余地区无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个地区的字母同样,所购置物件享受8 折优惠,其余状况无优惠.在每个转盘中,指针指向每个区城的可能性同样(若指针指向分界限,则从头转动转盘)( 1)若顾客选择方式一,则享受9 折优惠的概率为;( 2)若顾客选择方式二,请用树状图或列表法列出全部可能,并求顾客享受8折优惠的概率.27.合肥地铁一号线的开通运转给合肥市民出行方式带来了一些变化,小朱和小张准备利用课余时间,以问卷的分式对合肥市民的出行方式进行检查,如图是合肥地铁一号线图(部分),小朱和小张分别从塘西河公园站(用 A 表示)、金斗公园站(用 B 表示)、云谷路站(用 C 表示)、万达城站(用 D 表示)这四站中,随机选用一站作为检查的站点.(1)在这四站中,小朱选用问卷检查的站点是万达城站的概率是多少?(2)求小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率.28.张三同学扔掷一枚骰子两次,两次所扔掷的点数分别用字母m、 n 表示(1)求使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率;(2)求使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率.参照答案一.选择题1.D.2.C.3.A.4.C.5.A.6.A.7.C.8.B.9.B.10.B.11.D.12.B.二.填空题13.14..15..16..17.18..19..三.解答题20.解:( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为,故答案为:;( 2)列表以下:书香历城书(书,香)(书,历)(书,城)香(香,书)(香,历)(香,城)历(历,书)(历,香)(历,城)城(城,书)(城,香)(城,历)共有 12 种等可能的结果数,此中拿出的两个球上的汉字能构成“历城”的结果数为 2,因此拿出的两个球上的汉字能构成“历城”的概率═=.21.解:( 1)30÷50%=60,因此接受问卷检查的学生共有60 人;扇形统计图中“基本认识”部分所对应扇形的圆心角的度数为×360°=90°;故答案为 60;90°;(2)“认识”部分的人数 =60﹣15﹣ 30﹣10=5,条形统计图为:(3) 900×=300,因此预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数为 300 人;( 4)画树状图为:(分别用A、B 表示两名女生,用C、D 表示两名男生)共有 12 种等可能的结果数,此中恰巧抽到 1 个男生和 1 个女生的结果数为8,因此恰巧抽到 1 个男生和 1 个女生的概率 = =.22.解:( 1)小明先抽取,那么小明抽到唐诗的概率为;( 2)小红的想法不对.原因以下:画树状图为:共有 12 种等可能的结果数,此中红明抽到唐诗的结果数为3,因此小红抽中唐诗的概率= =,因此小明抽到唐诗的概率和小红抽到唐诗的概率同样大.23.解:画树状图以下:由树状图可知,共有12 种等可能结果,此中能围成三角形的结果共有10 种,因此能搭成三角形的概率为=.24.解:( 1)列表以下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)( 2)全部等可能的状况数为 9 种,此中是 x2﹣3x+2=0 的解的为( 1,2),( 2,1)共 2 种,则 P是方程解= .25.解:( 1)补全图表以下:成绩 x50≤ x≤59 60≤x≤69 70≤x≤ 79 80≤x≤8990≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6 10 2( 2)①预计乙部弟子产技术优异的职工人数是200×=120 人;②甲或乙,1°、甲部弟子产技术测试中,均匀分较高,表示甲部门职工的生产技术水平较高;2°、甲部弟子产技术测试中,没有技术不合格的职工,表示甲部门职工的生产技能水平较高;或 1°、乙部弟子产技术测试中,中位数较高,表示乙部门职工的生产技术水平较高;2°、乙部弟子产技术测试中,众数较高,表示乙部门职工的生产技术水平较高.26.解:( 1)若选择方式一,转动转盘甲一次共有四种等可能结果,此中指针指向 A 地区只有 1 种状况,∴享受 9 折优惠的概率为,故答案为:;( 2)画树状图以下:由树状图可知共有12 种等可能结果,此中指针指向每个地区的字母同样的有 2 种结果,因此指针指向每个地区的字母同样的概率,即顾客享受8折优惠的概率为=.27.解:( 1)小朱选用问卷检查的站点是万达城站的概率=;( 2)画树状图为:共有 16 种等可能的结果数,此中小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的结果数为6,因此小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率= =.28.解:( 1)画树状图为:共有 36 种等可能的结果数,此中知足△ =m2﹣ 8n≥0 的结果数为 10,因此使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率 = = ;( 2)知足△=n2﹣ 4m=0 的结果数为 2,因此使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率 = =.。

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。

(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)

(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)

一、选择题1.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率2.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.163.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a,则a的值是不等式组352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x-+=的实数解的概率为().A.17B.27C.37D.474.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.455.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C2D.346.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个 B .12个 C .8个 D .不确定 7.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是( )A .29B .13C .59D .238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( ) A .0.1 B .0.2 C .0.3 D .0.69.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.510.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )A .32个B .36个C .40个D .42个11.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有6个,黄、白色小球的数量相同,为估计袋中黄色小球的数量,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再搅匀多次试验发现摸到红色的频率是18,则估计黄色小球的个数是( )A .21B .40C .42D .4812.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为( )A .49B .13C .12D .23二、填空题13.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.14.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.15.从“武汉加油!中国加油!”这句励志句中任选一个汉字,这个字是“油”的概率是___________.16.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.17.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)18.在一个不透明的袋子里装有4个白球,若干个黄球,每个球除颜色外均相同,将球搅匀,从中任意摸出一个球,摸到黄球的概率为45,则袋子内共有球____个.19.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.20.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题21.一个不透明的口袋里装有分别标有汉字“优”、“秀”、“学”、“生”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“优”的的概率是______;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“优秀”或“学生”的概率.22.电视台为了开展线上“百人合唱一首歌”的“云演出”活动,需招募青少年歌手.甲、乙、丙、丁报名参加了应聘活动,其中甲、乙为男歌手,丙、丁为女歌手.现对这四名歌手采取随机抽取的方式进行线上面试.(1)若随机抽取一名歌手,求恰好抽到丁的概率;(2)若随机抽取两名歌手,请用列表或画树状图表示所有可能的结果,并求出恰好抽到一男一女的概率.23.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是_________;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率.24.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)计算平局的概率.(3)刘凯说:“这种规则不公平”,你认同他的说法吗?请说明理由.(4)若你认为不公平,请你帮他们修改规则使游戏公平?25.平定县位于山西中部东侧,是三晋东大门.境内山川秀丽,有著名旅游景区娘子关,有名扬三晋的冠山古书院,建于秦长城一百年之前的周关长城,省级森林公园药林寺等等,这些都是人们周末游的好去处,小明计划某个周末和妹妹一起去旅游,他收集了如图所示四个景点的卡片,卡片分别用N,G,C,Y表示,卡片大小、形状及背面完全相同,通过游戏规则,选择景点,请用列表法或画树状图的方法,求下列随机事件的概率:(1)若选择其中一个景点游戏规则:把这四张图片背面朝上洗匀后,妹妹从中随机抽取一张,作好记录后,将图片放回洗匀,哥哥再抽取一张求两人抽到同一景点的概率;(2)若选择其中两个景点,游戏规则:把这四张图片背面朝上洗匀后,妹妹和哥哥从中各随机抽取一张(不放回).求两人抽到娘子关和固关长城的概率.26.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格(如图②),通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为22⨯的网格图,它可表示不同信息的总个数为________;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n n⨯的网格图来表示个人身份信息,若该校师生共506人,则n的最小值为________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333≈,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 3.B解析:B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩①② 解①得,2x >-,解②得,34x >-. ∴34x >-. ∵a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解, ∴0,1,2,3a =.方程23120x x -+=,解得11x =,22x =. ∵a 不是方程232x x -+的解,∴0a =或3.∴满足条件的a 的值为1,2(2个).∴概率为27. 故选B .4.C解析:C【解析】试题 这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C .考点:1.概率公式;2.中心对称图形. 5.B解析:B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】 解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x . 则正方形的边长是(22)x +.则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=. ()2221241122x x ++=, 故选:B .【点睛】 本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.6.C解析:C 【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为39=13,故选:B.【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】 本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.C解析:C【分析】根据概率公式计算即可得到结论.【详解】解:A 、∵α>90°,900.25360360α∴>=,故A 正确; B 、∵α+β+γ+θ=360°,α>β+γ+θ, 1800.5360360α∴>=,故B 正确; C 、∵α-β=γ-θ,∴α+θ=β+γ,∵α+β+γ+θ=360°,∴α+θ=β+γ=180°, 1800.5360︒︒∴= ∴指针落在红色或紫色区域的概率和为0.5,故C 错误;D 、∵γ+θ=180°,∴α+β=180°,1800.5360∴= ∴指针落在红色或黄色区域的概率和为0.5,故D 正确;故选:C .【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.10.A解析:A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x 个,根据=黑球个数摸到黑球次数小球总数摸球总次数得: 8808400x =+ 解得:x=32.经检验得x=32是方程的解.答:盒中大约有白球32个.故选;A .【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11.A解析:A【分析】 根据多次试验发现摸到红球的频率是18,则可以得出摸到红球的概率为18,再利用红色小球有6个,黄、白色小球的数目相同进而表示出黄球概率,得出答案即可.【详解】设黄球的数目为x ,则黄球和白球一共有2x 个, ∵多次试验发现摸到红球的频率是18,则得出摸到红球的概率为18, ∴662x +=18, 解得:x =21, 经检验x=21是所列方程的根,则黄色小球的个数是21个.故选:A .【点睛】本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黄色小球的数目是解题关键.12.D解析:D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:4263=;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题13.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几解析:1 5【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=,∴它停在黑色区域的概率是15.故答案为:15.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14.【分析】先把分式方程化为整式方程解整式方程得到x=且x≠2利用有理数的整除性得到a=2或3然后根据概率公式求解【详解】把分式方程去分母得ax﹣2﹣(x﹣2)=6∴(a﹣1)x=6∵分式方程有整数解∴解析:13.【分析】先把分式方程化为整式方程,解整式方程得到x =61a -且x ≠2,利用有理数的整除性得到a =2或3,然后根据概率公式求解. 【详解】把分式方程26122ax x x --=--去分母得ax ﹣2﹣(x ﹣2)=6, ∴(a ﹣1)x =6, ∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.15.【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】解:∵在武汉加油!中国加油!这8个字中油字有2个∴这句话中任选一个汉字这个字是油的概率是故答解析:14【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】解:∵在“武汉加油!中国加油!”这8个字中,“油”字有2个, ∴这句话中任选一个汉字,这个字是“油”的概率是21=84, 故答案为:14. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 16.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球上是写有美丽二字的结果数然后根据概率公式求解【详解】(1)用1234别表示美丽罗山画树形图如下:由树形图可知所有等可能的情况有16种其中解析:1 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,∴P(美丽)21168==.故答案为:18.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.99【分析】根据产品合格的频率已达到09911保留两位小数所以估计合格件数的概率为099【详解】解:合格频率为:09911保留两位小数为099则根据产品合频率估计该产品合格的概率为099故答案为09解析:99【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.18.20【分析】设袋子内共有球x个利用概率公式得到然后利用比例性质求出x即可【详解】解:设袋子内共有球x个根据题意得解得x=20经检验x=20为原方程的解即袋子内共有球20个故答案为20【点睛】本题考查解析:20设袋子内共有球x个,利用概率公式得到445xx-=,然后利用比例性质求出x即可.【详解】解:设袋子内共有球x个,根据题意得445xx-=,解得x=20,经检验x=20为原方程的解,即袋子内共有球20个.故答案为20.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19.【分析】根据题意微信的顺序是任意的微信给甲乙丙三人的概率都相等均为【详解】∵微信的顺序是任意的∴微信给甲乙丙三人的概率都相等∴第一个微信给甲的概率为故答案为【点睛】此题考查了概率的求法:如果一个事件解析:1 3【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为13.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为13.故答案为13.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题21.(1)14;(2)13【分析】(1)直接利用概率公式求解即可;(2)列表法列出所有等可能的结果,从中找到符合条件的结果数,再根据概率公式求解即可;【详解】解:(1)∵共有4个数,∴若从中任取一个球,球上的汉字刚好是“优”的概为14;(2)列出下表:∴按要求能组成“优秀”或“学生”的概率为41 123 ==.【点睛】本题考查了列表法和树状图法,以及用概率公式求解概率;正确掌握知识点是解题的关键;22.(1)14;(2)23【分析】(1)共有4种可能出现的结果,抽到丁的只有1种,可求出抽到丁的概率; (2)用列表法表示所有可能出现的结果,进而求出恰好抽到一男一女的概率. 【详解】解:(1)共有4种可能出现的结果,抽到丁的只有1种, 因此()14P =抽到丁, 故答案为:14; ()2根据题意,列表如下:因为、乙为男歌手,丙、丁为女歌手,所以其中恰好一男一女的结果有8种, 则()82123P ==一男一女, 所以,恰好抽到一男一女的概率是23. 【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提. 23.(1)13;(2)23【分析】(1)用列举法展示所有可能的结果数,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两个兵乒球上的数字之和不小于4的结果数,然后根据概率公式求解. 【详解】(1)可能出现的结果有:()12,,()13,,()23,,共3种, 两个数字都是奇数的只有()13,一种,∴两个乒乓球上的数字都是奇数的概率是13,故答案为:13;(1)画树状图如下:一共有9种可能的结果,其中大于或等于4的有6种,∴两个乒乓球上的数字之和不小于4的概率为:6293=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)见解析,12种;(2)14;(3)认同,见解析;(4)见解析.【分析】(1)根据题意画出树状图,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和等于12的情况数,再根据概率公式即可得出答案;(3)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案;(4)应保证双方赢的概率相同.【详解】解:(1)画树状图:可见,两数和共有12种等可能性;(2)两数和共有12种等可能性,其中平局的情况有3种,∴P(出现平局)31124==;(3)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,P∴(李燕获胜)61 122 ==,P(刘凯获胜)31 124 ==,∵1142<,∴这个游戏规则对双方不公平.(4)游戏规则:(答案不唯一)如:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数等于12,则李燕胜;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).或:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数小于12,则李燕胜;否则就刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)14;(2)16【分析】(1)画树状图,共有16种等可能的结果,其中两人抽到同一景点的结果有4个,则由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两人抽到娘子关和固关长城的结果有2个,则由概率公式求解即可.【详解】解:(1)画树状图如下:由树状图可以看出,所有可能出现的结果共有16种,而且每种结果出现的可能性相同,其中抽到的两个景点相同的结果共有4种,∴P(抽到同一景点)41164==;(2)画树状图如下:。

概率单元测试题及答案大全

概率单元测试题及答案大全

概率单元测试题及答案大全一、选择题1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,下列哪个事件的概率最大?A. 取出红球B. 取出蓝球C. 取出白球D. 取出黑球答案:A2. 投掷一枚公正的硬币,出现正面的概率是多少?A. 0.2B. 0.5C. 0.8D. 1答案:B3. 如果事件A和事件B是互斥的,且P(A)=0.3,P(B)=0.4,那么P(A∪B)是多少?A. 0.1B. 0.3C. 0.7D. 无法确定答案:C二、填空题4. 一个骰子有6个面,每个面出现的概率是________。

答案:1/65. 如果一个事件的概率为0,那么这个事件是________。

答案:不可能事件6. 一个事件的概率为1,表示这个事件是________。

答案:必然事件三、计算题7. 一个袋子里有5个白球和5个黑球,随机取出2个球,求取出的2个球都是白球的概率。

答案:首先计算取出第一个白球的概率为5/10,然后计算在取出第一个白球后,再取出第二个白球的概率为4/9。

所以,两个都是白球的概率为(5/10) * (4/9) = 2/9。

8. 一个班级有30个学生,其中15个男生和15个女生。

随机选择3个学生,求至少有1个女生的概率。

答案:首先计算没有女生的概率,即选择3个男生的概率为(15/30) * (14/29) * (13/28)。

然后用1减去这个概率,得到至少有1个女生的概率为1 - [(15/30) * (14/29) * (13/28)]。

四、简答题9. 什么是条件概率?请给出一个例子。

答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。

例如,如果我们知道一个班级中有50%的学生是左撇子,那么在随机选择一个学生是左撇子的条件下,这个学生是数学专业的学生的概率。

10. 请解释什么是独立事件,并给出一个例子。

答案:独立事件是指一个事件的发生不影响另一个事件发生的概率。

例如,投掷一枚公正的硬币两次,第一次的结果不会影响第二次的结果。

概率论第三章习题及答案

概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(有答案解析)(1)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(有答案解析)(1)

一、选择题1.有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为( )A .13 B .14 C .15 D .162.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a ,则a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x -+=的实数解的概率为( ). A .17 B .27 C .37 D .473.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .15B .25C .35D .454.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( ) A .12 B .56 C .13 D .235.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长能构成等腰三角形的概率是( )A .19B .13C .59D .796.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个 B .12个 C .8个 D .不确定 7.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A .12B .13C .23D .168.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )A .14B .12C .34D .19.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.510.从2,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是( )A .15B .25C .35D .45 11.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是( ) A .10 B .15 C .20 D .3012.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有( )A .6个B .10个C .15个D .30个二、填空题13.疫情防控期间,各学校严格落实测体温进校园的防控要求,某学校开设了A ,B ,C 三个测温通道.某天早晨,小明和小红两位同学随机通过测温通道进入校园,则小明和小红从同一通道进入校园的概率为______.14.大冶市现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为参加全市汉字听写大赛,则恰好选中一男一女两位同学参赛的概率是________________. 15.随机往如图所示的正方形区域内撒一粒豆子,豆子恰好落在空白区域的概率是______.16.乐乐同学有两根长度为4cm ,7cm 的木棒,母亲节时他想自己动手给妈妈钉一个三角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是__________.17.往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________18.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.19.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程20-+=有解的概率是__________。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)

一、选择题1.一个不透明的袋子里装有黄、白、红三种颜色的球,其中黄色16个,白色8个和红色若干,小明通过多次摸球试验后,发现摸到红球的频率稳定在0.5左右,则摸到黄球的概率约为()A.23B.12C.13D.162.掷一枚均匀的硬币两次,两次均为反面朝上的概率是()A.12B.13C.23D.143.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.6人D.4人4.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.345.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.146.2018年10月,开州区举行初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,甲、乙两名同学都抽到化学学科的概率是().A.13B.14C.16D.197.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A .13B .14 C .16 D .1368.从拼音“nanhai”中随机抽取一个字母,抽中a 的概率为( ) A .12B .13C .15D .169.下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为3810.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( ) A .32个B .36个C .40个D .42个11.四个外观完全相同的粽子有三种口味:两个豆沙、一个红枣、一个蛋黄,从中随机选一个是豆沙味的概率为( ) A .14B .13C .12D .112.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为( ) A .34B .23C .12D .14二、填空题13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.14.甲、乙、丙、丁两位同学做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每次都由持球者将球再随机传给其他三人中的某一人,则第二次传球后球回到甲手里的概率是______.15.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____16.布袋中有2个红球.3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是黄球的概率是__________.17.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.18.现有6张正面分别标有数字1,0,1,2,3,4-的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根的概率为____.19.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.20.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有 人,在线答疑所在扇形的圆心角度数是 ; (2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数). (1)小王转动一次转盘指针指向3所在扇形的概率是______________.(2)请你用树状图或列表的方法求一次游戏结束后两数之和是5的概率.23.为发展学生多元能力,某校九年级开设A,B,C,D四门校本选修课程,要求九年级每个学生必须选报且只能选报其中一门.图1,图2是九年(1)班学生A,B,C,D四门校本选修课程选课情况的不完整统计图.请根据图中信息,解答下列问题.(1)求九年(1)班学生的总人数及该班选报A课程的学生人数;(2)在统计的信息中,我们发现九年(1)班的甲同学和乙同学选报了A课程,若从该班选报A课程的同学中随机抽取2名进行选修学习效果的测评,求甲,乙同时被抽中的概率.24.布袋中有红、黄、蓝三种只有颜色不同的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋并搅匀,再摸出一个球,记录下颜色.求摸出的两个球颜色为“一红一黄”的概率.25.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)计算平局的概率.(3)刘凯说:“这种规则不公平”,你认同他的说法吗?请说明理由.(4)若你认为不公平,请你帮他们修改规则使游戏公平?26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据多次摸球试验后,发现摸到红球的频率稳定在0.5左右,可以计算出摸到黄球和白球的概率和为1−0.5=0.5,由此可估计到布袋中的三种球可能共有48个,则利用概率公式即可得出结论.【详解】解:∵通过多次摸球试验后发现,摸到红球的频率稳定在0.5左右,∴摸到黄球和白球的概率和为1−0.5=0.5.则布袋中的三种球可能共有:168480.5+=个,∴摸到黄球的概率约为:161483=.故选:C.【点睛】此题考查了利用频率估计概率,解答此题的关键是掌握频率和概率的关系及概率的计算方法.2.D解析:D【分析】首先根据题意用列举法,即可求得掷一枚均匀的硬币两次,所有等可能的结果,又由两次均为反面朝上的只有1种情况,然后利用概率公式求解即可求得答案.【详解】解:∵掷一枚均匀的硬币两次,等可能的结果有:正正,正反,反正,反反,又∵两次均为反面朝上的只有1种情况,∴两次均为反面朝上的概率是:14.故选:D.【点睛】本题考查了用列举法求概率.注意不重不漏的表示出所有等可能的结果是解此题的关键,注意:概率 所求情况数与总情况数之比.3.D解析:D【分析】根据题意计算求解即可.【详解】由题意知:共40名学生,由表知:P(AB型)=0.10.10.1 0.40.350.10.151.∴本班AB型血的人数=40×0.1=4名.故选D.【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.4.B解析:B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,所以能构成三角形的概率是21 42 =,故选:B.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.构成三角形的基本要求为两小边之和大于最大边.5.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.6.D解析:D【分析】列树状图解答即可.【详解】树状图如下:共有9种等可能的情况,其中甲、乙都抽到化学学科的有1种情况,∴P(甲、乙两名同学都抽到化学学科)=19,故选:D.【点睛】此题考查列树状图求事件的概率,会画树状图,理解题意是解题的关键.7.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比8.B解析:B【解析】【分析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案.【详解】∵nanhai共有6个拼音字母,a有2个,∴抽中a的概率为21=,63故选:B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.B解析:B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:x 取值范围是1x ≥,故选项A 命题错误; B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确; C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D 命题错误; 故答案为B. 【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.10.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个, 根据=黑球个数摸到黑球次数小球总数摸球总次数得:8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11.C解析:C 【分析】根据概率公式用豆沙口味的个数除以粽子的总个数即可得出答案. 【详解】解:∵外观完全相同的粽子有4个,两个豆沙、一个红枣、一个蛋黄, ∴从中随机选一个是豆沙味的概率是2142=. 故选:C . 【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.12.A解析:A【分析】用列举法确定所有等可能的情况,根据落地后至多有一次正面朝下的次数,利用概率公式计算解答.【详解】随机掷一枚质地均匀的硬币两次,共“正、反”,“反、正”,“正、正”,“反、反”,4种情况,落地后至多有一次正面朝下包括“正、反”,“反、正”,“正、正”,3种情况,故至多有一次正面朝下的概率为34.故选:A.【点睛】此题考查了列举法求概率,解题的关键是找到所有的情况.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.14.【分析】画出树状图可得总结果数与传到甲手里的情况数根据概率公式即可得答案【详解】画树状图如下:共有9种等可能的结果其中第二次传球后球回到甲手里的结果有3种∴第二次传球后球回到甲手里的概率为=故答案为解析:1 3【分析】画出树状图,可得总结果数与传到甲手里的情况数,根据概率公式即可得答案.【详解】画树状图如下:共有9种等可能的结果,其中第二次传球后球回到甲手里的结果有3种,∴第二次传球后球回到甲手里的概率为39=13.故答案为:1 3【点睛】本题考查了树状图法计算概率,计算概率的方法有树状图法与列表法,正确的画出树状图是解题关键.15.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164故答案为:1 4 .本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.16.【分析】直接根据概率公式求解【详解】∵袋中有2个红球3个黄球共有5个球∴从袋中任意摸出一个球是黄球的概率是故答案为:【点睛】本题考查了概率公式随机事件A的概率P(A)=事件A可能出现的结果数除以所有解析:3 5【分析】直接根据概率公式求解.【详解】∵袋中有2个红球、3个黄球,共有5个球,∴从袋中任意摸出一个球是黄球的概率是35.故答案为:35.【点睛】本题考查了概率公式,随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17.【分析】先画出树状图求出所有可能出现的结果数再找出选出的2名同学刚好是一男一女的结果数然后利用概率公式求解即可【详解】解:设报名的3名男生分别为ABC2名女生分别为MN则所有可能出现的结果如图所示:解析:3 5【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=123 205.故答案为:35.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.18.【分析】先由一元二次方程x2-2x+a-2=0有实数根得出a的取值范围最后根据概率公式进行计算即可【详解】解:∵一元二次方程x2-2x+a-2=0有实数根∴4-4(a-2)≥0∴a≤3∴a=-101解析:5 6【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,∴4-4(a-2)≥0,∴a≤3,∴a=-1,0,1,2,3.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:56.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.19.【分析】根据题意得出摸出红球的频率继而根据频数=总数×频率计算即可【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40∴口袋中红色球的个数可能是30×40=12个故答案为:12【点睛】本解析:【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=12个.故答案为:12.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.20.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.【详解】解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164.【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)13;(2)29【分析】(1)利用概率公式计算可得;(2)先画树状图展示所有9个等可能的结果数,再找出两个数字之和为5的结果数,由概率公式求解即可.【详解】解:(1)∵转盘被平均分成3个扇形,分别标有1、2、3三个数字,转盘中有3的数字为1个,∴小王转动一次转盘指针指向3所在扇形的概率是13,故答案为:13;(2)画树状图为:共有9个等可能的结果数,其中两个数字之和为5的结果数为2个,∴两个数字之和为5的概率=29.【点睛】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.23.(1)总人数40人,选报A课程的学生人数为4人;(2)16.【分析】(1)利用B的频数和所占百分比计算即可;利用公式计算即可;(2)选用列表法或画树状图法计算即可.【详解】解:(1)九年(1)班学生的总人数是1640%40÷=(人),该班选报A课程的学生人数是4010%4⨯=(人).(2)由(1)得,九年(1)班选报A课程的人数是4,将甲,乙以外的两人记为丙,丁.根据题意,可以列出如下表格:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,J)丁(丁,甲)(丁,乙)(丁,丙)其中他们“甲,乙同时被抽中”的结果有2种.P∴(甲,乙同时被抽中)21 126 ==.∴甲,乙同时被抽中的概率是16.【点睛】本题考查了统计图的计算,列表法或画树状图法求概率,熟练掌握统计图的意义,灵活选择概率的计算方法是解题的关键.24.2 9【分析】先画出树状图,由树状图求得所有等可能的结果数,找出一红一黄的情况数,再利用概率公式,即可求得答案.【详解】解:画树状图得:由树状图可知:共有9种等情况数,其中“一红一黄”的有2种,∴摸出的两个球颜色为“一红一黄”的概率为29.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)见解析,12种;(2)14;(3)认同,见解析;(4)见解析.【分析】(1)根据题意画出树状图,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和等于12的情况数,再根据概率公式即可得出答案;(3)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案;(4)应保证双方赢的概率相同.【详解】解:(1)画树状图:可见,两数和共有12种等可能性;(2)两数和共有12种等可能性,其中平局的情况有3种, ∴P (出现平局)31124==; (3)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,P ∴(李燕获胜)61122==, P (刘凯获胜)31124==, ∵1142<, ∴这个游戏规则对双方不公平. (4)游戏规则:(答案不唯一)如:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数等于12,则李燕胜;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).或:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数小于12,则李燕胜;否则就刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止). 【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比. 26.(1)2,45,20;(2)图见解析,72;(3)16【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=;401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B等次人数为40128218---=,条形统计图补充为:C等次的扇形所对的圆心角的度数20%36072=⨯︒=︒;故答案为72︒;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率21 126 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.。

高三数学第三册概率与统计单元测试

高三数学第三册概率与统计单元测试

高三数学第三册概率与统计单元测试概率,又称或然率、时机率、机率(几率)或能够性,是概率论的基本概念。

以下是查字典数学网为大家整理的高三数学第三册概率与统计单元测试,希望可以处置您所遇到的相关效果,加油,查字典数学网不时陪伴您。

一、依据以下事情发作的能够性,把A、B、C、D、E填入事情后的括号里.1、3团体下棋,肯定有一个是旁观者.()2、恣意一张扑克牌,一定是红桃()3、白昼能见到太阳()4、你能举起300公斤的重物()5、恣意抓一把围棋子,个数是奇数()A.不能够发作B.发作的能够性小于50%C.发作的能够性大于50%D.肯定发作100%E.发作的能够性等于50%二、小新和小丁想应用做一道数字题来决议谁去看球赛,他们叫教员给他们出一道题,假定小新先做出来小新就去,假定小丁先做出小丁就去.这个游戏对双方公允吗?三、七(2)班班长重新选举,小梁和小栋都想被中选,于是全班52人停止投票选举,谁的选票多谁中选.这对双方公允吗?四、选做题1、小阳和小鸣掷一对骰子,假设小阳掷出的骰子点数之和为6,那么加1分,否那么不得分;假设小鸣掷出的点数之和为7,那么加1分;否那么不得分.他们各掷20次,记载每次得分,20次累计分高的为胜,这个游戏对小阳和小鸣双方公允吗?说明你的理由。

2、如图,小明在用白色、黄色和白色的同心圆(半径比为1:2:3)制成的靶子上玩飞镖。

飞镖停留在白色区域中7次,停在别的区域中共13次。

小明说他下一次扔的时分,停在白色区域中的概率是35%。

他说的对吗?为什么?3、将下面事情的字母写在最能代表它的概率的点上。

A.投掷硬币时,失掉一个正面。

B.在一小时内,你步行可以走80千米。

C.给你一个色子中,你掷出一个3。

D.明天太阳会升起来。

4、在学校举行的游艺活动中,数学俱乐部办了个掷色子的游戏。

玩这个游戏要花四张5角钱的票。

一个游戏者掷一次色子。

假设掷到6,游戏者失掉奖品。

每个奖品要破费俱乐部8元。

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(有答案解析)(3)

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(有答案解析)(3)

一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A.12B.23C.25D.354.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C.22D.345.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A.12B.14C.13D.196.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12 B.24 C.1188 D.11767.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”或,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为()A.16B.15C.13D.198.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好9.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.1511.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是()A.10 B.15 C.20 D.3012.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为a,第二次掷出的点数记为c,则使关于x的一元二次方程260ax x c++=有实数解的概率为()A.49B.1736C.12D.1936二、填空题13.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.8414.在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表:试验种子数n(粒)1550100200500100020003000发芽频数m14459218847695219002850发芽频率mn10.80.90.920.940.9520.9520.950.9515.甲、乙、丙、丁两位同学做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每次都由持球者将球再随机传给其他三人中的某一人,则第二次传球后球回到甲手里的概率是______.16.一个不透明的盒子里放置三张完全相同的卡片,分别标有数字1,2,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为_____.17.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程20x ax b-+=有解的概率是__________。

数学高二必修三第三章概率单元测试题

数学高二必修三第三章概率单元测试题

数学高二必修三第三章概率单元测试题数学在迷信开展和现代生活消费中的运用十分普遍,以下是查字典数学网为大家整理的数学高二必修三第三章概率单元测试题,希望可以处置您所遇到的相关效果,加油,查字典数学网不时陪伴您。

一、选择题1.足球竞赛前,裁判通常要掷一枚硬币来决议竞赛双方的场地与首先发球者,其主要缘由是( ).A.让竞赛更富无情味B.让竞赛更具有奥秘颜色C.表达竞赛的公允性 D.让竞赛更有应战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ). A.0 B.1 C.0.5D.不能确定3.关于频率与概率的关系,以下说法正确的选项是( ). A.频率等于概率B.当实验次数很多时,频率会动摇在概率左近C.当实验次数很多时,概率会动摇在频率左近D.实验失掉的频率与概率不能够相等4.以下说法正确的选项是( ).A.一颗质地平均的骰子已延续抛掷了2021次,其中,抛掷出5点的次数最少,那么第2021次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预告说明天下雨的概率是50%.所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.以下说法正确的选项是( ).A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B.从我们班上查找一名未完成作业的先生的概率为0表示我们班上一切的先生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,失掉红球的概率为1%,所以从袋中取至少100次后肯定可以取到红球(每次取后放回,并搅匀)D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面7.下面4个说法中,正确的个数为( ). (1)从袋中取出一只红球的概率是99%,这句话的意思是一定会取出一只红球,由于概率曾经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差异,由于小张对取出一只红球没有掌握,所以小张说:从袋中取出一只红球的概率是50% (3)小李说,这次考试我得90分以上的概率是200% (4)从盒中取出一只红球的概率是0,这句话是说取出一只红球的能够性很小 A.3 B.2 C.1 D.0 10.以下说法正确的选项是( ).A.能够性很小的事情在一次实验中一定不会发作B.能够性很小的事情在一次实验中一定发作C.能够性很小的事情在一次实验中有能够发作D.不能够事情在一次实验中也能够发作二、填空题8.在一个不透明的箱子里放有除颜色外,其他都相反的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个能够事情:_________________.9.掷一枚平均的骰子,2点向上的概率是______,7点向上的概率是______.10.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,假定从中随机地取出1个球,记事情A为取出的是红球,事情B为取出的是黄球,事情C为取出的是蓝球,那么P(A)=______,P(B)=______,P(C)=______.11.有大小、外形、颜色完全相反的5个乒乓球,每个球上区分标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,假设不放回地从中随机延续抽取两个,那么这两个球上的数字之和为偶数的概率是______.12.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为______.13.从下面的6张牌中,一次恣意抽取两张,那么其点数和是奇数的概率为______.14.在一个袋子中装有除颜色外其他均相反的2个红球和3个白球,从中恣意摸出一个球,那么摸到红球的概率是______.三、解答题15.某出版社对其发行的杂志的质量停止了5次读者调查询卷,结果如下:(2)读者对该杂志满意的概率约是多少? (3)从中你能说明频率与概率的关系吗?16.四张质地相反的卡片如下图.将卡片洗匀后,反面朝上放置在桌面上.(1)求随机抽取一张卡片,恰恰失掉数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规那么见信息图.你以为这个游戏公允吗?请用列表法或画树形图法说明理由.17.在一个不透明的盒子里装有只要颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子外面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不时重复上述进程,下表是实验中的一组统计数据:(2)假设摸一次,你到白球的概率P(白球)=______; (3)试预算盒子里黑、白两种颜色的球各有多少只?最后,希望小编整理的数学高二必修三第三章概率单元测试题对您有所协助,祝同窗们学习提高。

数学概率统计单元测试

数学概率统计单元测试

数学概率统计单元测试数学概率统计是一门研究随机事件及其规律的学科,它在现实生活中有着广泛的应用和重要性。

为了检验学生对于数学概率统计知识的掌握情况,我们将进行一次单元测试。

本次测试共分为三个部分,包括选择题、计算题和应用题。

请同学们认真阅读题目,做好准备,准确回答每个问题。

一、选择题1. 下列哪个不属于离散随机变量?A. 投掷硬币的正反面朝上B. 掷骰子得到的点数C. 年龄D. 掷骰子得到的点数的平方2. 有10个同学参加概率论考试,若随机抽取其中2个同学,他们全都及格的概率是多少?A. 1/45B. 1/55C. 1/90D. 1/103. 从1到20中,随机抽取一个整数,它是一个偶数的概率是多少?A. 1/2B. 1/4C. 1/10D. 1/204. 已知事件A发生的概率为0.6,事件B发生的概率为0.4,事件A 与事件B互斥,那么事件“A或B”发生的概率是多少?A. 0.2B. 0.4C. 0.6D. 1.05. 有一对夫妇,至少有一个孩子是男孩的概率是多少?A. 1/2B. 1/3C. 2/3D. 1/4二、计算题1. 设随机变量X的概率密度函数为 f(x) = 2x, 0<x<1。

求P(1/4 < X < 1/2)的值。

2. 设事件A、B独立,且P(A)=0.2,P(B)=0.3。

求P(A并B)的值。

3. 某公司生产的产品,次品率为1%,每批次随机抽取10件产品进行检验,若次品数超过1件则判定为该批次次品,求该批次次品率大于1%的概率。

三、应用题某人出门时,忘记带钥匙,但他家门上有四个锁,且每个锁都有一把对应的钥匙。

他随机尝试打开这四个锁中的一个,如果不成功,将随机选择下一个锁。

请回答以下问题:1. 打开第一个锁时,成功打开的概率是多少?2. 如果成功打开第二个锁,请问他成功打开的概率是多少?3. 如果成功打开第三个锁,请问他成功打开的概率是多少?4. 如果成功打开第四个锁,请问他成功打开的概率是多少?请同学们根据自己的理解和解题能力,完成以上单元测试题目。

概率论第三四章练习题答案

概率论第三四章练习题答案

概率论第三四章练习题答案练习八班级_____________ 姓名_____________1. 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到白球的只数,求X ,Y 的联合分布律.解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=35347223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=02. 设随机变量(X ,Y )概率密度为<<<<--=其它,042,20),6(),(y x y x k y x f (1)确定常数k ;(2)求P {X <1, Y <3};(3)求P (X <1.5};(4)求P (X+Y ≤4}.解:(1)∵+∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴8 1=k (2)83)6(81)3,1(3210=--=<<="" p="" x="" y="">Y X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤?dy y x dx Y X P X P(4)32)6(81)4(4020=--=≤+?-dy y x dxY X P x3. 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到白球的只数,求的随机变量(X , Y )的边缘分布律.4. 设二维随机变量(X ,Y )的概率密度为≤≤=其它,01,),(22y x y cx y x f(1)试确定常数c ; (2)求边缘概率密度. 解: l=?∞+∞-+-∞+∞-====42121432),(1025210c c dy y cydx cx dydxdy y x f y y≤--==?,01),1(8 21421)(~42122x x ydy x x f X x X ??≤≤==?+-其它1027421)(~252y y ydx d y f Y y yY练习九班级_____________ 姓名_____________1. 设一加油站有两套用来加油的设备,设备A 是加油站的工作人员操作的,设备B 是有顾客自己操作的. A ,B 均有两个加油管. 随机取一时刻,A ,B 正在使用的软管根数分别记为X ,Y ,它们的联合分布律为(1)(2) 求在0=X 的条件下Y 的条件分布律;在1=Y 的条件下X 的条件分布律. (3) 问随机变量X 和Y 是否相互独立? 解:(1)至少有一根软管在使用的概率为9.01.01}0,0{1}1{=-===-=≥+Y X P Y X P(2)根据公式}0{}0,{}0|{======X P X i Y P X i Y P ,得到在0=X 的条件下Y 的条件分布律为类似地,在1=Y 的条件下X 的条件分布律为(3)P (X =0≠所以随机变量X 和Y 不是相互独立. 2. 设随机变量(X ,Y )在由曲线x y x y ==,2所围成的区域G 均匀分布.(1) 问随机变量X 和Y 是否相互独立? (2) 求条件概率密度)|(|x y f X Y .解:(1)根据题意,(X ,Y )的概率密度),(y x f 必定是一常数,故由),(31),(),(121y x f dy y x f dxdxdy y x f xxG===,得到∈=他其,0),(,3),(Gy x y x f 。

(北师大版)大连市九年级数学上册第三单元《概率的进一步认识》测试(包含答案解析)

(北师大版)大连市九年级数学上册第三单元《概率的进一步认识》测试(包含答案解析)

一、选择题1.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率2.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A.14B.13C.512D.123.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C.22D.344.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为().A.23B.12C.13D.165.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0 B.12C.13D.236.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.147.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20 B.15 C.10 D.58.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.1369.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.11610.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.1511.一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,则他合格的概率为()A.710B.12C.25D.1512.某学习小组进行“用频率估计概率”的试验时,统计了某一结果出现的频率,并绘制了如图所示的折线统计图,则符合这一结果的试验可能是()A.先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上B.先后两次掷一枚质地均匀的骰子,两次的点数和不大于3C.小聪和小明玩剪刀、石头、布的游戏,小聪获胜D.一个班级中(班级人数为50人)有两人生日相同二、填空题13.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.14.袋中有6个黑球和n 个白球,经过若干次试验,发现“若从中任意摸一个球,恰好摸到白球的概率为14”,则这个袋中的白球大约有_____个. 15.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.16.现有6张正面分别标有数字1,0,1,2,3,4-的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根的概率为____.17.往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.19.一个盒中装有4个均匀的球,其中2个白球,2个黑球,今从中任取出2个球,“两球同色”与“两球异色”的可能性分别记为a b 、,则a 与b 的大小关系为__________. 20.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题21.河口瑶族自治县位于红河哈尼族彝族自治州东南部,隔红河与越南老街市、谷柳市相望,是云南唯一一个以瑶族为主体的自治县.瑶族人民的粽粑是当地一种美味的特色小吃,包粽粑是瑶族传统的“盘王节”(农历十月十六)活动之一.盘王节那天,小盘同学回家看到桌子上有一盘粽粑,其中花生仁、紫苏仁各1,豆沙仁2个,这些粽粑除陷外,其它无差别.(1)小盘随机地从盘子中取一个粽粑,求取出的是花生仁的概率;(2)小盘随机地从盘子中取出两个粽粑,请用列表法或画树状图法表示所有可能的结果,并求出小盘取出的两个粽粑都是豆沙粽粑的概率.22.我国在2020年11月1日启动第七次人口普查.为了调查学生对人口普查知识的了解程度,湖州市某学校数学兴趣小组通过网上调查的方式在本校学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查结果,绘制了如图的统计图,结合统计图,回答下列问题.(1)本次抽样调查的人数是______人;(2)若该校有学生2000人,请根据调查结果估计这些学生中“比较了解”人口普查知识的人数约为多少?(3)根据调查结果,学校准备开展关于人口普查知识竞赛,某班要从“非常了解”的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:在一个不透明的袋中装有2个红球和2个白球,它们除了颜色外无其它差别,从中随机摸出两个球,若摸出的两个球颜色相同,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.23.九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A、B、C、D的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B的概率为;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程).24.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.25.小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A,B,C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D,E表示),参加人员在每个阶段各随机抽取一个项目完成.请用画树状图或列表的方法,求小明恰好抽中B,D两个项目的概率.26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、任意写一个整数,它能被3整除的概率为13,故此选项正确;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率为131524;故此选项错误.故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.B解析:B【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小. 【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页, ∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123=. 故选:B . 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 3.B解析:B 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案 【详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x .则正方形的边长是(22)x +.则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=.()2221241122x x++=, 故选:B . 【点睛】本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.4.C【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率. 【详解】∵捕捞到草鱼的频率稳定在0.5左右 设草鱼的条数为x ,可得:0.51600800xx=++∴x =2400∴捞到鲤鱼的概率为:16001160080024003=++故选:C . 【点睛】本题考察了概率、一元一次方程的知识;求解的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.5.D解析:D 【分析】直接运用概率计算公式求解即可. 【详解】解:∵小丽书包里有3只包装相同的备用口罩,2只是医用外科口罩, ∴她取一只医用外科口罩的概率为:23, 故选:D . 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 6.B解析:B 【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案. 【详解】解:根据题意,在A ,B ,C ,D 四个点中任选三个点,有: △ABC 、△ABD 、△ACD 、△BCD ,共4个三角形; 其中是等腰三角形的有:△ACD 、△BCD ,共2个; ∴能够组成等腰三角形的概率为:2142P ==;【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.7.B解析:B【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键. 8.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比9.B解析:B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.10.D解析:D【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【详解】样本中身高不低于180cm的频率=15100=0.15,所以估计他的身高不低于180cm的概率是0.15.故选D.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.11.A解析:A【分析】列举出所有情况,看合格的情况数占所有情况数的多少即可.【详解】共有20种情况,合格的情况数有14种,所以概率为7 10.故选A.【点睛】考查用列树状图的方法解决概率问题;得到合格的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.第II卷(非选择题)请点击修改第II卷的文字说明12.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上的概率为14,不符合题意;B、先后两次掷一枚质地均匀的骰子,两次的点数和不大于3的概率为112,不符合题意;C、小聪和小明玩剪刀、石头、布的游戏,小聪获胜的概率为13,符合题意;D、一个班级中(班级人数为50人)有两人生日相同的概率为1925,不符合题意;故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.二、填空题13.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.14.2【解析】分析:根据若从中任摸一个球恰好是白球的概率为列出关于n的方程解方程即可详解:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是白球的概率为=解得:n=2故答案为2解析:2【解析】分析:根据若从中任摸一个球,恰好是白球的概率为14,列出关于n的方程,解方程即可.详解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个.∵从中任摸一个球,恰好是白球的概率为146nn∴+,=14,解得:n=2.故答案为2.点睛:本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.15.【分析】用列表法列举出所有等可能出现的情况从中找出两个球颜色不同的结果数进而求出概率【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数其中两个球颜色不同的有6种∴摸出两个颜色不同解析:1 2【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∴摸出两个颜色不同的小球的概率为61122=,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.16.【分析】先由一元二次方程x2-2x+a-2=0有实数根得出a的取值范围最后根据概率公式进行计算即可【详解】解:∵一元二次方程x2-2x+a-2=0有实数根∴4-4(a-2)≥0∴a≤3∴a=-101解析:5 6【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,∴4-4(a-2)≥0,∴a≤3,∴a=-1,0,1,2,3.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:56.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.17.【分析】求概率时已知和未知与几何有关的就是几何概率计算方法是长度比面积比体积比等【详解】设最小正方形的边长为1则小正方形边长为2阴影部分面积=2×2×4+1×1×2=18白色部分面积=2×2×4+1解析:1 2【分析】求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.【详解】设最小正方形的边长为1,则小正方形边长为2,阴影部分面积=2×2×4+1×1×2=18,白色部分面积=2×2×4+1×1×2=18,故石子落在阴影区域的概率为181=18+182.故答案为:12.【点睛】本题考查了概率,正确运用概率公式是解题的关键.18.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是501 1503=,设口袋中大约有x个白球,则5153x=+,解得10x=.故答案为:10.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.【分析】分别求出两球同色与两球异色的可能性然后比较大小即可【详解】根据盒子中有2个白球2个黑球可得从中取出2个球一共有6种可能:2白2黑1白1黑(4种)∴两球同色的可能性为两球异色的可能性为∵∴故答解析:a b<【分析】分别求出“两球同色”与“两球异色”的可能性,然后比较大小即可.【详解】根据盒子中有2个白球,2个黑球可得从中取出2个球,一共有6种可能:2白、2黑、1白1黑(4种)∴“两球同色”的可能性为2163a==“两球异色”的可能性为4263 b==∵1233<∴a b<故答案为:a b<.【点睛】本题考查了概率的问题,掌握“两球同色”与“两球异色”的可能性是解题的关键.20.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5【分析】利用黑色区域的面积除以游戏板的面积即可. 【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4, ∴击中黑色区域的概率=420=15. 故答案是:15. 【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题21.(1)14;(2)16. 【分析】(1)直接利用概率公式求出取出的是肉包的概率;(2)用列表法列举出所有的可能,进而利用概率公式求出答案. 【详解】解:(1)共有4个等可能结果,其中花生仁有1个 ∴P (小盘从中随机地从盘子中取一个粽粑,取出的是花生仁)111124==++.(2)由题意可得:∴P (小盘取出的两个粽粑都是豆沙粽粑)21126==. 【点睛】此题主要考查了列表法或树状图法求概率,正确列举出所有的可能是解题关键.22.(1)400;(2)300人;(3)不公平,理由见解析【分析】(1)把条形统计图给出的数据相加即可得出答案;(2)用总人数乘以“比较了解”所占的百分比即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个球颜色相同与不同的情况,再利用概率公式求得其概率,比较概率的大小,即可知这个游戏规则是否公平.【详解】解:(1)本次抽样调查的人数是:20+60+180+140=400(人),故答案为:400;(2)这些学生中“比较了解”人口普查知识的人数有:2000×60400=300(人);(3)画树状图得:∵共有12种等可能的结果,两个球颜色相同的有4种情况,两个球颜色不同的有8种情况,∴P(颜色相同)=41123=,P(颜色不同)=82123=,∴游戏规则不公平.【点睛】此题考查了列表法或树状图法求概率以及条形统计图.注意概率相等,则公平,否则不公平.23.(1)14;(2)图见解析,12.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B的概率为14,故答案为:14;(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:61 122=.【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.24.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解.【详解】(1)抽取1名,恰好是男生的概率为:2142P==,(2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P==.【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算.25.1 6【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得. 【详解】小明在两个阶段参加项目的所有可能的结果如下表:其中抽中B ,D 两个项目的结果有1中, 所以小明恰好抽中B ,D 两个项目的概率为P =16【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 26.(1)2,45,20;(2)图见解析,72;(3)16【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=;401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B 等次人数为40128218---=, 条形统计图补充为:C等次的扇形所对的圆心角的度数20%36072=⨯︒=︒;故答案为72︒;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率21 126 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.。

概率论第三章练习答案

概率论第三章练习答案

(C)
A.97
B.79
C.61
D.29
7.设已知随机变量 与 的相关系数 = 0 ,则 与 之间的关系为:
(D

A. 独立
B. 相关
C. 线性相关
D. 线性无关
8.设 X, Y 为两个独立的随机变量, 已知 X 的均值为 2, 标准差为 10, Y 的均值为 4, 标
准差为 20, 则与 Y − X 的标准差最接近的是[ D ]
3.已知(X,Y)的联合密度为 (x) =
(B ) A、0
B、0.25
C、0.5
4xy 0
0 x, y 1
其它
,则 F(0.5,2)=
D、0.1
F(0.5,2)= PX 0.5,Y 2
=
0.5
1
4xydxdy = 4
0.5
xdx
1
ydy
=
1 (利用图像)
00
0
0
4
4.如果 X 与 Y 满足 D(X+Y)=D(X-Y),则必有 ( ) A.X 与 Y 独立 B.X 与 Y 不相关 C.D(Y)=0 D .D ( X) D( Y) = 0
A 10
B 15
C 30
D 22
D(Y − X)= DX + DY = 100 + 400 = 500
400 500 900, 20 500 30
9.设随机变量 X~N(-3,1),Y~N(2,1),且 X 与 Y 独立,设 Z=X-2Y+7,
则 Z~
(A)
A.N(0,5) B.N(0,-3) C.N(0,46)
+ +(x,y)dxdy = 1 − −
即 + + ce−(x+ y)dxdy = 1 c = 1 00

北师大版九年级数学上册 第3章 《概率的进一步认识》 单元测试卷 含答案

北师大版九年级数学上册  第3章 《概率的进一步认识》 单元测试卷 含答案

北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A ,B ,C ,D 中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(答案解析)(2)

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(答案解析)(2)

一、选择题1.电脑福利彩票中有两种方式“22选5”和“29选7”,若选中号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定2.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A.13B.23C.19D.123.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组()1242122123x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x的分式方程233a xx x++--=1有非负整数解的概率是()A.29B.13C.49D.594.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0 B.12C.13D.235.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.146.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.167.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.238.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于79.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好10.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档