3、北师大版初三数学几何压轴题专项训练
北师大版初中中考数学压轴题及答案精编WORD版
北师大版初中中考数学压轴题及答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】中考数学专题复习(压轴题)1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?A BC D ER P H Q(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围.6如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.B图 1BD 图 2图 37.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积; (2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y以点A ,B ,M ,N 试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ移4个单位,然后再向上平移2个单位,得到线段则点P 1的坐标为 ,点Q 1的坐标为 .9.如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;C D A BE F NM友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2图∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4所以对称轴为x=1,A,E 关于x=1E(3,0)设对称轴与x 轴的交点为F 所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,====所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且AO BO BD BE == 所以AOB DBE ∆∆. 2 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠ ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x . ……………2分ABCD ERPH QM 2 1 A BCD E R PHQB图 1∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC.由(1)知 △AMN ∽ △ABC .∴ AM MN ABBC=,即45x MN=. ∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==.在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BCAC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………7分 (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点. ∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∴ △AMO ∽ △ABP .∴ 12AM AO ABAP==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,BD 图 2P图 3∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x . ∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分综上所述,当83x =时,y 值最大,最大值是2. …………………………12分4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得3k =-, 以直线AB的解析式为43y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=,∴GB=2BD=32,OH=OE+HE=OE+BG=37222+=∴,7 2)(3)设OP=x,则由(2)可得D(,22x x+)若ΔOPD的面积为:13(2)224x x+=解得:3x-=所以P(3-,0)567解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H.……………1分∵AB∥CD,∴DG=CH,DG∥CH.∴四边形DGHC为矩形,GH=CD=1.∵DG=CH,AD=BC,∠AGD=∠BHC=90∴△AGD≌△BHC(HL).∴AG=BH=2172-=-GHAB=3.………2分∵在Rt△AGD中,AG=3,AD=5,∴DG=4.∴()174162ABCDS+⨯==梯形.………………………………………………3分(2)∵MN∥AB,ME⊥AB,NF⊥AB,∴ME=NF,ME∥NF.∴四边形MEFN为矩形.∵AB∥CD,AD=BC,∴∠A=∠B.∵ME=NF,∠MEA=∠NFB=90°,∴△MEA≌△NFB(AAS).∴AE=BF.……………………4分设AE=x,则EF=7-2x.……………5分A BE FG HA BE FG H∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA .∴DGMEAG AE =. ∴ ME =x 34. …………………………………………………………6分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4.∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.8解:(1)由题意可知,()()()131-+=+m m m m . 解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k . ∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分 设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k , ∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分9解:(1)直线y =x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C ,······································································· 1分点A C ,都在抛物线上,∴抛物线的解析式为233y x x =-·········································· 3分∴顶点1F ⎛ ⎝⎭,··········································································· 4分 (2)存在 ······················································································ 5分1(0P ······················································································ 7分2(2P ······················································································ 9分 (3)存在 ····················································································· 10分 理由: 解法一:延长BC到点B',使B C BC'=,连接B F'交直线AC于点M,则点M就是所求的点. ·················································································11分过点B'作B H AB'⊥于点H.B点在抛物线233y x x=-(30)B∴,在Rt BOC△中,tan OBC∠=,30OBC∴∠=,BC=在Rt BB H'△中,12B H BB''==6BH H'==,3OH∴=,(3B'∴--, ·······································12分设直线B F'的解析式为y kx b=+3k bk b⎧-=-+⎪∴⎨=+⎪⎩解得6kb⎧=⎪⎪⎨⎪=⎪⎩y x∴=·············································································13分yy x⎧=⎪∴⎨=⎪⎩解得377xy⎧=⎪⎪⎨⎪=-⎪⎩37M⎛∴⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时377M⎛⎫-⎪⎪⎝⎭,.14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求. ···································11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠图9同方法一可求得(30)B ,. 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,可求得GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形, AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.0H ⎛∴ ⎝⎭, ·································· 12分 设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=············································································ 13分y y ⎧=⎪∴⎨⎪=⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛ ⎝⎭,.110解:(1)点E 在y 轴上 ································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=点B 在x 轴上,∴点E 在y 轴上. ····················································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,OM =点D 在第一象限,∴点D的坐标为122⎛⎫⎪ ⎪⎝⎭, ··································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ····································································· 6分抛物线2y ax bx c =++经过点E ,由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧+=⎪⎨++=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:2829y x x =--+ ······································· 9分(3)存在符合条件的点P ,点Q . ···················································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ·········································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上 解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,22)Q ;当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ·································· 14分 (以上答案仅供参考,如有其它做法,可参照给分)。
北师大版九下数学压轴题专题--压轴题专题(含答案)
1压轴题专题1. 如图,抛物线y =ax 2-bx +3交x 轴于B (1,0),C (3,0)两点,交y 轴于点A ,连接AB ,点P 为抛物线上一动点. (1)求抛物线的解析式; (2)当点P 到直线AB时,求点P 的横坐标; (3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图22. 如图1,在平面直角坐标系中,直线y =x +4与抛物线212y x bx c =-++(b ,c是常数)交于A ,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C . (1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A ,B 重合). ①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D ,求PDOD的最大值; ②如图3,若点P 在x 轴上方,连接PC ,以PC 为一边作正方形CPEF .随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.图1图2图333.如图,抛物线y=ax2+bx+4(a≠0)交x轴于点A(4,0),B(-2,0),交y轴于点C.(1)求抛物线的解析式.(2)点Q是x轴上位于点A,B之间的一个动点,点E为线段BC上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE的面积为S,点Q的横坐标为m,求出S关于m的函数关系式,并求出当S取最大值时点Q的坐标.(3)点P为抛物线上位于AC上方的一个动点,过点P作PF⊥y轴,交直线AC于点F,点D的坐标为(2,0),若O,D,F三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P的坐标;若不存在,请说明理由.454. 如图,抛物线234y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,直线334y x =+经过点A ,C .(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM ∥y 轴交直线AC 于点M ,设点P 的横坐标为t .①若以点C ,O ,M ,P 为顶点的四边形是平行四边形,求t 的值. ②当射线MP ,MC ,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为a,点P的横坐标为m,求a关于m的函数关系式(不必写出m的取值范围),并求出a的最大值.(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.图1图266.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.(1)求b,c的值.(2)点E是直角三角形ABC斜边AB上一动点(点A,B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标.(3)在(2)的条件下:①求以点E,B,F,D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,直接写出所有点P的坐标;若不存在,说明理由.77.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x轴于A,C两点,与直线y=x-1交于A,B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标;(3)在平面直角坐标系中,以点B,E,C,D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.898. 如图,已知抛物线2342y ax x =++的对称轴是直线x =3,且与x 轴相交于A ,B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A ,B 两点的坐标.(2)若点P 是抛物线上B ,C 两点之间的一个动点(不与B ,C 重合),则是否存在一点P ,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点N 的坐标.图1图2109. 如图,抛物线213y x bx c =++经过点A(0)和点B (0,-2).(1)求该抛物线的解析式;(2)若△OAB 以每秒2个单位长度的速度沿射线BA 方向运动,设运动时间为t ,点O ,A ,B 的对应点分别为D ,E ,C ,直线DE 交抛物线于点M . ①当点M 为DE 的中点时,求t 的值;②连接AD ,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图10.如图,抛物线y=ax2+bx-2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(-2,0),点P为抛物线上的一个动点,过点P 作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式.(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积.(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.备用图1111.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式.(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使12PE DE.①求点P的坐标和△P AB的面积.②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,直接写出符合条件的所有点M的坐标;若不存在,请说明理由.1212.如图,抛物线y=ax2+bx+2与直线y=-x交第二象限于点E,与x轴交于A(-3,0),B两点,与y轴交于点C,EC∥x轴.(1)求抛物线的解析式;(2)点P是直线y=-x上方抛物线上的一个动点,过点P作x轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N为顶点的四边形是平行四边形,请直接写出所有满足条件的点M的坐标.1313.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4交于B,D两点.(1)求抛物线的解析式及点D的坐标;(2)点P为直线BD下方抛物线上的一个动点,求△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B,D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.备用图1备用图21414.如图,抛物线y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE∥x轴,PF∥y 轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M 的坐标.图1图21515.如图,已知抛物线y=ax2+4x+c与x轴交于点M,与y轴交于点N,抛物线的对称轴与x轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A是y轴正半轴上一动点,点B是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM中有一边的长等于MP时,请直接写出点A的坐标.备用图1616.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1过A,B两点,并与过点A的直线112y x=--交于点C.(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C为顶点的三角形与△AOC相似?若存在,求出点N的坐标;若不存在,请说明理由.备用图1717.如图,直线l:12y x m=+与x轴交于点A(4,0),与y轴交于点B,抛物线y=ax2+bx+c(a≠0)经过A,B两点,且与x轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P是抛物线上一动点,当点P在直线l下方的抛物线上运动时,过点P作PM∥x轴交l于点M,过点P作PN∥y轴交l于点N,求PM+PN的最大值;(3)在(2)的条件下,当PM+PN的值最大时,将△PMN绕点N旋转,当点M落在x轴上时,直接写出此时点P的坐标.备用图1818.如图,已知抛物线y=ax2+x+c与y轴交于点C(0,3),与x轴交于点A和点B(3,0),点P是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P是点B与点C之间的抛物线上的一个动点,过点P向x轴作垂线,交BC于点D,求线段PD长度的最大值;(3)当点P移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.1919.在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D到直线AC的最大距离以及此时△ADC 的面积;(3)过点D作DF⊥AC,垂足为点F,连接CD.若△CFD与△AOC相似,求点D的坐标.2020.如图,抛物线y=ax2+bx-3过A(1,0),B(-3,0),直线AD交抛物线于点D,点D的横坐标为-2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式.(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m 的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.2121.如图,抛物线y=-x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上的一动点,求△BCP面积S的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M的坐标.备用图2223242526272829303132333435363738394041424344。
北师大版九年级数学下册第三章圆3.6.3:切线的性质和判定压轴题 同步练习(Word版,无答案)
北师大版九年级数学下册第三章圆3.6.3:切线的性质与判定压轴题同步练习1、如图,已知O 是正方形ABCD 对角线AC 上一点,以O 为圆心、OA 的长为半径的⊙O 与BC 相切于M,与AB、AD 分别相交于E、F.(1)求证:CD 与⊙O 相切;(2)若正方形ABCD 的边长为1,求⊙O 的半径;(3)对于以点M、E、A、F 以及CD 与⊙O 的切点为顶点的五边形的五条边,从相等关系考虑,你可以得出什么结论?请给出证明.2、如图,点A 在⊙O 外,射线AO 与⊙O 交于F、G 两点,点H 在⊙O 上,弧FH=弧GH,点D 是弧FH 上一个动点(不运动至F),BD 是⊙O 的直径,连接AB,交⊙O 于点C,连接CD,交AO 于点E,且OA=,OF=1,设AC=x,AB=y.(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若DE=2CE,求证:AD 是⊙O 的切线;(3)当DE,DC 的长是方程x2﹣ax+2=0 的两根时,求sin∠DAB 的值.3、如图,以Rt△BCF 的斜边BC 为直径作⊙O,A 为弧BF上一点,且=,AD⊥BC,垂足为D,过A 作AE∥BF 交CB 的延长线于E.求证:(1)AE 是⊙O 切线;(2)(3)若⊙O 直径为d,则.4、已知:如图,AB 是⊙O 的直径,BC 是⊙O 的弦,⊙O 的割线PDE 垂直于AB 于点F,交BC 于点G,∠A=∠BCP.(1)求证:PC 是⊙O 的切线;(2)若点C 在劣弧上运动,其他条件不变,问应再具备什么条件可使结论BG2=BF•BO 成立?(要求画出示意图并说明理由)(3)在满足问题(2)的条件下,你还能推出哪些形如BG2=BF•BO 的正确结论?(要求:不再标注其他字母,找结论的过程中所作的辅助线不能出现在结论中,不写推理过程,写出不包括BG2=BF•BO 的7 个结论)5、如图,AB 是⊙O 的直径,⊙O 过CB 的中点D,直线FE 过点D,且FE⊥AC 于E,FB 切⊙O 于B,P 是线段DF 上一动点,过P 作PN⊥AB 于N,PN 与⊙O 交于点Q,与DB 交于点M.(1)求证:FE 是⊙O 的切线;(2)若∠C=30°,AB=2,设DP=x,MN=y,求y 与x 之间的函数关系式,并指出自变量x 的取值范围;(3)在(2)中,当x 为何值时,PQ:PN=1:5.6、如图,B 为线段AD 上一点,△ABC 和△BDE 都是等边三角形,连接CE 并延长交AD 的延长线于点F,△ABC 的外接圆⊙O 交CF 于点M.(1)求证:BE 是⊙O 的切线;(2)求证:AC2=CM•CF;(3)若CM=,MF=,求BD;(4)若过点D 作DG∥BE 交EF 于点G,过G 作GH∥DE 交DF 于点H,则易知△DGH 是等边三角形.设等边△ABC、△BDE、△DGH 的面积分别为S1、S2、S3,试探究S1、S2、S3 之间的等量关系,请直接写出其结论.7、如图,AB 为圆O 的直径,C 为圆O 上一点,AD 和过C 点的直线互相垂直,垂足为D,且AC 平分∠DAB,延长AB 交DC 于点E.(1)判定直线DE 与圆O 的位置关系,并说明你的理由;(2)求证:AC2=AD•AB;(3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分)①若CF⊥F,试讨论线段CF、CE 和DE 三者的数量关系;②若EB=5,求图中阴影部分的面积.8、如图,AB 是⊙O 的直径,BC 是⊙O 的弦,⊙O 的割线PDE 垂直AB 于点F,交BC 于点G,连接PC,∠BAC=∠BCP,求解下列问题:(1)求证:CP 是⊙O 的切线.(2)当∠ABC=30°,BG=2,CG=4时,求以PD、PE 的长为两根的一元二次方程.(3)若(1)的条件不变,当点C 在劣弧AD 上运动时,应再具备什么条件可使结论BG2=BF•BO 成立?试写出你的猜想,并说明理由.9、如图,在平面直角坐标系中,矩形ABCO 的面积为15,边OA 比OC 大2.E 为BC 的中点,以OE 为直径的⊙O′交x 轴于D 点,过点D 作DF⊥AE 于点F.(1)求OA、OC 的长;(2)求证:DF 为⊙O′的切线;(3)小明在解答本题时,发现△AOE 是等腰三角形.由此,他断定:“直线BC 上一定存在除点E 以外的点P,使△AOP 也是等腰三角形,且点P 一定在⊙O′外”.你同意他的看法吗?请充分说明理由.10、已知:AB 是⊙O 的直径,点C 是⊙O 外的一点,点E 是AC 上一点,AB=2.(1)如图1,点D 是BC 的中点,当DE 也AC 满足什么关系时,DE 是⊙O 的切线?请说明理由.(2)如图2,AC 是⊙O 的切线,点E 是AC 的中点DE∥AB.①求的值;②求阴影部分的面积.11、如图所示,在直角梯形ABCD 中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q 同时从A 点出发,分别做匀速运动,其中点P 沿AB、BC 向终点C 运动,速度为每秒2 个单位,点Q 沿AD 向终点D 运动,速度为每秒1 个单位,当这两点中有一个点到达自己的终点时,另一个点也停止运动,设这两个点从出发运动了t 秒.(1)动点P 与Q 哪一点先到达自己的终点?此时t 为何值;(2)当O<t<2 时,写出△PQA 的面积S 与时间t 的函数关系式;(3)以PQ 为直径的圆能否与CD 相切?若有可能,求出t 的值或t 的取值范围;若不可能,请说明理由.12、如图,形如三角板的△ABC 中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O 的直径DE=12cm,矩形DEFG 的宽EF=6cm,矩形量角器以2cm/s 的速度从左向右运动,在运动过程中,点D、E 始终在BC 所在的直线上,设运动时间为x(s),矩形量角器和△ABC 的重叠部分的面积为S(cm2).当x=0(s)时,点E 与点C 重合.(图(3)、图(4)、图(5)供操作用).(1)当x=3 时,如图(2),S= cm2,当x=6 时,S= cm2,当x=9 时,S= cm2;(2)当3<x<6 时,求S 关于x 的函数关系式;(3)当6<x<9 时,求S 关于x 的函数关系式;(4)当x 为何值时,△ABC 的斜边所在的直线与半圆O 所在的圆相切?13、如图,A 是以BC 为直径的⊙O 上一点,于点D,AD⊥BC 过点B 作⊙O 的切线,与CA 的延长线相交于点E,G 是AD 的中点,连接CG 并延长与BE 相交于点F,延长AF 与CB 的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA 是⊙O 的切线;(3)若FG=BF,且⊙O 的半径长为,求BD 和FG 的长度.14、如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点,并且∠BMC=60°.(1)求证:AB 是⊙O 的切线;(2)若E,F 分别是边AB,AC 上的两个动点,且∠EDF=120°,⊙O 的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.15、如图,以BC 为直径的⊙O 交△CFB 的边CF 于点A,BM 平分∠ABC 交AC 于点M,AD⊥BC 于点D,AD 交BM 于点N,ME⊥BC 于点E,AB2=AF•AC,cos∠ABD=35,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB 是⊙O 的切线;(3)证明四边形AMEN 是菱形,并求该菱形的面积S.16、如图1 所示,在△ABC 中,AB=AC=2,∠A=90°,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.(1)点E,F 的移动过程中,△OEF 是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF 为等腰三角形时动点E,F 的位置;若不能,请说明理由;(2)当∠EOF=45°时,设BE=x,CF=y,求y 与x 之间的函数解析式,写出x 的取值范围;(3)在满足(2)中的条件时,若以O 为圆心的圆与AB 相切(如图2),试探究直线EF 与⊙O 的位置关系,并证明你的结论.17、如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在⊙O 上运动.(1)当点D 运动到与点A、O 在同一条直线上时,试证明直线CD 与⊙O 相切;(2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x,正方形ABCD 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.18、如图,在平面直角坐标系中,直线y=与x 轴、y 轴分别交于A、B 两点,将△ABO 绕原点O 顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB 与线段A´B´相交于点G.动点E 从原点O 出发,以1 个单位/秒的速度沿x 轴正方向运动,设动点E 运动的时间为t 秒.(1)求点D 的坐标;(2)连接DE,当DE 与线段OB′相交,交点为F,且四边形DFB′G 是平行四边形时,(如图2)求此时线段DE 所在的直线的解析式;(3)若以动点为E 圆心,以E,连接A′E,t 为何值时,Tan∠EA′B′=?并判断此时直线A′O 与⊙E 的位置关系,请说明理由.。
北师大版九年级数学上期末备考压轴题专项培优:特殊的平行四边形(解析版)
期末备考压轴题专项培优:特殊的平行四边形1.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.设点N 的坐标为(m,n).(1)若建立平面直角坐标系,满足原点在线段BD上,点B(﹣1,0),A(0,1).且BM=t(0<t≤2),则点D的坐标为(1,0),点C的坐标为(0,﹣1);请直接写出点N纵坐标n的取值范围是0<n≤;(2)若正方形的边长为2,求EC的长,以及AM+BM+CM的最小值.(提示:连结MN:=+1,=﹣1)解:(1)如图1,以直线BD为x轴,直线AC为y轴,建立平面直角坐标系,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∵点B(﹣1,0),A(0,1),∴D(1,0),C(0,﹣1);过N作NH⊥BD于h,∴∠NHB=90°,∵将BM绕点B逆时针旋转60°得到BN,∴∠NBH=60°,BM=BN,∴NH=BN=t,∵0<t≤2,∴点N纵坐标n的取值范围是0<n≤;故答案为:(1,0),(0,﹣1);0<n≤;(2)如图所示,连接MN,过E作EH⊥BC,交CB的延长线于H,由旋转可得,BM=BN,∠NBM=60°,∴△BMN是等边三角形,∴MN=BM,∵△ABE是等边三角形,∴BE=BA,∠ABE=60°,∴∠ABM=∠EBN,∴△ABM≌△EBN(SAS),∴AM=EN,∴AM+BM+CM=EN+MN+CM,∴当E,N,M,C在同一直线上时,AM+BM+CN的最小值是CE的长,又∵∠ABE=60°,∠ABH=90°,∴∠EBH=30°,∴Rt△EBH中,EH=EB=×2=1,∴BH===,∴CH=2+,∴Rt△CEH中,CE====;∴AM+BM+CM的最小值为+.2.如图,在▱ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作▱ECFG.(1)证明▱ECFG是菱形;(2)若∠ABC=120°,连结BD、CG,求∠BDG的度数;(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.解:(1)证明:,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=6,AD=8,∴BD=10,∴DM=BD=5.3.如图,在正方形ABCD中,对角线AC、BD相交于点O,以AD为边向外作等边△ADE,连接CE,交BD于F.(1)如图1,若AE=,求DF的长;(2)如图2,点M为AB的延长线上一点,连接CM,连接FM且FM平分∠AMC,求证:CM=MF﹣AM.解:(1)如图1,连接OE,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,OA=OD=OB=OC∵△ADE是等边三角形∴AD=DE=AE=,∠ADE=60°∴CD=AD=,OD=OB=∵AE=DE,OD=OA∴OE垂直平分AD即OE⊥AD,DH=AH∴OE=OH+EH=+=,∵∠ADC=∠DHE=90°∴CD∥OE∴△CDF∽△EOF∴=,即DF=OF∵DF+OF=OD=∴OF=﹣DF∴DF=(﹣DF),解得:DF=﹣1.(2)如图2,连接EO,过点F作PQ⊥CD交EO于N,在MA上截取MT=MC,连接FT,设正方形边长为a,∵四边形ABCD是正方形,△ADE是等边三角形∴AD=AB=CD=DE=a,∠ADC=∠DAB=90°∠ADE=60°易证OE⊥AD∴OE=a,OD=a,由(1)知△CDF∽△EOF∴=,即a•DF=a•OF∵DF+OF=a∴OF=a﹣DF∴a•DF=a(a﹣DF)∴DF=a,∵△DPF是等腰直角三角形∴DP=PF=DF=a,∴FQ=a﹣a=a=CP,∵FM平分∠AMC,∴∠CMF=∠AMF在△MCF和△MTF中∴△MCF≌△MTF(SAS)∴CF=FT∴Rt△CFP≌Rt△FTQ(HL)∴QT=PF=a,∵AQ=DP∴AQ=QT∵BM+AB﹣AT=MT=CM∴CM﹣BM=AB﹣AT=a﹣2×a=a,CM+BM=MT+BM=BT+2BM=a﹣2×a+2BM=a+2BM∴CM2﹣BM2=(CM﹣BM)(CM+BM)=a(a+2BM)∵CM2﹣BM2=BC2=a2,∴a(a+2BM)=a2,∴BM=a在Rt△BCM中,tan∠BMC===,∴∠BMC=60°∴∠AMF=30°∴=cos∠AMF=cos30°=∴2MQ=MF∵2MQ=2BM+2BQ=2BM+2BT+2QT=(BM+BT)+(BM+BT+AT)=CM+AM ∴CM+AM=MF即CM=MF﹣AM.4.在菱形ABCD中,∠ABC=60°,BD为菱形的一条对角线.(1)如图1,过A作AE⊥BC于点E,交BD于点F,若EF=2,求菱形ABCD的面积;(2)如图2,M为菱形ABCD外一点,过A作AN⊥BM交BM的延长线于点N,连接AM,DM,AG⊥DM于点G,且∠AMN=∠AMD,求证:DM=BM+AM.(1)解:如图1中,∵四边形ABC都是菱形,∠ABC=60°,∴∠ABD=∠DBC=30°,∵AE⊥BC,∴∠BEF=90°,∵EF=2,∴BF=2EF=4,∠BFE=60°,∵∠BFE=∠ABF+∠F AB,∴∠ABF=∠F AB=30°,∴BF=AF=4,∴AE=AF+EF=6,∴AB==4,∴BC=AB=4,∴S=BC•AE=24.菱形ABCD(2)证明:如图2中,∵∠AMN=∠AMG,AN⊥MN,AG⊥DM,∴AN=AG,∵∠MNA=∠MGA=90°,AM=AM,AN=AG,∴Rt△MAN≌Rt△MAG(HL),∴NM=MG,∵∠ANB=∠AGD=90°,AN=AG,AB=AD,∴Rt△ANB≌Rt△AGD(HL),∴∠ABN=∠ADG,BN=DG,∴∠BMD=△BAD=120°,∴∠NMG=60°,∴∠AMN=∠AMG=30°,∴DM﹣BM=MG+DG﹣(BN﹣MN)=2MN=AM,∴DM=BM+AM.5.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=12,DC=3,∠EBD=60°,则BE=6时,四边形BFCE是菱形.(只需完成填空,不需写出具体过程.)(1)证明:∵在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴BE=FC,∠ABE=∠DCF,∴∠EBC=∠FCB,∴BE∥FC,∴四边形BFCE是平行四边形;(2)解:当四边形BFCE是菱形,则BE=EC,∵AD=12,DC=3,AB=DC,∴BC=6,∵∠EBD=60°,EB=EC,∴△EBC是等边三角形,∴BE=6.故答案为:6.6.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;(3)若BD=2AB,①探究四边形GEHF的形状,并说明理由;②当AB=2,∠ABD=120°时,直接写出四边形GEHF的面积.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:①四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形;②作AM⊥BD于M,GN⊥BD于N,如图3所示:则AM∥GN,∵G是AD的中点,∴GN是△ADM的中位线,∴GN=AM,∵∠ABD=120°,∴∠ABM=60°,∴∠BAM=30°,∴BM=AB=1,AM=BM=,∴GN=,∵BD=2AB=4,∴EF=BD=2,∴△EFG的面积=EF×GN=×2×=,∴四边形GEHF的面积=2△EFG的面积=.7.如图,边长为6的正方形ABCD中,E,F分别是AD,AB上的点,AP⊥BE,P为垂足.(1)如图1,AF=BF,AE=2,点T是射线PF上的一个动点,当△ABT为直角三角形时,求AT的长;(2)如图2,若AE=AF,连接CP,求证:CP⊥FP.(1)解:在正方形ABCD中,可得∠DAB=90°.∵在Rt△BAE中,tan∠ABE===,∴∠ABE=30°.点T是射线PF上的一个动点,当△ABT为直角三角形时,分三种情况:①当点T在AB的上方,∠ATB=90°,显然此时点T和点P重合,即AT=AP=AB=3;②当点T在AB的下方,∠ATB =90°,如图①所示.在Rt△APB中,由AF=BF,可得:AF=BF=PF=3,∴∠BPF=∠FBP=30°,∴∠BFT=60°.在Rt△ATB中,TF=BF=AF=3,∴△FTB是等边三角形,∴TB=3,AT==3;③当点T在AB的下方,∠ABT=90°时,如图②所示.在Rt△FBT中,∠BFT=60°,BF=3,BT=BF•tan60°=3.在Rt△ATB中:AT==3.综上所述:当△ABT为直角三角形时,AT的长为3或3或3;(2)证明:如图③所示,∵四边形ABCD是正方形,∴AB=AD=BC,AD∥BC,∠DAB=90°,∴∠3=∠4.∵在Rt△EAB中,AP⊥BE,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∴∠1=∠3=∠4,∵tan∠1=,tan∠3=,∴=,∵AE=AF,AB=BC,∴=,∴△PBC∽△P AF,∴∠5=∠6.∵∠6+∠7=90°,∴∠5+∠7=90°,即∠CPF=90°,∴CP⊥FP.8.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:四边形GEHF是平行四边形;(2)已知AB=5,AD=8.求四边形GEHF是矩形时BD的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠GDE=∠FBH,∵G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,∴在Rt△AED和Rt△CFB中,EG=AD=GD,FH=BC=HB,∴EG=FH,∠GED=∠GDE,∠FBH=∠BFH,∴∠GED=∠BFH,∴EG∥FH,∴四边形GEHF是平行四边形;(2)解:连接GH,当四边形GEHF是矩形时,∠EHF=∠BFC=90°,∵∠FBH=∠BFH,∴△EFH∽△CBF,∴=,由(1)可得:GA∥HB,GA=HB,∴四边形GABH是平行四边形,∴GH=AB=5,∵在矩形GEHF中,EF=GH,且AB=5,AD=8,∴=,解得:BF=,∴BE=BF﹣EF=﹣5=,在△ABE和△CDF中∴△ABE≌△CDF(AAS),∴BE=DF=,∴BD=BF+DF=+=.9.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.10.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG= S 正方形ABCD ;【拓展】如图②,若四边形ABCD 是矩形,且S 四边形AEOG =S 矩形ABCD ,设AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);【探究】如图③,若四边形ABCD 是平行四边形,且AB =3,AD =5,BE =1,试确定F 、G 、H 的位置,使直线EF 、GH 把四边形ABCD 的面积四等分.解:【感知】如图①,∵四边形ABCD 是正方形,∴∠OAG =∠OBE =45°,OA =OB ,在△AOG 与△BOE 中,, ∴△AOG ≌△BOE ,∴S 四边形AEOG =S △AOB =S 正方形ABCD ;故答案为:;【拓展】如图②,过O 作ON ⊥AD 于N ,OM ⊥AB 于M ,∵S △AOB =S 矩形ABCD ,S 四边形AEOG =S 矩形ABCD ,∴S △AOB =S 四边形AEOG ,∵S △AOB =S △BOE +S △AOE ,S 四边形AEOG =S △AOG +S △AOE , ∴S △BOE =S △AOG , ∵S △BOE =BE •OM =mb =mb ,S △AOG =AG •ON =AG •a =AG •a , ∴mb =AG •a ,∴AG =;【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,∵S平行四边形ABCD=AB•KL=AD•PQ,∴3×2OK=5×2OQ,∴=,∵S△AOB =S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,∴S△AOB =S四边形AEOG,∴S△BOE =S△AOG,∵S△BOE =BE•OK=×1×OK,S△AOG=AG•OQ,∴×1×OK=AG•OQ,∴=AG=,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.11.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q 的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.12.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAF=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.13.如图,在△ABC中,点O是边AC上一个点,过点O作直线MN∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?证明你的结论.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.14.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.15.如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足什么条件时,四边形ADEG是矩形?②当△ABC满足什么条件时,四边形ADEG是正方形?(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)
数学九年级(北师大版)上学期期末备考压轴题专项习题:反比例函数1.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA=10,sin∠AOB=,反比例函数y=kx﹣1(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)求反比例函数的表达式;(2)若点F为BC的中点,求△OBF的面积.2.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.3.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.4.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.5.如图,直线y=x与反比例函数y=(x>0)的图象相交于点D,点A为直线y=x上一点,过点A作AC⊥x轴于点C,交反比例函数y=(x>0)的图象于点B,连接BD.(1)若点B的坐标为(8,2),则k=,点D的坐标为;(2)若AB=2BC,且△OAC的面积为18,求k的值及△ABD的面积.6.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求△AOB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.7.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y于点D,A(﹣6,0),C(6,0),tan∠ACB =2,∠BAC=45°(1)则AC=;(2)反比例函数y=的图象经过点B,求k的值;(3)在线段OD上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出满足条件的点P的坐标(不用写过程);若不存在,请说明理由.8.“凡此变数中函彼变数者,则此为彼之函数”这是我国著名数学家李善兰给出的“(function)函数”翻译,一次函数、二次函数、反比例函数是初中阶段必须掌握的三大初等函数.(1)已知一次函数y=kx+b与反比例函数相交于A(1,6),B(n,2)两点,求这两个函数的解析式及由坐标系原点O,A,B围成的三角形的面积;(2)已知实数m,n(m<n)在二次函数y=x2+3x﹣4对称轴的同一侧,当m≤x≤n时,y的取值范围为,求出m,n的值;(3)已知直线y=2tx﹣2和抛物线y=(t2﹣1)x2﹣1在y轴左边相交于A,B两点,点C是线段AB的中点,经过C,D(﹣2,0)的直线交y轴于点H(0,h),求h取值范围.9.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.10.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△P AC的面积是;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.11.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.12.已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S=.△OAB(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.13.如图,双曲线y=(x>0)经过△AOB的点顶A(2,3),AB∥x轴,OB交双曲线于点C,且OB=3OC(1)求k的值;(2)连接AC,求点C的坐标和△ABC的面积.14.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.15.如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.参考答案1.解:(1)如图,过点A 作AH ⊥OB 于H , ∵sin ∠AOB =,OA =10, ∴AH =8,OH =6, ∴A 点坐标为(6,8),代入反比例函数y =kx ﹣1(k >0)可得:k =6×8=48, ∴反比例函数解析式:y =;(2)如图,过点F 作FM ⊥x 轴于M , ∵四边形AOBC 是平行四边形, ∴AO ∥BC ,AO =CB =10, ∴∠AOB =∠FBM , ∵sin ∠AOB =, ∴sin ∠FBM =, ∵点F 为BC 的中点, ∴BF =5,∵AH =8,OH =6, ∴FM =4,BM =3, ∴S △BFM =6,∵F 在反比例函数图象上, ∴S △OFM =24,∴S △OBF =S △OFM ﹣S △BFM =18.2.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.3.解:(1)将点A(4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);设OB所在直线解析式为y=mx(m≠0),将点B(9,3)代入得m=,∴OB所在直线解析式为y=x;(3)联立解析式:解得:,可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,连接AP,则点E坐标为(6,3),∴AE=2,PE=1,PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.4.解:(1)如图,过点B、D分别作BH⊥x轴、DG⊥x轴交于点H、G,∵点A(﹣6,0)、D(﹣7,3),∴OA=6,OG=7,DG=3,∴AG=OG﹣OA=1,∵∠DAG+∠BAH=90°,∠DAG+∠GDA=90°,∴∠GDA=∠BAH,又∠DGA=∠AHB=90°,AD=AB,∴△DGA≌△AHB(AAS),∴DG=AH=3,BH=AG=1,∴点B坐标为(﹣3,1);(2)由(1)知,B(﹣3,1),∵D(﹣7,3)∴运动t秒时,点D'(﹣7+2t,3)、B'(﹣3+2t,1),设反比例函数解析式为y=,∵点B',D'在反比例函数图象上,∴k=(﹣7+2t)×3=(﹣3+2t)×1,∴,k=6,∴反比例函数解析式为;(3)存在,理由:由(2)知,点D'(﹣7+2t,3)、B'(﹣3+2t,1),t=,∴D'(2,3)、B'(6,1),由(2)知,反比例函数解析式为y=,设点Q(m,),点P(0,s),以P、Q、B'、D'四个点为顶点的四边形是平行四边形,∴①当PQ与B'D'是对角线时,∴(0+m)=(2+6),(s+)=(3+1),∴m=8,s=,∴Q(8,),P(0,),②当PB'与QD'是对角线时,∴(0+6)=(2+m),(s+1)=(+3),∴m=4,s=,∴Q(4,),P(0,).③当PD'与QB'是对角线时,∴(0+2)=(m+6),(s+3)=(+1),∴m=﹣4,s=﹣,∴Q(﹣4,﹣),P(0,﹣),综上:Q(8,),P(0,)或Q(4,),P(0,)或Q(﹣4,﹣),P(0,﹣).5.解:(1)把B(8,2)代入y=得:k=2×8=16,∴反比例函数的关系式为y=,由题意得:解得:,(舍去)∴点D的坐标为(4,4)故答案为:16,(4,4)(2)过点D作DE⊥OC,DF⊥AC,垂足为E、F,如图所示:∵点A在第一象限y=x上,∴AC=OC,又∵△OAC的面积为18,∴AC=OC=6,∵AB=2BC,∴AB=4,BC=2,∴点B(6,2),代入y=得,k=12;设点D(a,a)代入y=得,a=(a>0)∴D (,),即OE =DE =,∴DF =EC =OC ﹣OE =6﹣,∴△ABD 的面积=AB •DF =×4×(6﹣)=12﹣;因此k 的值为12,∴△ABD 的面积为12﹣.6.解:(1)∵已知反比例函数y =与一次函数y =x +b 的图象在第一象限相交于点A (1,﹣k +4), ∴﹣k +4=k , 解得k =2,故反比例函数的解析式为y =,又知A (1,2)在一次函数y =x +b 的图象上, 故2=1+b , 解得b =1,故一次函数的解析式为y =x +1; (2)由题意得:,解得x =﹣2或1, ∴B (﹣2,﹣1),令y =0,得x +1=0,解得x =﹣1, ∴C (﹣1,0), ∴S △AOB =S △AOC +S △COB =×1×2+×1×1 =1+ =1.5;(3)由图象可知,当一次函数的值大于反比例函数值时,x的取值范围是x>1或﹣2<x <0.7.解:(1)6﹣(﹣6)=12.故答案为:12.(2)过点B作BE⊥x轴,如图1所示.设BE=m,则CE==m,AE==m.∵AE+CE=12,∴m+m=12,∴m=8,∴OE=OC﹣CE=6﹣×8=2.∴点B的坐标为(2,8).(3)∵点B的坐标为(2,8),BD⊥y于点D,∴点D的坐标为(0,8),∴BD=2.∵点A的坐标为(﹣6,0),∴OA=6.设点P的坐标为(0,n)(0<n<8),则OP=n,DP=8﹣n.∵∠AOP=∠BDP=90°,以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似,∴=或=,即=或=,解得:n=2或n=6,∴在线段OD上存在点P(0,2)或(0,6),使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似.8.解:(1)∵A(1,6),B(n,2)在反比例函数的图象上,∴m=6,∴反比例函数的解析式是y=,∴2n=6,解得n=3,∴B(3,2),∵一次函数y=kx+b与反比例函数y=的图象交于A、B两点.∴,解得,∴一次函数解析式为y=﹣2x+8;设直线y=﹣2x+8与x轴相交于点C,C的坐标是(4,0).S△AOB =S△AOC﹣S△BOC=OC|y A|﹣OC|y B)=8;(2)分两种情况讨论:①当m<n<﹣,即m、n在对称轴的左侧时,二次函数y的值随x增大而减小,∵,∴方程组中的第一个方程×n得,n3+3n2﹣4n=12∴(n+2)(n﹣2)(n+3)=0解得n=﹣2或2或﹣3,同理由方程组中的第二个方程×m得m=﹣2或2或3,∵m<n<﹣,∴m=﹣3,n=﹣2;②当﹣<m<n,即m、n在对称轴的右侧时,二次函数y的值随x增大而增大,∵,,方程①×n﹣2×m,得m2n﹣n2m+4(m﹣n)=0,∴(mn+4)(m﹣n)=0,∵m﹣n≠0,∴mn+4=0,m=﹣,将m=﹣代入方程②得,n2+3n﹣4=﹣3n,∴n=﹣3±∵n>﹣n=﹣3+∴m=﹣3﹣<﹣,与上述﹣<m<n矛盾,∴没有满足的m、n.综上,在对称轴的左侧存在实数m、n,当m≤x≤n时,y的取值范围为,此时m=﹣3,n=﹣2;(3)设点A(x1,y1)、B(x2,y2),则x1、x2是方程2tx﹣2=(t2﹣1)x2﹣1即(t2﹣1)x2﹣2tx+1=0,解得x1=,x2=,∴x1+x2=,y1+y2=2tx1﹣2+2tx2﹣2=2t(x1+x2)﹣4=.∵点C是AB的中点,∴点C的坐标为(,)即(,).设直线DC的解析式为y=mx+n,则有,解得.∴直线与y轴的交点纵坐标h=n=.∵点A、B在y轴的左侧,∴x1=<0且x2=<0,解得t<﹣1.设k=2t2+t﹣1,则有h=,k=2(t+)2﹣,∵2>0,∴当t<﹣1时k随着t的增大而减小,∴k>2(﹣1+)2﹣即k>﹣1,对于h=,①当﹣1<k<0时,h<﹣4;②当k>0时,h>0,∴直线与y轴的交点纵坐标h的取值范围是h<﹣4或h>0.9.解:(1)将A(,1)代入y=,得:1=,解得:k=,∴反比例函数的表达式为y=.(2)∵点A的坐标为(,1),AB⊥x轴于点C,∴OC=,AC=1,∴OA==2=2AC,∴∠AOC=30°.∵OA⊥OB,∴∠AOB=90°,∴∠B=∠AOC=30°,∴AB=2OA=4,=AB•OC=×4×=2.∴S△AOB(3)在Rt△AOB中,OA=2,∠AOB=90°,∠ABO=30°,∴OB==2.分三种情况考虑:①当OP=OB时,如图2所示,∵OB=2,∴OP=2,∴点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2);②当BP=BO时,如图3,过点B做BD⊥y轴于点D,则OD=BC=AB﹣AC=3,∵BP=BO,∴OP=2OC=2或OP=2OD=6,∴点P的坐标为(2,0),(0,﹣6);③当PO=PB时,如图4所示.若点P在x轴上,∵PO=PB,∠BOP=60°,∴△BOP为等边三角形,∴OP=OB=2,∴点P的坐标为(2,0);若点P在y轴上,设OP=a,则PD=3﹣a,∵PO=PB,∴PB2=PD2+BD2,即a2=(3﹣a)2+12,解得:a=2,∴点P的坐标为(0,﹣2).综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2),(0,﹣6),(0,﹣2).10.解:(1)∵点A(a,b)是双曲线y=(x>0)上,∴ab=8,∵AC⊥y轴于C点,AD⊥x轴于D点,∴AC=a,AD=b,∴△P AC的面积=AD•AC=ab=4;故答案为:4;(2)∵a=2,∴b=4,∴AC=2,AD=4,A(2,4),设直线AP的解析式为y=kx+b,∴,∴,∴直线AP的解析式为y=x+2,∴B(0,2),∴S=AC•BC==2;△ABC(3)同理直线AP的解析式为y=﹣,∴B(0,﹣),∴BC=4+=∴S=×2×=.11.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a 由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.12.解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S=,△OAB∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).13.解:(1)把A (2,3)代入y =得:k =2×3=6, 答:k 的值为:6.(2)过点A 、C 、B 分别作AF ⊥x 轴,CD ⊥x 轴,BE ⊥x 轴,垂足为F 、D 、E , ∵A (2,3) ∴OF =2,AF =3, 由△OCD ∽△OBE 得:,∴CD =1,把y =1代入y =得:x =6, ∴C (6,1), ∴OE =18,∴S △OAB =S 梯形OABE ﹣S △OBE =(18+16)×3﹣×18×3=24, ∵OB =3OC , ∴S △ABC =S △AOB ==16.答:点C 的坐标为(6,1),△ABC 的面积为16.14.(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.15.解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).。
比例线段(四大题型总结)(压轴题专项讲练)(北师大版)(原卷版)2024-2025学年九年级数学上册
比例线段(四大题型总结)(压轴题专项讲练)【题型一:比例的性质】1.(24-25九年级上·上海·阶段练习)已知线段a 、b 、c 、d 、m ,如果ab =cd ,m ≠0,那么下列各式中成立的是( )A =B .a―m b=c―m dC .a+m b+m =cdD .a 2b =c 2d2.(23-24九年级上·河南郑州·期末)已知2ab+c =2ba+c =2ca+b =k ,则k =( )A .1B .±1C .1或―2D .23.(23-24九年级上·辽宁丹东·阶段练习)已知ab =cd =ef =5,且b +d +f ≠0,若a +c +e =30,则b +d +f =.4.(2024·四川南充·模拟预测)已知实数a 、b 、c 满足1a+1=2b+2=3c―3,则a ―2b +c 的值为 .5.(24-25九年级上·全国·单元测试)根据下列条件求x:y:z 的值.(1)x:y =3:7,y:z =4:7;(2)x:y =13:12,x:z =0.3:0.2.【题型二:比例线段】6.(23-24九年级上·广东佛山·阶段练习)下列各组中的四条线段a ,b ,c ,d 是成比例线段的是( )A .a =1,b =1,c =1,d =5B .a =1,b =c =d =8C .a =2,b =c =d =D .a =b =3,c =2,d =87.(23-24九年级上·四川成都·阶段练习)线段a 、b 、c 、d 成比例,其中b =3cm ,c =2cm ,d =6cm ,则a =cm .8.(24-25九年级上·全国·单元测试)已知线段a=0.3m,b=60cm,c=12dm.(1)求线段a与线段b的比和线段b与线段c的比;(2)如果线段a、b、c、d成比例,求线段d的长.(3)在比例式a:b=b:c或b2=ac中,我们把b称为a、c的比例中项,那么本题中b是a和c的比例中项吗?为什么?9.(23-24九年级上·山西晋中·阶段练习)如图,一块矩形绸布的长AB=a m,宽AD=2m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AE AD =ADAB,那么a的值应当是多少?10.(23-24九年级上·江苏无锡·阶段练习)如图,已知点D ,E 分别在边AB ,AC 上,BE ,CD 交于点O ,ADAB =DE BC =DOCO,AB =7,DB =4,BC =9,CD =10.(1)求DE ,CO 的长;(2)若△ABC 的面积为70,求△BOC 的面积.【题型三:黄金分割】11.(24-25九年级上·河北秦皇岛·阶段练习)若点C 是线段AB 的黄金分割点,且AB =2,则AC =( )A 1B .3―CD 1或312.(23-24九年级上·上海长宁·期末)已知点C 在线段AB 上,且满足AC 2=BC ⋅AB ,那么下列式子成立的是( )A .ACBC =B .ACAB =C .BCAB =D .BCAC =13.(23-24九年级上·四川成都·阶段练习)在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB 为边作正方形ABCD ,取AD 的中点E ,连接BE ,延长DA 至F ,使得EF =BE ,以AF 为边作正方形AFGH ,则点H 即是线段AB 的黄金分割点.若AD =20,记正方形AFGH 的面积为S 1,矩形BCIH 的面积为S 2,则S 1与S 2的和为.14.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MGMN =GNMG =“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为 .15.(23-24八年级下·湖北武汉·0.618)的矩形称为黄金矩形.黄金矩形给我们以协调、匀称的美感.世界上很多著名建筑,为了取得最佳的视觉效果,都采用了黄金矩形的设计,如希腊帕特农神庙等.(1)如图,经测量,帕特农神庙的面宽约为31米,那么它的高度大约是______米.(结果取整数)实验操作:折一个黄金矩形第一步,在矩形纸片的一端利用图1的方法折出一个正方形MNCB ,然后把纸片展平;第二步:如图2,将正方形折成两个相等的矩形,再将其展平;第三步:折出内侧矩形的对角线AB ,并将AB 折到图3所示的AD 处;第四步,展平纸片,按照所得的点D 折出DF ,矩形BCDF 就是黄金矩形(如图4).问题思考:(2)图4中是否还存在其它黄金矩形,请判断并说明理由;(3)以图3中的折痕AQ 为边,构造黄金矩形,若MN =2,则这个矩形的面积是______(直接写出结果).【题型四:平行线分线段成比例】16.(2023·黑龙江哈尔滨·模拟预测)如图,在△ABC 中,DE∥BC ,DF∥AC ,则下列比例式中正确的是( )A .BDAD =DF FCB .DE FB =AEACC .BF FC =CEAED .ADFC =AB AC17.(23-24九年级下·江苏南京·自主招生)如图,在梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 中点,试判断BA 、NM 、CD 延长线是否交于一点,并证明.18.(24-25九年级上·上海·假期作业)已知如图,点D 是ΔABC 边BC 上一点,且BD:DC =2:3,过点C 任作一条直线与AB 、AD 分别交于点F 和E ,求证:AEED =5AF3BF .19.(23-24九年级下·广东深圳·开学考试)如图,将正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P ,过点P 作MN∥BC ,交BF 于点Q .若QP =12BC ,则FQQB =.20.(23-24九年级上·山西太原·阶段练习)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.将小正方形对角线EF 双向延长,分别交边AB ,和边BC 的延长线于点G ,H .若大正方形与小正方形的面积之比为5,GH =,则大正方形的边长为.。
北师大版九年级数学下册第一章直角三角形的边角关系综合题训练
北师大版九年级数学下册第一章直角三角形的边角关系综合压轴题专项训练试题1、如图,MN是表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500 米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?2、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D 是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE,EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F.求支架DE的长.3、如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.4、小红家的阳台上放置了一个晒衣架(如图∶),图∶是晒衣架的侧面示意图,立杆AB,CD相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm (参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC ∶BD .(2)求扣链EF 与立杆AB 的夹角∶OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.5、如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的点B 处安置测角仪,在点A 处测得电线杆上C 处的仰角为30°.已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).6、如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin360.59cos360.81tan360.73===°,°,°.】7、在建筑楼梯时,设计者要考虑楼梯的安全程度和占地面积,如图1—136(1)所示,虚线为楼梯的斜度线,斜度线与地板的夹角为锐角θ,一般情况下,锐角θ愈小,楼梯的安全程度愈高,但占地面积较多,如图l—136(2)所示,为提高安全程度,把倾角由θ1减至θ2,这样楼梯占用地板的长度由d1增加到d2,已知d1=4 m,θ1=40°,θ2=36°,求楼梯占用地板的长度增加了多少.(精确到0.01 m,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan 36°≈0.7265,sin 40°≈0.6428,cos 40°≈0.7660,tan 40°≈0.8391)8、在旧城改造中,要拆除一烟囱AB,如图1—137所示,在地面上事先划定以B为圆心,半径与AB等长的圆形区域为危险区,现在从与B地水平距离相距(BD=21米)21米远的建筑物CD的顶端C点测得A点的仰角为45°,B点的俯角为30°,现在离B点25米远的地方有一受保护的文物,则该文物是否在危险区内?试说明理由.,精确到0.01米)9、通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1,在∶ABC中,AB =AC ,顶角A 的正对记作sadA ,这时sadA =底边腰=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=____________;(2)对于0°<∶A <180°,∶A 的正对值sadA 的取值范围是____________;(3)如图2,已知sinA =35,其中∶A 为锐角,试求sadA 的值. 10、根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M 距离羲皇大道l (直线)的距离MN 为30米(如图8所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从点A 行驶到点B 所用时间为6秒,∠AMN =60°,∠BMN =45°.(1)计算AB 的长;(2)通过计算判断此车是否超速.11、如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.12、如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C 在AB 的延长线上,设想过C 点作直线AB 的垂线l ,过点B 作一直线(在山的旁边经过),与l 相交于D 点,经测量∶ABD =135°,BD =800米,求直线l 上距离D 点多远的C 处开挖?(2≈1.414,结果精确到1米)13、已知:如图,在山脚的C 处测得山顶A 的仰角为 45°,沿着坡度为30°的斜坡前进400米到D 处(即 ∠,CD =400米),测得A 的仰角为,求山的高度AB .14、如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B 两船相距1003+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号).(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在23≈1.73)6015、如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1∶,且AB=30 m,李亮同学在大堤上A点处用高1.5 m的测量仪测出高压电线杆CD顶端D的仰角为30°,已知地面BC宽30 m,求高压电线杆CD的高度.(结果保留三位有效数字,≈1.732)16、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1∶的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).17、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BP Q的度数;(2)求该电线杆PQ的高度(结果精确到1 m).(参考数据:≈1.7,≈1.4)18、乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示).建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处的俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P,D的连线与水平方向的夹角为30°,求引桥BC的长度.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)。
北师大版九年级数学上学期期末备考压轴题专项习题:特殊的平行四边形(含答案)
期末备考压轴题专项习题:特殊的平行四边形1.已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.2.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)判断四边形ACDF的形状;(2)当BC=2CD时,求证:CF平分∠BCD.3.在菱形A BCD中,∠ABC=60°,延长BA至点F,延长CB至点E,使BE=AF,连结CF,EA,AC,延长EA交CF于点G.(1)求证:△ACE≌△CBF;(2)求∠CGE的度数.4.如图,△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)试判断四边形AEDF的形状.(2)当△ABC满足条件时,EF∥BC;当△ABC满足条件时,EF=AD.5.如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.6.一个六边形的花坛被分割成7个部分,其中四边形PRBA,RQDC,QPFE为正方形.记正方形PRBA,RQDC,QPFE的面积分别为S1,S2,S3,RH⊥PQ,垂足为H.(友情提示:正方形的四个内角都等于90度,四边都相等)(1)若PR⊥QR,S1=16,S2=9,则S3=,RH=;(2)若四边形PRBA,RQDC,QPFE的面积分别为25m2、13m2、36m2①求△PRQ的面积;②请判断△PRQ和△DEQ的面积的数量关系,并证明你的结论;③六边形花坛ABCDEF的面积是m2.7.已知,如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D 不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.(1)求证:①△BCG≌△DCE.②BH⊥DE.(2)当BH平分DE时,求GC的长.8.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.9.已知:如图,在平行四边形ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当平行四边形ABCD满足条件时,四边形GEHF是菱形;(3)若BD=2AB,探究四边形GEHF的形状,并说明理由.10.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结C E,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.11.如图,在四边形ABCD中,AD∥BC,AB=8,AD=16,BC=22,∠ABC=90°,点P 从点A出发,以每秒1单位的速度向点D运动,点Q从点C同时出发,以每秒v单位的速度向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当v=3时,若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为平行四边形,且线段PQ为平行四边形的一边,求t的值;(2)若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为菱形,且线段PQ为菱形的一条对角线,请直接写出t的值.12.如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.(1)求证:四边形ABCD是菱形.(2)填空:①当∠ADC=°时,四边形ACEB为菱形;②当∠ADC=90°,BE=4时,则DE=.13.如图,在矩形ABCD中,M是BC上一点,EF垂直平分AM,分别交BC,AM,AD于点E,O,F,连接AE,MF.(1)求证:四边形AEMF是菱形;(2)若AB=6,H为AB的中点,连接OH交AE于点P,OH+OA=9,求△OPE的周长.14.在菱形ABCD中,P、Q分别是边BC、CD的中点,连接AP、AQ.(1)如图(1),求证:AP=AQ;(2)如图(2),连接PQ、AC,在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.15.如图,四边形ABCD为菱形,∠BCD=60°,E为对角线AC上一点,且AE=AB,F 为CE的中点,接DF、BF,BG⊥BF与AC交于点G;(1)若AB=2,求EF的长;(2)求证:CG﹣EF=BG.参考答案1.(1)证明:如图1,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°=∠ECF,∵AB=BC,BM=BE,∴AM=EC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF;(2)解:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴EM=CF,∵AB=2,点E是边BC的中点,∴BM=BE=1,∴CF=ME=.2.(1)解:四边形ACDF是平行四边形,理由如下:∵四边形ABCD是矩形,∴AB∥CD,∠BCD=∠B=90°,∴∠F AE=∠CDE,∵E是AD的中点,∴AE=DE,在△F AE和△CDE中,,∴△F AE≌△CDE(ASA),∴CD=F A,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)证明:∵BC=2CD,AB=CD,四边形ACDF是平行四边形,∴AF=CD,BF=BC,∴△BCF是等腰直角三角形,∴∠BCF=45°,∴∠DCF=45°,∴CF平分∠BCD.3.(1)证明:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AF,∴BE+BC=AF+AB,即CE=BF,在△ACE和△CBF中,,∴△ACE≌△CBF(SAS);(2)解:由(1)可知:△ABC是等边三角形,△ACE≌△CBF,∴∠E=∠F,∵∠BAE=∠F AG,∴∠E+∠BAE=∠F+∠F AG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.4.解:(1)四边形AEDF是菱形;理由如下:∵DE∥AC交AB于点E,DF∥AB交AC于点F,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠ADF=∠F AD,∴F A=FD,∴四边形AEDF是菱形;(2)当△ABC满足AB=AC条件时,EF∥BC;当△ABC满足∠BAC=90°条件时,EF =AD.理由如下:由(1)得:四边形AEDF是菱形,∴AD⊥EF,∵AB=AC,AD是角平分线,∴AD⊥BC,∴EF∥BC;当∠ABC=90°时,四边形AEDF是正方形,∴EF=AD;故答案为:AB=AC,∠BAC=90°.5.(1)证明:如图,延长CD至E',使DE'=BE,连接AE',∵四边形ABCD为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∴∠ADE'=90°=∠ABE,在△ADE'和△ABE中,,∴△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=∠BAE,∵∠EAF=45°,∴∠DAF+∠B AE=45°,∴∠DAF+∠DAE'=∠E'AF=45°=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;(2)延长CD至E'使DE'=BE,连接AE',由(1)知,△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=BAE,设BE=x,DF=y,∵正方形ABCD的边长为1,∴CE=1﹣x,CF=1﹣y,∵△CEF的周长为2,∴CE+CF+EF=2,∴1﹣x+1﹣y+EF=2,∴EF=x+y=BE+DF=DE'+DF=E'F,在△E'AF和△EAF中,,∴△E'AF≌△EAF(SSS),∴∠E'AF=∠EAF,∴∠DAE'+∠DAF=∠BAE+∠DAF=∠EAF,∵∠DAF+∠EAF+∠BAE=90°,∴∠EAF=45°.6.解:(1)∵PR⊥QR,∴∠PRQ=90°,∴PR2+RQ2=PQ2,∵S1=16,S2=9,∴S3=16+9=25,∴PR=4,RQ=3,PQ=5,∵RH⊥PQ,∴PR•RQ=PQ•RH,∴RH==,故答案为:25,2.4;(2)①设PH=a,则QH=6﹣a,∵RH2=PR2﹣PH2=RQ2﹣HQ2,∴25﹣a2=13﹣(6﹣a)2,解得:a=4,∴RH2=PR2﹣PH2=25﹣16=9,∴RH =3,∴S △PQR =×6×3=9;②S △PRQ =S △DQE ,证明:延长RQ 到点M ,使QM =RQ ,连结PM ,∵QD =QM ,∠DQE =∠MQP ,QE =QP∴△DQE ≌△MQP (SAS ),∴S △DQE =S △MQP ,∵RQ =QM ,∴S △PRQ =S △MQP ,∴S △PRQ =S △DQE ;③六边形花坛ABCDEF 的面积=25+13+36+4×9=74+36=110m 2. 故答案为:110.7.(1)证明:∵正方形ABCD ,∴∠BCD =90°,BC =CD ,同理:CG =CE ,∠GCE =90°,∴∠BCD =∠GCE =90°,,∴△BCG ≌△DCE (SAS ),∴∠GBC=∠CDE,在Rt△DCE中∠CDE+∠CED=90°,∴∠GBC+∠BEH=90°,∴∠BHE=180°﹣(∠GBC+∠BHE)=90°,∴BH⊥DE;(2)若BH垂直平分DE,连接BD,∴BD=BE,∵BD=,∴CG=CE=BE﹣BC=﹣1.8.解:(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2.9.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形.10.(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.11.解:(1)∵当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB为平行四边形.此时,t=22﹣3t,t=.当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD为平行四边形.此时,16﹣t=3t,t=4,∵线段PQ为平行四边形的一边,故当t=或4时,线段PQ为平行四边形的一边.(2)当PD=BQ=BP时,四边形PBQD能成为菱形.由PD=BQ,得16﹣t=22﹣3t,解得t=3,当t=3时,PD=BQ=13,AP=AD﹣PD=16﹣13=3.在Rt△ABP中,AB=8,根据勾股定理得,BP═≠13∴四边形PBQD不能成为菱形;如果Q点的速度改变为vcm/s时,能够使四边形PBQD在时刻ts为菱形,由题意得,,解得,.故点Q的速度为2cm/s时,能够使四边形PBQD在t=6时为菱形.12.(1)证明:∵AC垂直平分BD,∴AB=AD,BF=DF,∵AB∥CD,∴∠ABD=∠CD B.∵∠AFB=∠CFD,∴△AFB≌△CFD(ASA),∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴平行四边形ABCD是菱形;(2)①当∠ADC=60°,四边形ACEB为菱形,∵∠ADC=60°,∴∠BCE=60°,∴△BCE是等边三角形,∴CE=BE,∴四边形ACEB为菱形,故答案为:60;②当∠ADC=90°,BE=4时,DE=4,故答案为:4.13.(1)证明:∵EF垂直平分AM,∴AE=EM,OA=OM.∵四边形ABCD是矩形,∴AD∥BC.∴∠AFO=∠MEO,在△OF和△MOE中,,∴△AOF≌△MOE(AAS).∴OF=OE.∴四边形AEMF是平行四边形.∵AE=EM.∴四边形AEMF是菱形;(2)解:∵O、H分别为AM、AB的中点,∴BM=2OH,AM=2OA,∴AM+BM=2OA+2OH=18.设BM=x,则AM=18﹣x,在Rt△ABM中,由勾股定理得:62+x2=(18﹣x)2,解得:x=8,∴BM=8,AM=10.∴OA=AM=5,设EM=m,则BE=8﹣m,AE=EM=m,在Rt△ABE中,由勾股定理得:62+(8﹣m)2=m2,解得:m=,∴AE=EM=在Rt△AOE中,EO===.∵OP∥EM,∴==1,∴AP=PE,∴OP=EM=,∵PE=AE=,∴△OPE的周长=EO+PE+OP=++=10.14.证明:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵P、Q分别是边BC、CD的中点,∴BP=CQ,在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,(2)∵AP=AQ,∴△APQ是等腰三角形,∵BC=CD,∵P、Q分别是边BC、CD的中点,∴PC=CQ,∴△PQC是等腰三角形,∵AB=BC,AD=CD,∴△ABC,△ACD是等腰三角形,∴图中所有的等腰三角形有△ABC,△APQ,△ACD,△CPQ.15.(1)解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴∠BAD=∠BCD=60°,AC⊥BD,OB=OD,OA=OC,∠OAB=∠BAD=30°,∴OB=AB=1,OA=OB=,∴AC=2OA=2,∵AE=AB=2,∴CE=AC﹣AE=2﹣2,∵F为CE的中点,∴EF=CE=﹣1;(2)证明:设AB=2a,同(1)得:OB=AB=a,OA=OB=a,∴AC=2OA=2a,∵AE=AB=2a,∴CE=AC﹣AE=(2﹣2)a,OE=AE﹣OA=(2﹣)a,∵F为CE的中点,∴EF=CE=(﹣1)a,∴OF=OE+EF=(2﹣)a+(﹣1)a=a,∴OB=OF,∵AC⊥BD,∴△BOF是等腰直角三角形,∴∠BFG=45°,∵BG⊥BF,∴△BFG是等腰直角三角形,∴GF=BG,∵GF=CG﹣CF=CG﹣EF,∴CG﹣EF=BG.。
1、北师大版初三数学几何压轴题专项训练(探究题)
压轴题几何专项训练(一)——几何探究题渗透思想方法:特殊到一般、类比、化归解题策略:运用特殊情况解答中所积累的经验和知识,进一步完成一般情况。
1、课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分∠DAB, ∠DAB=60°, ∠B与∠D互补,求证:AB+AD= 3 AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”, 如图2,可证AB+AD= 3 AC.(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)2、如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .⑴求证:CE =CF ;⑵在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么?⑶运用⑴⑵解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.B C A G D FE图1 图2B CA DE3、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:△△AEB的度数为;△线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,△ACB=△DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断△AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且△BPD=90°,请直接写出点A到BP的距离.4、(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积。
(完整版)北师大版初中中考数学压轴题及答案
中考数学专题复习(压轴题)1.已知:如图,抛物线 y=-x 2+bx+c 与x 轴、 y轴分别相交于点 A(-1,0)、B(0,3)两点,其顶点为 D. ( 1)求该抛物线的解析式;( 2)若该抛物线与 x 轴的另一个交点为 E. 求四边形 ABDE 的面积;(3)△AOB 与△ BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由 .注:抛物线 y=ax 2+bx+c(a ≠0)的顶点坐b ,4ac b2标为2a 4a2. 如图,在Rt△ABC 中,A 90o,AB 6,AC 8 ,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ BC 于Q,过点Q作QR∥ BA 交AC 于R,当点Q与点C重合时,点P停止运动.设BQ x,QR y.1)求点D到BC的距离DH 的长;2)求y关于x 的函数关系式(不要求写出自变量的取值3)是否存在点P,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.3在△ABC中,∠A=90°,AB=4,AC=3,M是 AB上的动点(不与 A,B重合),过M点作 MN∥BC交AC于点 N.以MN 为直径作⊙ O,并在⊙ O内作内接矩形 AMPN .令 AM=x.(1)用含 x的代数式表示△MNP 的面积 S;(2)当 x为何值时,⊙ O与直线 BC 相切?(3)在动点 M的运动过程中,记△MNP与梯形 BCNM重合的面积为 y,试求 y关于 x的函数表达式,并求 x为何值时, y的值最大,最大值是多少?AC图2图1 图5如图,菱形 ABCD 的边长为 2,BD=2,E 、F 分别是边 AD ,CD 上的两个动点,且满足 AE+CF=2.(1)求证:△ BDE ≌△ BCF ;( 2)判断△ BEF 的形状,并说明理由;4. 如图 1 ,在平面直角坐标系中,己知ΔAOB 是等边三角形,点 A 的坐标是 (0 ,4) ,点 B 在第一象限,点 P 是x 轴上的一个动点,连结 AP ,并把Δ AOP 绕着点 A按逆时针方向旋转 .使边 AO 与AB 重合 . 得到Δ ABD. ( 1 )求直线 AB 的解析式; 2)当点 P 运动到点( 3 , 0)时,求此时 DP 的长及点 D 的坐标;( 3)是否存 43 ,若存在,请求出符合条件的点 P 的坐标;若不存在,请说明理由 在点 P ,使Δ OPD 的面积等于3)设△ BEF 的面积为 S,求 S 的取值范围26如图,抛物线L1:y x22x 3交x轴于 A、B两点,交y轴于 M 点.抛物线L1向右平移 2个单位后得到抛物线L2 ,L2交x轴于 C、D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点 N,使以 A , C, M , N为顶点的四边形是平行四边形 .若存在,求出点 N的坐标;若不存在,请说明理由;(3)若点 P是抛物线L1上的一个动点( P不与点 A、B 重合),那么点 P关于原点的对称点 Q是否在抛物线L2上,请说明理由 .7.如图,在梯形 ABCD 中,AB∥CD,AB=7,CD=1,AD=BC=5.点 M, N分别在边 AD,BC 上运动,并保持 MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.( 1)求梯形 ABCD 的面积;( 2)求四边形 MEFN 面积的最大值.( 3)试判断四边形 MEFN 能否为正方形,若能,求出正方形 MEFN 的面积;若不能,请说明理由.E F8.如图,点 A(m,m+1), B(m+3,m-1)都在反比例函数 y( 1)求 m,k 的值;( 2)如果 M 为 x 轴上一点, N 为 y 轴上一点,以点 A,B,M,N 为顶点的四边形是平行四边形,试求直线 MN 的函数表达式.友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2 分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.(3)选做题:在平面直角坐标系中,点 P 的坐标为( 5,0),点 Q的坐标为( 0,3),把线段 PQ 向右平移 4 个单位,然后再向上平移 2 个单位,得到线段P1Q1,则点 P1 的坐标为,点 Q1 的坐标为.yO yOQ21239.如图 16,在平面直角坐标系中,直线y 3x 3 与x 轴交于点A ,与y 轴交于点C ,抛物线y ax2 2 3x c(a 0)经过A,B,C 三点.31)求过A,B,C三点抛物线的解析式并求出顶点F 的坐标;2)在抛物线上是否存在点P ,使△ABP为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;3)试探究在直线AC上是否存在一点M ,使得△MBF 的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.60o后得到矩形EFOD .点A的对应点为点E,点B的对应点为点F ,点C的对应点为点D,抛物线y1)判断点E是否在y 轴上,并说明理由;2)求抛物线的函数表达式;3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的 2 倍,且点P在抛物线上,若存在,请求出点P,点Q10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB 1,OB3 ,矩形ABOC 绕点O 按顺时针方向旋转ax2bx c 过点A,E,D .的坐标;若不存在,请说明理由.压轴题答案所以四边形 ABDE 的面积 =S ABO S 梯形 BOFD S DFE1 1 1= AO BO (BO DF) OF EF DF 2 2 21 1 1= 1 3 (3 4) 1 2 4 2 2 2=9(3)相似如图, BD= BG 2 DG 2 12 12 2 c 31. 解:( 1)由已知得: 解1 bc0 c=3,b=2∴抛物线的线的解析式为 y 2x 2x 3 (2) 由顶点坐标公式得顶点坐标为 ( 1,4)所以对称轴为 x=1,A,E 关于 x=1 对称,所以 E(3,0) 设对称轴与 x 轴的交点为 FBE= BO2 OE232 32 3 2DE= DF 2 EF 2 22 42 2 5所以 BD 2 BE 2 20, DE 2 20即: BD 2 BE 2 DE 2,所以 BDE 是直角三角形3)存在,分三种情况:Q 1 2 90o , C 2 90o , 1 C .所以 AOB DBE 90 , 且 AO BO 2,BD BE 2所以 AOB: DBE .2 解:( 1) Q A Rt , AB 6 , AC 8 , BC 10Q 点D 为 AB 中点, 1 BD AB 3.2Q DHB A 90o , B B .△BHD ∽△BAC ,DH BD BD312 , DH gAC 8AC BC BC 10 5.(2)Q QR∥ AB , QRC A 90o .QC C , △ RQC ∽△ ABC , ①当 PQ PR 时,过点 P 作 PM QR 于M ,则 QMRM RQ AB QC y 10 x BC , 6 10即 y 关于 x 的函数关系式为: 3x 6.5Acos 1 cosC 84 10 5 QM 4QP 51218 x .5 3 12 ②当PQ RQ 时, 3x 6 12, 55x 6 . C ③当 PR QR 时,则 R 为 PQ 中垂线上的点,于是点 R 为 EC 的中点,1AC 4BA,CA , 1 CR CE 2 QR CR 2.Q tanC 15,x综上所述,当 3 解: ( 1) ∴ △ AMN 8 x 为18或 6或15时, △ PQR 为等腰三角形. 2∴∠AM N = ∠ B ,∠ AN M =∠C .5∵ MN ∥ BC , ∽ △ ABC . AM AN , 即 x ANAB AC 4 3AN = 3 x .2分4S =S S1 3 3x 2.(0<x <4)MNP AMN xx2 4 8图1 3分2)如图 2,设直线 BC 与⊙O 相切于点 D,连结 AO,OD,则 AO=OD = 1MN.在 Rt△ABC 中, BC =AB2AC2=5.由( 1)知△AMN AMAB ∴MN ∴ OD MN,BC 5 x,45 x.8过 M 点作△ABC.MN5分MQ⊥BC 于Q,则MQ OD在 Rt△BMQ 与 Rt△BCA 中,∠ B 是公共角,∴ △BMQ ∽△ BCA.∴BMBC QM AC∴BM 55x8325x,AB BM2496 ∴ x =49( 3)随点M ∵ MN∥ BC,∴ △ AMO ∽96时,49 的运动,当 P 点落在直线∴∠AMN=∠B,∠ AOM △ABP .∴ AM AO 1. AM =MB=2.AB AP 2故以下分两种情况讨论:① 当 0< x≤2时, y SΔPMN 3x28图25x.8MA25x24⊙O 7分AP,则 O 点为 AP 的中点.BC 上时,连结图333∴ 当x=2时,y最大83 22 32. ⋯⋯⋯⋯⋯⋯⋯② 当 2< x<4时,设 PM,PN 分别交 BC于 E,F.∵ 四边形 AMPN 是矩形,∴ PN∥AM,PN=AM =x.又∵ MN∥ BC,∴ 四边形 MBFN 是平行四边形.∴ FN=BM=4- x.∴ PF x 4 x 2x 4.又△ PEF ∽ △ ACB.∴PF2SS PEF AB S ABCS PEF 2x 2y S MNP S PEF =32 3 2 92x x 2 x8 2 89 826x 6 x 2.8 392当 2< x < 4 时,y x28 6x 69分1 0 分8当x 83时,满足 2< x<4,y最大2.11 分8综上所述,当x 38时,y值最大,最大值是2.1分24 解:( 1)作 BE⊥OA,∴ΔAOB 是等边三角形∴BE=OB·sin60o= 2 3,∴B(2 3,2) ∵A(0,4), 设 AB的解析式为y kx 4,所以2 3k 4 2 ,解得k以直线 AB的解析式为y2)由旋转知,AP=AD, ∠PAD=60o ,∴Δ APD是等边三角形,PD=PA= AO2 OP219如图,作 BE⊥AO,DH⊥OA,GB⊥DH,显然Δ GBD中∠GBD=30°∴GD=1 BD= 3 ,DH=GH+GD= 3 +2 3 =5 32 2 23 3 3 ∴ GB=BD= ,OH=OE+HE=OE+BG2= 22∴D(5 3 ,272)(3) 设 OP=x,则由( 2)可得 D( 2 3 x,2 23x)若ΔOPD的面积为:21xg(2 23x) 43解得:x2 3 21所以 P( 2 3 21,0)(2)解:△ MEF 为正三角形.理由;VΔBDE^ΔBCF,Λ ZDBE= Z CBF.BE=BF tV Z DEe ■ SBF+Z CBF=6『TΛ -Z DKF÷ DBE= 60\ 即ZfλBF=6<Λ ΛΔBΓΓ为正三角形.(3)解:设 BE=BF=EF=Jr,则 S =-I- * z * X * sin60°= -^-X t +当 Br LAD 时心M -2 XSinCO ft -√J 1当IiE 与AB ⅛⅛时,工仆・2, *--s *x≡^^×23-√3.給⑴令 J y^O,⅛-√-2JC ÷3=□, .∖jr 1≡"-3,-τ3 = l∙ΛΛ<-3.0) *B( 1 >□λT 拗物绒L L 向右平移2个単位得嫌物线匸“ΛCC t-1∙0)»DC3,0) ,α≡-L化施物线厶为y ■—(JE 十J(J :一3),卸 y≡ — 1z 4+2κT 3*AB∥ CD ,DG=CH,DG∥CH.四边形 DGHC 为矩形,GH =CD=1. DG=CH,AD=BC,∠AGD =∠ BHC = 90°,△AGD ≌△ BHC (HL).E G H FAB7 解:1)分别过 D,C 两点作 DG ⊥AB 于点 G,CH ⊥AB 于点 H.1分AG =BH = AB GH 7 1=3. ⋯⋯⋯ 2分 22在 Rt △ AGD 中, AG =3,AD =5,DG =4.∴ 1 7 4 . ⋯∴ S 梯形 ABCD 2 16 . ⋯(2)∵ MN ∥AB ,ME ⊥ AB ,NF ⊥AB , ∴ ME =NF ,ME ∥NF .∴ 四边形 MEFN 为矩形.∵ AB ∥CD ,AD =BC ,∴ ∠ A =∠ B .∵ ME =NF ,∠MEA =∠ NFB =90°,∴ △ MEA ≌△ NFB ( AAS ).∴ AE = BF . ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分设 AE = x ,则 EF = 7- 2x . ⋯⋯⋯⋯⋯ 5 分∠A =∠ A ,∠ MEA =∠ DGA =90°, ∴ △ MEA ∽△ DGA .∴ AE ME .AG DG . 4∴ ME = x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 3 24 8 7 49∴ S 矩形 MEFN ME EF x (7 2x ) x . ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分3 34 6当 x = 7 时,ME = 7 <4,∴四边形 MEFN 面积的最大值为 49 . ⋯⋯⋯⋯⋯ 9 分 由( 2)可知,设 AE =x ,则 EF =7-2x ,ME = 4 x . 3 若四边MEF 为正方则 ME =EF . 4x 4x 7-2x . 解,得 x 21 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11 分 3 10 ∴ EF =21 14 7 2x 72 <4. 10 53分4 3 63)能. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分8 解:( 1 )由题意可知, m m 1 m 3 m 1 解,得 m =3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴ A (3,4), B (6,2);∴ k =4× 3=12. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)存在两种情况,如图:①当 M 点在 x 轴的正半轴上, N 点在 y 轴的正半轴 上时,设 M 1点坐标为( x 1, 0), N 1点坐标为( 0,y 1)∵ 四边形 AN 1M 1B 为平行四边形,∴ 线段 N 1M 1可看作由线段 AB 向左平移 3 个单位, 再向下平移 2个单位得到的(也可看作向下平移 2个单位,再向左平移 3 个单位得到的)由(1)知 A 点坐标为( 3,4),B 点坐标为( 6,2),∴ N 1点坐标为( 0,4-2),即 N 1(0,2); ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分 M 1点坐标为( 6-3, 0),即 M 1(3,0). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2设直线 M 1 N 1的函数表达式为 y k 1x 2 ,把 x =3,y =0 代入,解得 k 12 . 32 ∴ 直线 M 1N 1 的函数表达式为 y x 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分3②当 M 点在 x 轴的负半轴上, N 点在 y 轴的负半轴上时,设 M 2点坐标为( x 2,0),N 2点坐标为( 0,y 2) ∵ AB ∥N 1M 1, AB ∥ M 2N 2, AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2, N 1M 1=M 2N 2.∴ 线段 M 2N 2与线段 N 1M 1关于原点 O 成中心对称.∴ M 2点坐标为( - 3, 0), N 2点坐标为( 0,-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分2设直线 M 2 N 2的函数表达式为 y k 2x 2,把 x =-3,y =0代入,解得 k 22 , 32 四边形 MEFN 能为正方形,其面积为 S正方形 MEFN 14 5 19 6 253所以,直线 MN 的函数表达式为 y 2x 2 或 y 2x 2 .⋯⋯⋯⋯⋯⋯ 11 分33(3)选做题:( 9,2),( 4,5).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2分∴ 直线 M2N2的函数表达式为 y 2x 2 .9解:( 1)Q 直线 y 3x 3与 x 轴交于点 A ,与 y 轴交于点 C .x抛物线的解析式为x 23分顶点 F 1, 4 334分 2)存在5分 P 1(0, 3) 7分 P 2(2, 3)9分( 3)存在 · 理由: 解法一: 延长 BC 到点 B 10 分 ,使 BC BC ,连接 BF 交直线 AC 于点 M ,则点 M 就是所求的点.·· ······· · ···· · ····· · ······ · ···11 分过点 B 作 BH AB 于点 H .Q B 点在抛物线y 3x2 2 3x 3上, B (3,0)33在Rt △BOC 中, tan OBC 3,3A ( 1,0), C (0, 3) Q 点 A ,C 都在抛物线上, 23 c 31分0ax过点 F 作 FG y 轴于点 G ,则 OB ∥FG , BC ∥FH .BOC FGH 90o , BCO FHGOBC 30o , BC 2 3 ,1 在 Rt△BBH 中, BH BB 2 3,2BH 3BH 6, OH 3, B ( 3,2 3) ·· ······ · ······ ····12分23 3k b k343kb解得633 3 b233 3 ·y 6x 2·13 分y 3x 33 3 3 yx 62x解得y10 33,10 377在直线 AC 上存在点 M ,使得 △ MBF 的周长最小,此时10 314 分解法过点 F 作 AC 的垂线交 y 轴于点 H ,则点H 为点 F 关于直线 AC 的对称点.连接 BH 交 AC 于点 M ,则点 M 即为所求. 11分 设直线 BF 的解析式为 y kx b3HFG CBO 同方法一可求得 B (3,0) .在 Rt △BOC 中, tan OBC3,OBC 30o ,可求得 GHGC 3 ,33GF 为线段 CH 的垂直平分线, AC 垂直平分 FH . 可证得 △CFH 为等边三角形,0, 5 3 · ······ ·3即点 H 为点 F 关于 AC 的对称点.H ······ ····12 分设直线 BH 的解析式为 y kx b ,由题意得59 3 53 310 解:( 1)点 E 在 y 轴上 理由如下:0 3k b b 53 3k 解得 b59 353 3 13 分59 3x 53 3y 3x 3x解得y 3 7 10 3 73 , 10 377在直线 AC 上存在点 M ,使得 △ MBF 的周长最小,此时10 31分连接 AO ,如图所示,在 Rt △ ABO 中, Q AB 1,BO 3, AO 21,osin AOBAOB 30o2由题意可知:AOE60oQ 点 D 在第一象限, 3,122c2BOEAOB AOE 30o 60o 90o Q 点 B在 x 轴上,点 E 在 y 轴上.3分2)过点 D 作DM x 轴于点M Q OD 1,DOMo30o在 Rt △ DOM 中,DM1 ,OM2点 D 的坐标为5分由( 1)知 EO AO 2 , 点 E 在 y 轴的正半轴上 点 E 的坐标为 (0,2)点 A 的坐标为 ( 3,1) 6分Q 抛物线 y2ax bx c 经过点 E ,953 83)存在符合条件的点 P ,点 Q . 理由如下: Q 矩形 ABOC 的面积 ABgBO 3 以O ,B ,P ,Q 为顶点的平行四边形面积为 23 . 由题意可知 OB 为此平行四边形一边, 又 Q OB 3OB 边上的高为 2依题意设点 P 的坐标为 (m ,2)53m由题意,将 A ( 3,1), D 3,1 代入 y ax 2 22bx 2 中得3a 3b 2 1 3 3 1 a b 2 4 22a解得b8 9 53 9所求抛物线表达式为:y82 x 953x9分 10 分11 分Q 点 P 在抛物线 y82 x 9 53 x9 2上229解得,m1 0 ,m295388P 1 (0,2) , P253 8Q 以 O ,B ,P ,Q为顶点的四边形是平行四边形, PQ∥OB ,PQ OB 3, 当点 P1 的坐标为 (0,2)时,点 Q的坐标分别为 Q 1( 3,2) , Q 2( 3,2);53当点 P 2 的坐标为 ,2 时,8 点 Q 的坐标分别为Q 313 3 8Q 43 3,2 .以上答案仅供参考,如有其它做法,可参照给分)8。
北师大版九年级数学下册 第3章 《圆》压轴题型提升训练(四)
九年级数学下册第3章《圆》压轴题型提升训练(四)1.某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题探究】如图1,AD,BD为⊙O的两条弦(AD<BD),点C为的中点,过C作CE ⊥BD、垂足为E.求证:BE=DE+AD.小明同学的思路是:如图2.在BE上截取BF=AD,连接CA,CB,CD,CF…请你按照小明的思路完成上述问题的证明过程.【结论运用】如图3,△ABC是⊙O的内接等边三角形,点D是上一点,∠ACD=45°,连接BD,CD.过点A作AE⊥CD,垂足为E.若AB=6,求△BCD的周长.【变式探究】如图4,若将(问题探究)中“点C为的中点”改为“点C为优弧ACB 的中点”,其他条件不变,请写出BE、AD、DE之间的等量关系,并加以证明.2.如图,AB是⊙O的直径,PB,PC是⊙O的两条切线,切点分别为B,C.连接PO交⊙O 于点D,交BC于点E,连接AC.(1)求证:OE=AC;(2)若点E是OD的中点,⊙O的半径为6,求PB的长.3.(1)如图①,AB是⊙O的直径,C、D在⊙O上,且BC=BD,AD=CD.求证:∠ADC=2∠BDC.(2)如图②,AB是⊙O的直径,点C在⊙O上.若平面内的点D满足AD=CD,且∠ADC =2∠BDC.①利用直尺和圆规在图②中作出所有满足条件的点D(保留作图痕迹,不写作法);②若AB=4,BC长度为m(0<m<4),则平面内满足条件的点D的个数随着m的值变化而变化.请直接写出满足条件点D的个数及对应m的取值范围.4.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以原点O为圆心,半径为3的⊙O上,连接OC,过点O作OD⊥OC,OD与⊙O相交于点D(其中点C,O,D 按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC 面积的最大值.(3)连接AD,当OC∥AD,点C位于第二象限时,①求出点C的坐标;②直线BC是否为⊙O的切线?并说明理由.5.如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连接OM、CM.(1)如图①,若半圆的半径为6,的长为2π时,求DM的长;(2)如图②,点N是AD的中点,AO=5,当点C为OD中点时,求AM的长;(3)在点M的运动过程中,∠DMC的大小是否为定值?若是,直接写出∠DMC的值,若不是,说明理由.6.如图①,在矩形ABCD中,AB=4,BC=6,点E是BC边上一动点,连接AE、DE,作△ABE 的外接⊙O,交AD于点F,交DE于点G,连接FG.(1)若∠DFG=60°,则∠AED=°;(2)当CE的长为时,△DFG为等腰三角形;(3)如图②,当⊙O与CD相切时,求CE的长.7.AB为⊙O的直径,弦CD⊥AB,垂足为H,F为弧BC上一点,且∠FBC=∠ABC,连接DF,分别交BC、AB于E、G.(1)如图1,求证:DF⊥BC;(2)如图2,连接EH,过点E作EM⊥EH,EM交⊙O于点M,交AB于点N.①求证:NH=AB;②若DG=6,ON=6,则MN的长为.8.如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.(1)如图2,在⊙O上取一点C(不与点A、B重合),连PC、OC.求证:PA<PC.(2)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(3)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.(4)①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH的最小值是.②如图6,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.9.如图1,BC是⊙O的直径,点A是⊙O上的动点,AD⊥BC,垂足为D,弧AB=弧AE,射线BE分别交射线AD、AC于点F、G.(1)当点A、E在直径BC两侧时,①判断△AFG的形状,并说明理由;②连接CE,求证:BD=CD+CE;(2)若⊙O的直径BC=5,CE=,求CD的长.10.【问题情境】如图1,C,D是∠AOB的边OA上两点,在边OB上找一点P,使得∠CPD 最大.【问题解决】小明在解决这个问题时认为:如图2,同时过C、D两点的圆与OB边相切于点P,当且仅当取此切点时,∠CPD才最大.(1)小明证明自己结论的思路是:在射线OB上任取另一点P(不同于切点P),证明1D即可请完成小明的证明;∠CDD>∠CP1【结论应用】请和小明一起,利用“问题情境”的结论解决下列问题:(2)如图3,一幢楼BC上有一高为2m的信号塔AB,当观测点E在水平地面CD上,且满足CE=6时,看信号塔AB的视角(即∠AEB)最大,求楼高BC;(3)如图4,四边形ABCD中,∠A=∠B=90°,∠BCD=60°,BC=9,对角线AC平分∠BCD.点E是BC上一点,请问当BE的长满足什么条件时,在线段AD上恰好只存在一点P,使得∠BPE=60°?(直接写出结果,不必写出解答过程)参考答案1.解:【问题探究】如图2,在BE上截取BF=AD,连接CA,CB,CD,CF,∵点C为的中点,∴=,∴AC=BC,由圆周角定理得,∠DAC=∠DBC,在△DAC和△FBC中,,∴△DAC≌△FBC(SAS)∴CD=CF,又CE⊥BD,∴DE=EF,∴BE=EF+BF=DE+AD;【结论运用】连接AD,在CE上截取CF=AD,连接AF,由【问题探究】可知,△DAB≌△FAC,∴BD=CF,AD=AF,∵AE⊥CD,∴DE=EF,∴EC=EF+CF=DE+BD,∴DB+DC=2EC,在Rt△AEC中,∠ACE=45°,∴EC=AC=6,∴△BCD的周长=DB+DC+BC=12+6;【变式探究】BE+AD=DE,理由如下:在线段DE上截取DF=AD,连接CB、CF、CD、CA,∵点C为优弧ACB的中点,∴=,∴AC=CB,∠ADC=∠BDC,在△ADC和△FDC中,,∴△ADC≌△FDC(SAS),∴CA=CF,∵CA=CB,∴CF=CB,又CE⊥BD,∴BE=EF,∴DE=DF+EF=BE+AD.2.证明:(1)∵PB,PC是⊙O的两条切线,切点分别为B,C,∴PB=PC,∠BPO=∠CPO.∴PO⊥BC,BE=CE.∵OB=OA,∴OE是△ABC的中位线,∴OE=AC;(2)∵PB是⊙O的切线,∴∠OBP=90°.由(1)可得∠BEO=90°,∵点E是OD的中点,⊙O的半径为6,∴OE=OD=3,∵∠OBP=∠BEO=90°.∴tan∠BOE==,在Rt△BEO中,OE=3,OB=6,∴BE=3.∴PB=6.3.解:(1)连接AC,∵BD=BC,∴,又∵AB是直径,∴AB垂直平分CD,∴AC=AD,∵CD=AD,∴△ACD是等边三角形,∴∠ADC=60°=∠DAC,∵AB垂直平分CD,∴∠BAC=∠BAD=30°=∠BDC,∴∠ADC=2∠BDC;(2)①如图②,以B为圆心,BC长为半径作⊙B,⊙B与AC的垂直平分线的交点为D,D';②当⊙B与AC的垂直平分线只有一个交点时,即点D的个数为1,∴AC=2BC,∵AB2=AC2+BC2,∴16=5m2,∴m=,∵0<m<4,∴当0<m<时,点D的个数为0;当m=时,点D的个数为1;当<m<4时,点D的个数为2.4.解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;综上所述,∠BOC的度数为45°或135°,故答案为:45°或135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图:此时C点到AB的距离的最大值为CE的长,∴OE=AB=3,∴CE=OC+OE=3+3,∴△ABC的面积=CE•AB=×(3+3)×6=9+18;即当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18;(3)①过C点作CF⊥x轴于F,如图:∵OC∥AD,∴∠COF=∠DAO,又∵∠ADO=∠CFO=90°,∴△OCF∽Rt△AOD,∴=,即=,解得:CF=,在Rt△OCF中,OF===,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:由①得:(﹣,),在Rt△OCF中,OC=3,CF=,∴CF=OC,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADO=90°,∴OC⊥BC,∴直线BC为⊙O的切线.5.解:(1)设∠AOM=n°,∵的长为2π,AO=6,∴=2π,解得:n=60,∵OM=OA,∴△AOM是等边三角形,∴∠OAM=60°,AM=AO=6,∵DO⊥AO,∴∠D=30°,∴AD=2AO=12,∴DM=AD﹣AM=6;(2)如图②,过点O作OP⊥AM于P,则AP=PM,∵点C为OD中点,∴CD=CO=AO=5,∴OD=10,∵CO⊥AO,∴∠AOD=90°,在Rt△AOD中,由勾股定理得,AD===5,∵∠PAO=∠OAD,∠APO=∠AOD=90°,∴△APO∽△AOD,∴=,即=,解得:AP=,∴AM=2;(3)∠DMC是定值,为45°,理由如下:∵CO⊥OB,OC=OB,∴∠ABC=45°,当点M在上时,如图①,连接BC,∵四边形ABCM为圆内接四边形,∴∠DMC=∠ABC=45°,当点M在上时,如图③,连接BC,由圆周角定理得,∠DMC=∠ABC=45°,综上所述,∠DMC是定值,为45°.6.解:(1)∵四边形AEGF是⊙O的内接四边形,∴∠AED=∠DFG=60°,故答案为:60;(2)连接EF,如图①所示:∵四边形FGEA是⊙O的内接四边形,∴∠DGF=∠DAE,又∠GDF=∠ADE,∴△DFG∽△DEA,∴当△DEA为等腰三角形时,△DFG为等腰三角形,∵四边形ABCD是矩形,AB=4,BC=6,∴CD=AB=4,AD=BC=6,∠BAD=∠ABC=∠BCD=∠ADC=90°,∵⊙O是△ABE的外接圆,∠ABE=90°,∴AE是⊙O的直径,∴∠AFE=90°,∴∠DFE=180°﹣∠AFE=180°﹣90°=90°,∴∠CDF=∠DCE=∠DFE=90°,∴四边形DCEF是矩形,∴DF=CE,EF=CD=4,若△AED为等腰三角形,分三种情况:①当AE=DE时,∵∠AFE=90°,∴EF⊥AD,∴AF=DF=AD=3,∴CE=DF=3;②当AE=AD=6时,在Rt△ABE中,由勾股定理得:BE===2,∴CE=BC﹣CE=6﹣2;③当DE=DA=6时,在Rt△DCE中,由勾股定理得:CE===2;综上所述,当BE的长为3或6﹣2或2时,△DFG为等腰三角形,故答案为:3或6﹣2或2;(3)过O作OH⊥AB于点H,如图②所示:则OH∥AD∥CE,∵四边形ABCD是矩形,∴∠ABC=90°,∴AE为⊙O的直径,∴OA=OE,∴OH是梯形ADCE的中位线,∴OH=(AD+CE),∴2OH=AD+CE,∵⊙O与CD相切,∴H为切点,∴OH=OA,∴AE=2OH=AD+CE=6+CE,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即42+(6﹣CE)2=(6+CE)2,解得:CE=.7.(1)证明:∵CD⊥AB,∴∠BHC=90°,∴∠C+∠ABC=90°,∵∠FBC=∠ABC,∠F=∠C,∴∠F+∠FBC=90°,∴∠BEF=90°,∴DF⊥BC.(2)①证明:连接OC.∵OC=OB,∴∠OCB=∠OBC=∠D,∵CD⊥AB,∴∠CHO=90°,CH=DH,∵∠CED=∠BEF=90°,∴HE=CD=CH=DH,∴∠D=∠HED,∴∠OCB=∠HED,∵EM⊥EH,∴∠HEN=∠HED+∠DEN=90°,∵∠DEN+∠BEN=∠BED=90°,∴∠HED=∠BEN,∴∠OCB=∠BEN,∴OC∥EM,∴∠COH=∠HNE,在△COH与△HNE中,,∴△COH≌△HNE(AAS),∴CO=NH,∴NH=AB.(3)解:连接OM,过点M作MP⊥AB于点P.∵∠HEN=∠HEG+∠GEN=90°,∠D+∠DGH=90°,∠D=∠HEG,∴∠GEN=∠DGH,∵∠DGH=∠EGN,∴∠GEN=∠EGN,∴EN=GN,∵△COH≌△HNE,∴OH=NE=GN,∴HG=OH+OG=GN+OG=ON=6,∵DG=6,∠DHG=90°,∴HE=CH=DH===6,∵△DHG∽△BHC,∴=,∴BH===12,设OB=OC=r,则OH=BH﹣OB=12﹣r,∵OH2+CH2=OC2,∴(12﹣r)2+(6)2=r2,解得:r=9,∴OM=9,NH=AB=9,NG=EN=BN=3,∵∠MNP=∠HNE,∠MPN=∠HEP=90°,∴△MNP∽△HNE,∴==,设MN=a,则NP==,MP==a,∴OP=ON+NP=6+,∵OP2+MP2=OM2,∴(6+)2+(a)2=92,解得:a1=﹣9(舍去),a2=5,∴MN=5.故答案为5.8.(1)证明:如图2,在⊙O上任取一点C(不为点A、B),连接PC、OC.∵PO<PC+OC,PO=PA+OA,OA=OC,∴PA<PC,∴PA是点P到⊙O上的点的最短距离;(2)解:连接AO与⊙O相交于点P,如图3,由已知定理可知,此时AP最短,∵∠ACB=90°,AC=BC=2,BC为直径,∴PO=CO=1,∴AO==,∴AP=﹣1,故答案为:﹣1;(3)解:如图4,由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上,由模型可知,当点A′在BM上时,A′B长度取得最小值,∵边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,∴BM==,故A′B的最小值为:﹣1;(4)①解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD==,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH最小值=OD﹣OH=﹣1.故答案为:﹣1;②解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图6,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为:﹣3.9.(1)①解:等腰三角形,理由如下;∵BC为⊙O的直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;②证明:在CB上截取DH=CD,连接AH、AE,如图1所示:∵AD⊥BC,∴AH=AC,∴∠AHC=∠ACH,∵弧AB=弧AE,∴∠AEB=∠ABE,AE=AB,∵∠AHC+∠ACH+∠HAC=180°,∠ABE+∠AEB+∠BAE=180°,∠ACB=∠AEB,∴∠HAC=∠BAE,∴∠CAE=∠HAB,∴△ACE≌△AHB(SAS),∴CE=HB,∵BD=DH+HB,∴BD=CD+CE;(2)解:分两种情况:①当点A、E在直径BC两侧时,如图1所示:由(1)得:BD=CD+CE=CD+,∵BD+CD=BC=5,∴CD++CD=5,解得:CD=;②当点A、E在直径BC同侧时,在CB上截取DH=BD,连接AH、AE,如图2所示:∵弧AB=弧AE,∴∠ACE=∠ACH=∠AEB,AB=AE,∵AD⊥BC,∴∠ABC +∠BAD =90°,∴∠BAD =∠HAD ,∵BC 是⊙O 的直径,∴∠BEC =∠BAC =90°,∴∠ABC +∠ACB =90°,∴∠BAD =∠ACB ,∵∠AHC =∠ADH +∠HAD =90°+∠HAD ,∠AEC =∠BEC +∠AEB ,∴∠AHC =∠AEC ,在△AHC 和△AEC 中,,∴△AHC ≌△AEC (AAS ),∴CH =CE =, ∴DH =BD =(BC ﹣CH )=(5﹣)=, ∴CD =CH +DH =;综上所述,CD 的长为或.10.解:(1)在射线OB 上任取另一点P 1(不同于切点P ),连接P 1D ,交圆于点E ,连接PC,CD.1D,∵∠CPD=∠CED,∠CED>∠CP1D;∴∠CPD>∠CP1(2)作AB垂直平分线OF,过点E作OE⊥CD,连接OB.则有∠CFO=∠CEO=∠C=90°,∴四边形OECF为矩形.∴OF=CE=6,∵看信号塔AB的视角(即∠AEB)最大,∴以O为圆心OB为半径的圆O,必与CD切于点E,即OB=OE.∵AB=2,∴BF=1.设BC=x米,则OB=OE=CF=(1+x)米.在直角三角形OBF中,有OB2=BF2+OF2,即(1+x)2=(6)2+1,解得x=18或﹣20(舍去),所以楼高BC为18米;(3)如图3,∵∠BCD=60°,BC=9,对角线AC平分∠BCD,则∠ACB=30°,则AB=BC tan30°=9•=3,则AC=2AB=6,∵AD∥BC,则∠ACB=∠DAC=∠ACD=30°,故△ADC为底角为30°、底边为6的等腰三角形,则AD=CD=AC÷cos30°=×6÷=6;①当以BE为弦的圆与AD相切时,符合题设要求,则点P在AD上,∠BPE=60°,连接OP并延长PO交BC于点F,则PF⊥BC,连接OB、OE,则∠BOF=2∠BPO=60°,则Rt△BOF中,∠OBF=30°,设圆的半径为r(以下圆的半径均用r表示),则OF=r,则AB=PF=r+r=3,解得r=2,在Rt△BOF中,BF=BO•cos30°=2•=3=BE,故BE=6;②如图4,当以BE为弦的圆过点D时,符合题设要求,即点P、D重合,连接BO并延长交CD于点G,同理可得△BOE为底角为30°的等腰三角形,则∠GBC=30°,而∠DCB=60°,故∠BGC=90°,即BG⊥CD,在Rt△BCG中,CG=BC=,BG=BC cos30°=,则GD=CD﹣CG=6﹣=,OG=BG﹣r=﹣r,连接OD、OE,在Rt△ODG中,OD2=DG2+OG2,即r2=(﹣r)2+()2,解得r=,由①知,BE=2r cos30°=2××=7;③当以BE为弦的圆过点A时,此时点A为临界点,连接AE,∴∠ABC=90°,故AE过点O,同理可得:∠AEB=30°,则AE=2AB=6=2r,则BE=2r cos30°=6•=9.综上,BE=6或7<BE≤9时,符合要求.。
北师大版九年级数学上册第一章 特殊平行四边形 压轴题复习练习题
北师大版九年级数学上册第一章特殊平行四边形压轴题复习练习题1、在矩形ABCD中,4AB=,6AD=,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN PQ⊥交射线BC于N点.(1)若点N在BC边上时,如图1.①求证:PN QN=;②请问PMPN是否为定值?若是定值,求出该定值;若不是,请举反例说明;(2)当PBN∆与NCQ∆的面积相等时,求AP的值.2、折纸是一项有趣的活动,在折纸过程中,我们可以通过研究图形的性质和运动,确定图形位置等,进一步发展空间观念.今天,就让我们带着数学的眼光来玩一玩折纸.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B'落在矩形ABCD所在平面内,B C'和AD相交于点E,连接B D'.解决问题(1)在图1中,①B D'和AC的位置关系是;②将AEC∆剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时()AB BC≠,如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明;若不成立,请说明理由;拓展应用(3)在图2中,若30oB∠=,AB=AB AD'⊥时,BC的长度为.3、如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF EG=;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB a=,BC b=,请直接写出EFEG的值.4、如图,在矩形ABCD中,6AB=,4BC=,动点Q在边AB上,连接CQ,将BQC∆沿CQ 所在的直线对折得到CQN∆,延长QN交直线CD于点M.(1)求证:MC MQ=(2)当1BQ=时,求DM的长;(3)过点D作DE CQ⊥,垂足为点E,直线QN与直线DE交于点F,且13DFDE=,求BQ的长.5、如图,在平面直角坐标系中,四边形ABCD是平行四边形,6AD=,若OA、OB的长是关于x的一元二次方程27120x x-+=的两个根,且OA OB>.(1)求A、B的坐标.(2)求证:射线AO是BAC∠的平分线.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F 点的坐标,若不存在,请说明理由.6、如图1,点M 放在正方形ABCD 的对角线AC (不与点A 重合)上滑动,连结DM ,做MN DM ⊥交直线AB 于N .(1)求证:DM MN =;(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且2DC AD =,求:MD MN ; (3)在(2)中,若CD nAD =,当M 滑动到CA 的延长线上时(如图3),请你直接写出:MD MN 的比值.7、阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发 现:当0a >,0b >时,2(0a b a b -=-2a b ab ∴+,当且仅当a b =时取等号 请利用上述结论解决以下问题: (1)请直接写出答案:当0x >时,1x x +的最小值为 .当0x <时,1x x+的最大值为 ; (2)若27101x x y x ++=+,(1)x >-,求y 的最小值;(3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,AOB ∆、COD ∆的面积分别为4和9,求四边形ABCD 面积的最小值.8、如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE BC ⊥,垂足为点E ,GF CD ⊥,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(045)α︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由; (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG交AD 于点H .若6AG =,GH =BC = .9、(1)如图1,将直角的顶点E 放在正方形ABCD 的对角线AC 上,使角的一边交CD 于点F ,另一边交CB 或其延长线于点G ,求证:EF EG =;(2)如图2,将(1)中的“正方形ABCD ”改成“矩形ABCD ”,其他条件不变.若AB m =,BC n =,试求EFEG的值; (3)如图3,将直角顶点E 放在矩形ABCD 的对角线交点,EF 、EG 分别交CD 与CB 于点F 、G ,且EC 平分FEG ∠.若2AB =,4BC =,求EG 、EF 的长.10、在矩形ABCD中,AB=4,BC=3,点M,N分别在边AB,CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.(1)如图1,当EP⊥BC时,求CN的长;(2)如图2,当EP⊥AC时,求AM的长;(3)请写出线段CP的长的取值范围,并求出当CP的长最大时MN的长.11、【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.12、如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI 恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.13、操作探究:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:探究:(1)若∠1=70°,∠MKN = °;(2)改变折痕MN 位置,△MNK 始终是 三角形,请说明理由; 应用:(3)爱动脑筋的小明在研究△MNK 的面积时,发现KN 边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN 的面积最小值为,此时∠1的大小可以为 °(4)小明继续动手操作,发现了△MNK 面积的最大值.请你求出这个最大值.14、问题背景:如图(1),在四边形ABCD 中.若BC =CD ,∠BAD =∠BCD =90°,则AC 平分∠BAD .小明为了证明这个结论,将△ABC 绕点C 顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE 中,∠A =∠C =90°,AB =BC ,BD 平分∠CDE ,求证AE +CD =DE .联系拓展:如图(3),在Rt △ABC 中,AC =BC ,若点D 满足AD =1716AB ,BD =AB ,点P 是AD 的中点,直接写出的值.15、如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.。
北师大版初三数学几何压轴题专项训练(动点产生的直角等腰和相似三角形及面积)
压轴题几何专项训练(二)——动点产生的直角、等腰和相似三角形及面积问题1、已知:如图,△ABC的边长3cm的等边三角形,动点P、Q同时从A、B 两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P时运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;(3)设PQ的长为x(cm),试确定y与x之间的关系BQ2、如图1,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线AC 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重合时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S ′表示矩形NFQC 的面积.(1) S 与S ′相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少?(3)如图2,连结BE ,当AE 为何值时,△ABE 是等腰三角形.Q P N MHGF E DCB AQ P N M H G F E D C B A3、如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A B C D E R P H Q4、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?(第21题)。
北师大版九年级数学上册期末压轴题综合复习题(含答案)
2021-2022年北师大版九年级数学上册期末压轴题综合复习题1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择题.A题:当点E是AB的中点时,矩形EFGH的面积是.B题:当BE=时,矩形EFGH的面积是8.3、在△ABC中,∠ABC=90°,ABnBC,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BM.PQ BQ②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.4、已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C 出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择题.A.若四边形BGEH为菱形,则BD的长为.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.7、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为.(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.17、如图,直线y=x+n交x轴于点A(﹣8,0),直线y=﹣x﹣4经过点A,交y轴于点B,点P是直线y=﹣x﹣4上的一个动点,过点P作x轴的垂线,过点B作y轴的垂线,两条垂线交于点D,连接PB,设点P的横坐标为m.(1)若点P的横坐标为m,则PD的长度为(用含m的式子表示);(2)如图1,已知点Q是直线y=x+n上的一个动点,点E是x轴上的一个动点,是否存在以A,B,E,Q为顶点的平行四边形,若存在,求出E的坐标;若不存在,说明理由;(3)如图2,将△BPD绕点B旋转,得到△BD′P′,且旋转角∠PBP′=∠OCA,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.18、如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.19、在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,的大小是否发生变化?如果变化,请说明理由;如果不变,请求出的值.(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.20、如图①,已知点A(﹣1,0),B(0,﹣2),▱ABCD的边AD与y轴交于点E,且E为AD的中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图③),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当点T在AF上运动时,的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.参考答案1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.1、【解答】(1)证明:∵∠PGB=∠EHP=∠BPE=90°,∴∠PBG=∠EPH(同角的余角相等),∴△PGB∽△EHP;(2)解:连接BE,∵PE⊥PB,∴∠BPE=90°,∵∠BCE=90°,∴∠BCE+∠BPE=180°,∴P,B,E,C四点共圆,∴∠PBE=∠PCE,在Rt△BPE与Rt△ADC中,∠D=∠BP E=90°,∠ACD=∠PBE,∴Rt△BPE∽Rt△ADC,∴=,即==;(3)设AP的长为x.∵AD=3,AB=4,∴由勾股定理得到:AC===5∵cos∠GAP===,∴AG=AP=x.同理,sin∠GAP===.则GP=x.在Rt△PBG中,PB2=BG2+PG2=(4﹣x)2+(x)2=x2﹣x+16,∵==.∴PE=PB,∴S矩形BPEF=PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择A或B题.A题:当点E是AB的中点时,矩形EFGH的面积是9.B题:当BE=2或4时,矩形EFGH的面积是8.2、【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AB=BC=CD=AD,∴∠A+∠B=180°,∵BE=BF=DH=DG,∴AE=AH=CF=CG,∴∠AEH=∠AHE=(180°﹣∠A),∠BEF=∠BFE=(180°﹣∠B),∴∠AEH+∠BEF=(180°﹣∠A)+(180°﹣∠B)=90°,同法可证:∠EFG=∠EHG=90°,∴四边形EFGH是矩形.(2)解:A题:连接AC,BD交于点O.∵AE=BE,∴AH=DH,BF=CF,CG=GD,∴EF=AC,EH=BD,∵AB=BC=6,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6,∵OB⊥AC,∴OB=3,BD=2OB=6,∴EF=3,EH=3,∴S矩形EFGH=EF•EH=9.故答案为9.B题:设BE=x,则AE=6﹣x,EF=x,EH=(6﹣x),由题意:x•(6﹣x)=8,解得x=4或2,∴BE=2或4.故答案为A或B,9,2或4.3、在△ABC中,∠ABC=90°,ABnBC=,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BMPQ BQ=.②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.3、【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH ∥BQ , ∴==.②简解:(射影定理)证2BM PM AM = 由BM =CM 得2CM PM AM = 则△PMC ∽△CMA 可得∠BPQ =∠BAC4、已知:矩形OABC 的顶点O 在平面直角坐标系的原点,边OA 、OC 分别在x 、y 轴的正半轴 上,且OA =3cm ,OC =4cm ,点M 从点A 出发沿AB 向终点B 运动,点N 从点C 出发沿CA 向终点A 运动,点M 、N 同时出发,且运动的速度均为1cm /秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t 秒. (1)当点N 运动1秒时,求点N 的坐标;(2)试求出多边形OAMN 的面积S 与t 的函数关系式;(3)t 为何值时,以△OAN 的一边所在直线为对称轴翻折△OAN ,翻折前后的两个三角形所组成的四边形为菱形?4、【解答】解:(1)∵t =1∴CN =1,AM =1 过N 作NE ⊥y 轴,作NF ⊥x 轴 ∴△CEN ∽△COA ,∴,即,∴EN =.(1分) 由勾股定理得:,,∴.(2分)(2)由(1)得,∴∴N 点坐标为. ∵多边形OAMN 由△ONA 和△AMN 组成 ∴=(3分) =(4分) ∴多边形OAMN 的面积S =.(0≤t≤4)(5分)(3)①直线ON为对称轴时,翻折△OAN得到△OA′N,此时组成的四边形为OANA′,当AN=A′N=A′O=OA,四边形OANA’是菱形.即AN=OA,∴5﹣t=3∴t=2.(6分)②直线OA为对称轴时,翻折△OAN得到△OAN′,此时组成的四边形为ONAN′,连接NN′,交OA于点G.当NN′与OA互相垂直平分时,四边形ONAN′是菱形.即OA⊥NN′,OG=AG=,∴NG∥CO,∴点N是AC的中点,∴CN=,∴(7分)③直线AN为对称轴时,翻折△OAN得到△O′AN,此时组成的四边形为ONO′A,连接OO’,交AN于点H.当OO′与AN互相垂直平分时,四边形ONO’A是菱形.即OH⊥AC,AH=NH=,由面积法可求得OH=,在Rt△OAH中,由勾股定理得,AH=.∴,∴.(8分)综上所述,t的值为.5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.5、【解答】解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t)=(3﹣t),∴AM=AQ+QM=t+(3﹣t)=(t+3)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴∴t=1(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择A题.A.若四边形BGEH为菱形,则BD的长为5.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.6、【解答】(1)证明:∵四边形ABCD和四边形BEFG是菱形,∴CD∥AG∥FH,BC∥GF,∠ABD=∠ABC,∠BGE=∠BGF,∴∠ABC=∠BGF,∴∠ABD=∠BGE,∴BH∥GE,∵EH∥BG,∴四边形BGEH是平行四边形;(2)解:A、∵四边形ABCD和四边形BGEH为菱形,∴AB=AD,∠ABD=∠CBD=∠GBE=60°,∴△ABD是等边三角形,∴BD=AB=5;故答案为:A,5;B、如图所示:∵四边形BHCF为矩形,∴CE=BE,∵EH∥BG,∴EH∥CD,∴EH是△BCD的中位线,∴BH=BD=3,∴CF=3;故答案为:3;8、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为(1,2).(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.7、【解答】解:(1)∵点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5,∴点B(1,2),故答案为:B(1,2);(2)如图1,过点B作BD⊥CO,则点D(1,0),∴OD=1,BD=2,∵AC⊥x轴,点A(﹣4,2),∴AC=2,CO=4,∴,且∠ACO=∠ODB=90°,∴△ACO∽△ODB,∴当点D为(1,0)时,△AOC与△BOD相似;∵△ACO∽△ODB,∴∠AOC=∠OBD,∠CAO=∠BOD,∵∠AOC+∠CAO=90°,∴∠AOC+∠BOD=90°,∴AO⊥BO,∵AC=2,CO=4,∴AO===2,∵OD=1,BD=2,∴OB===,过点B作BD'⊥OB,交x轴于D',∵∠ACO=∠OBD',∠BOD=∠CAO,∴△ACO∽△OCD',∴,∴OD'==5,∴D'(5,0)综上所述:当点D为(1,0)或(5,0)时,△AOC与△BOD相似;(3)连接DO,∵将△AOB折叠,使得点A刚好落在O处,∴AD=DO,∵DN2+ON2=DO2,∴DN2+4=(4﹣DN)2,∴DN=,∴点D坐标(﹣,2),∴BD=2+=,∵四边形BDPQ的周长=BD+PQ+PD+BQ=++PD+BQ,∴当PD+BQ最小时,四边形BDPQ的周长有最小值,作点B关于AO的对称点B'(﹣1,﹣2),过点D作DH∥AO,且DH=,∴H(,1),∴B'H为PD+BQ的最小值,∴B'H==,∴四边形BDPQ的周长最小值=++=.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.8、【解答】证明:(1)如图2,∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴▱OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形,理由是:由(1)得:四边形OEMF是平行四边形,∵四边形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵EM∥OC,∴∠EMB=∠OCB,∴∠EMB=∠OBC,∴BE=EM,∵BM=MC,EM∥OC,∴BE=OE,∴OE=EM,∴▱OEMF是菱形;故答案为:菱形;(3)如图4,ME=OB+MF,理由是:由(2)得:OB=OC,∴∠OBC=∠OCB,∵MF∥BE,∴∠OBC=∠BMF,∴∠OCB=∠BMF,∵∠OCB=∠FCM,∴∠FCM=∠BMF,∴FC═FM,由(1)得四边形OEMF是平行四边形,∴OF=EM,∵OF=OC+FC=OB+FM,∴ME=OB+MF.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.9、【解答】解:(1)∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D,∴在△GAB和△GC′D中,,∴△GAB≌△GC′D(AAS),∴BG=DG;(2)∵△GAB≌△GC′D,∴AG=C′G,设C′G=x,则GD=BG=8﹣x,∴x2+62=(8﹣x)2,解得:,∴;(3)∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,∴在Rt△ABD中,BD=10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是AB=AD.11、【解答】证明:(1)如图(2),∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,由折叠得:G、E、M将AD四等分,∴ED=BF,∵∠EOD=∠FOB,∴△EOD≌△FOB,∴OE=OF;(2)由(1)得:△EOD≌△FOB,∴OD=OB,连接AC,∴A、O、C共线,∵GT∥EO,∴=1,∴DT=OT,∵AE=ED,OT=DT,∴ET∥AC,ET=AO,即EQ∥AC,同理得:TQ=OC,∴EQ=AC,同理得:PF=AC,PF∥AC,∴PF=EQ,PF=EQ,∴四边形EPFQ是平行四边形,∵PF∥AC,F是BC的中点,∴P为AB的中点,同理得:Q为DC的中点,∴AP=QD=AB,∵AE=AD,∠BAD=∠ADC=90°,∴△APE≌△DQE,∴PE=EQ,∴▱EPFQ是菱形.(3)当AB=AD时,四边形EPFQ是正方形,理由是:∵E是AD的中点,P是AB的中点,∴AE=AD,AP=AB,∵AB=AD,∴AP=AE,∴△APE是等腰直角三角形,∴∠AEP=45°,同理∠QED=45°,∴∠PEQ=90°,由(2)得:四边形EPFQ是菱形,∴四边形EPFQ是正方形;故答案为:AB=AD.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形12、【解答】解:(1)∵AB,CD为边作菱形ABEF和菱形CDGH,∴EF∥AB,EF=AB,HG∥CD,HG=CD,∵四边形ABCD是正方形,∴AB∥CD,AB=CD,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∴FG=EH;(2)A、如图2,延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴∠BAF+∠DAM=90°,∠CDG+∠ADM=90°,∵∠BAF=60°,∠CDG=30°,∴∠DAM=30°,∠ADM=60°,∴∠ADM=180°﹣∠DAM﹣∠ADM=90°在Rt△ADM中,∠DAM=30°,AD=4,∴DM=AD=2,AM=2,∵AF=DG=4,∴FM=AF +AM=4+2,MG=MD +DG=6,∴S 四边形AFGD =S △FMG ﹣S △MAD=×FM ×GM ﹣×AM ×DM=×(4+2)×6﹣×2×2=12+4,B 、方法1、如图3.连接FD ,AG (简化图),∵∠BAF=∠CDG ,∴∠DAF=∠ADG在△ADF 和△ADG 中,,∴△ADF ≌△ADG ,∴∠ADF=∠DAG ,DF=AG ,∴∠ADF=(180°﹣∠AOD )在△AFG 和△DGF 中,, ∴△AFG ≌△DGF ,∠AGF=∠DFG ,∴∠DFG=(180°﹣∠FOG )∵∠FOG=∠AOD ,∴∠ADF=∠DFG ,∴AD ∥FG ,∵AB ⊥AD ,∴AB ⊥FG ,∵AB ∥EF ,∴EF ⊥FG ,∴∠EFG=90°,由(1)知,四边形EFGH 为平行四边形,∴平行四边形EFGH 是矩形,即:四边形EFGH是矩形.方法2、延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∵∠BAF=∠CDG,∴∠MAD=∠MDA,∴MA=MD,∵四边形ABCD是正方形,∴AB=CD,∵四边形ABEF,CDGH是菱形,∴MF=MG,∠AFE=∠DGH,∴∠EFG=∠HGF,由(1)知,四边形EFGH是平行四边形,∴∠AFE+∠HGF=180°,∴∠EFG=90°,∴平行四边形EFGH是矩形.13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.13、【解答】解:(1)特例探究:AF=DE.理由:如图2,∵四边形ABCD是正方形,∴AD=BA,∠DAE=∠B=90°,∵∠AOE=∠ADC=90°,∴∠ADE+∠DAO=∠BAF+∠DAO=90°,∴∠ADE=∠BAF,∴在ADE和△BAF中,,∴△ADE≌△BAF(ASA),∴AF=DE;(2)类比解答:AF与DE的数量关系为AF=DE.理由:如图1,在AB上取点M使得DM=DA,连接DM,交AF于N,则∠DAM=∠DMA,DM=AD=AB,∵∠DAB+∠B=180°,∠DMA+∠DME=180°,∴∠DME=∠B,∵∠AOE=∠ADC,∴∠ADO+∠DAO=∠ADO+∠CDO,∴∠DAO=∠CDO,又∵CD∥AB,AD∥BC,∴∠CDO=∠MED,∠DAO=∠BFA,∴∠MED=∠BFA,在△MED和△BFA中,,∴△MED≌△BFA(AAS),∴AF=DE;(3)拓展延伸:=.如图3,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵平行四边形ABCD的面积=AB×GM=BC×HN,∵AB=a,AD=b,∴=,∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,∵∠ADC=∠HOE,∴∠ADC+∠HOG=∠EOH+∠HOG=180°,∴∠DHO+∠DGE=360°﹣180°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,∴△GME∽△HNF,∴==.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.14、【解答】解:(1)如图1中,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,根据对称性可知,AE=AB,BE⊥AD,∴B、A、E共线,∵AF∥BC,∴EF=FC,∴BF=EC.(2)A、如图2中,当E、D、C共线时,由(1)可知:DE=DC,∵EB⊥AD,AD∥BC,∴EB⊥BC,∴∠EBC=90°,∴BD=DC=DE=CB,∴△BDC是等边三角形,∴∠C=60°,∵AB∥CD,∴∠ABC=180°﹣60°=120°.B、(1)中结论成立.理由如下:如图3中,设BE交AD于H.∵B、E关于AD对称,∴BE⊥AD,EH=BH,∵AD∥BC,∴BE⊥BC,∴∠EBC=90°,∵EH=HB,HF∥BC,∴EF=FC,∴BF=EC.故答案为A或B.(3)A、如图4中,作FH⊥CD于H.∵∠ABC=135°,AD∥BC,∴∠EAF=∠BAF=45°,∠ADC=135°,∠ADG=45°,∴∠AGD=90°,∵∠FHC=90°,∴∠FHC=∠EGC=90°,∴FH∥FG,∵FE=FC,∴HC=HG,∴FH=EG,∵△DFH是等腰直角三角形,∴DF=FH,∴EG=DF,∴=.B、如图5中,作FH⊥CD于H.同法可证:EG=2FH,DF=FH,∴=.故答案为A或B.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=b 或b(用含m,n,b的式子表示).15、【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择A或B题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.16、【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠ABC=90°,由折叠可知:BE=BE′,∠CB′E=∠ABC=90°,在Rt△BCE和Rt△ECB′中,∵EG=GC,∴BG=EC,GB′=EC,∴BG=GB′,在Rt△BCE中,∵∠BCE=30°,∴BE=CE,∴BE=EB′=B′G=BG,∴四边形BEB′G是菱形.(2)选A或B.故答案为A或B.A题:①结论:B′G=D′H,B′G∥D′H.理由:如图2中,由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∴B′G∥D′H.②连接GH,则四边形AEGH是平行四边形,∴AE=GH,设BE=EB′=m,则AE=m,∴m+m=4,∴m=4﹣4,∴GH=AE=8﹣4B题:①结论:B′G=D′H,B′G∥D′H.理由:由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,AD∥BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∵MN∥BC,∴MN∥BC∥AD,∴∠AD′M=∠DAD′=2∠4,∠CB′N=∠BCB′=2∠3,∴∠AD′M=∠CB′N,。
北师大版九年级数学上期末备考压轴题专项培优:特殊的平行四边形(解析版)
期末备考压轴题专项培优:特殊的平行四边形1.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.设点N的坐标为(m,n).(1)若建立平面直角坐标系,满足原点在线段BD上,点B(﹣1,0),A(0,1).且BM=t(0<t≤2),则点D的坐标为(1,0),点C的坐标为(0,﹣1);请直接写出点N纵坐标n的取值范围是0<n≤;(2)若正方形的边长为2,求EC的长,以及AM+BM+CM的最小值.(提示:连结MN:=+1,=﹣1)解:(1)如图1,以直线BD为x轴,直线AC为y轴,建立平面直角坐标系,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∵点B(﹣1,0),A(0,1),∴D(1,0),C(0,﹣1);过N作NH⊥BD于h,∴∠NHB=90°,∵将BM绕点B逆时针旋转60°得到BN,∴∠NBH=60°,BM=BN,∴NH=BN=t,∵0<t≤2,∴点N纵坐标n的取值范围是0<n≤;故答案为:(1,0),(0,﹣1);0<n≤;(2)如图所示,连接MN,过E作EH⊥BC,交CB的延长线于H,由旋转可得,BM=BN,∠NBM=60°,∴△BMN是等边三角形,∴MN=BM,∵△ABE是等边三角形,∴BE=BA,∠ABE=60°,∴∠ABM=∠EBN,∴△ABM≌△EBN(SAS),∴AM=EN,∴AM+BM+CM=EN+MN+CM,∴当E,N,M,C在同一直线上时,AM+BM+CN的最小值是CE的长,又∵∠ABE=60°,∠ABH=90°,∴∠EBH=30°,∴Rt△EBH中,EH=EB=×2=1,∴BH===,∴CH=2+,∴Rt△CEH中,CE====;∴AM+BM+CM的最小值为+.2.如图,在▱ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF 为邻边作▱ECFG.(1)证明▱ECFG是菱形;(2)若∠ABC=120°,连结BD、CG,求∠BDG的度数;(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.解:(1)证明:,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=6,AD=8,∴BD=10,∴DM=BD=5.3.如图,在正方形ABCD中,对角线AC、BD相交于点O,以AD为边向外作等边△ADE,连接CE,交BD于F.(1)如图1,若AE=,求DF的长;(2)如图2,点M为AB的延长线上一点,连接CM,连接FM且FM平分∠AMC,求证:CM=MF﹣AM.解:(1)如图1,连接OE,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,OA=OD=OB=OC∵△ADE是等边三角形∴AD=DE=AE=,∠ADE=60°∴CD=AD=,OD=OB=∵AE=DE,OD=OA∴OE垂直平分AD即OE⊥AD,DH=AH∴OE=OH+EH=+=,∵∠ADC=∠DHE=90°∴CD∥OE∴△CDF∽△EOF∴=,即DF=OF∵DF+OF=OD=∴OF=﹣DF∴DF=(﹣DF),解得:DF=﹣1.(2)如图2,连接EO,过点F作PQ⊥CD交EO于N,在MA上截取MT=MC,连接FT,设正方形边长为a,∵四边形ABCD是正方形,△ADE是等边三角形∴AD=AB=CD=DE=a,∠ADC=∠DAB=90°∠ADE=60°易证OE⊥AD∴OE=a,OD=a,由(1)知△CDF∽△EOF∴=,即a•DF=a•OF∵DF+OF=a∴OF=a﹣DF∴a•DF=a(a﹣DF)∴DF=a,∵△DPF是等腰直角三角形∴DP=PF=DF=a,∴FQ=a﹣a=a=CP,∵FM平分∠AMC,∴∠CMF=∠AMF在△MCF和△MTF中∴△MCF≌△MTF(SAS)∴CF=FT∴Rt△CFP≌Rt△FTQ(HL)∴QT=PF=a,∵AQ=DP∴AQ=QT∵BM+AB﹣AT=MT=CM∴CM﹣BM=AB﹣AT=a﹣2×a=a,CM+BM=MT+BM=BT+2BM=a﹣2×a+2BM=a+2BM∴CM2﹣BM2=(CM﹣BM)(CM+BM)=a(a+2BM)∵CM2﹣BM2=BC2=a2,∴a(a+2BM)=a2,∴BM=a在Rt△BCM中,tan∠BMC===,∴∠BMC=60°∴∠AMF=30°∴=cos∠AMF=cos30°=∴2MQ=MF∵2MQ=2BM+2BQ=2BM+2BT+2QT=(BM+BT)+(BM+BT+AT)=CM+AM∴CM+AM=MF即CM=MF﹣AM.4.在菱形ABCD中,∠ABC=60°,BD为菱形的一条对角线.(1)如图1,过A作AE⊥BC于点E,交BD于点F,若EF=2,求菱形ABCD的面积;(2)如图2,M为菱形ABCD外一点,过A作AN⊥BM交BM的延长线于点N,连接AM,DM,AG⊥DM于点G,且∠AMN=∠AMD,求证:DM=BM+AM.(1)解:如图1中,∵四边形ABC都是菱形,∠ABC=60°,∴∠ABD=∠DBC=30°,∵AE⊥BC,∴∠BEF=90°,∵EF=2,∴BF=2EF=4,∠BFE=60°,∵∠BFE=∠ABF+∠F AB,∴∠ABF=∠F AB=30°,∴BF=AF=4,∴AE=AF+EF=6,∴AB==4,∴BC=AB=4,=BC•AE=24.∴S菱形ABCD(2)证明:如图2中,∵∠AMN=∠AMG,AN⊥MN,AG⊥DM,∴AN=AG,∵∠MNA=∠MGA=90°,AM=AM,AN=AG,∴Rt△MAN≌Rt△MAG(HL),∴NM=MG,∵∠ANB=∠AGD=90°,AN=AG,AB=AD,∴Rt△ANB≌Rt△AGD(HL),∴∠ABN=∠ADG,BN=DG,∴∠BMD=△BAD=120°,∴∠NMG=60°,∴∠AMN=∠AMG=30°,∴DM﹣BM=MG+DG﹣(BN﹣MN)=2MN=AM,∴DM=BM+AM.5.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=12,DC=3,∠EBD=60°,则BE=6时,四边形BFCE是菱形.(只需完成填空,不需写出具体过程.)(1)证明:∵在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴BE=FC,∠ABE=∠DCF,∴∠EBC=∠FCB,∴BE∥FC,∴四边形BFCE是平行四边形;(2)解:当四边形BFCE是菱形,则BE=EC,∵AD=12,DC=3,AB=DC,∴BC=6,∵∠EBD=60°,EB=EC,∴△EBC是等边三角形,∴BE=6.故答案为:6.6.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD 上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;(3)若BD=2AB,①探究四边形GEHF的形状,并说明理由;②当AB=2,∠ABD=120°时,直接写出四边形GEHF的面积.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:①四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形;②作AM⊥BD于M,GN⊥BD于N,如图3所示:则AM∥GN,∵G是AD的中点,∴GN是△ADM的中位线,∴GN=AM,∵∠ABD=120°,∴∠ABM=60°,∴∠BAM=30°,∴BM=AB=1,AM=BM=,∴GN=,∵BD=2AB=4,∴EF=BD=2,∴△EFG的面积=EF×GN=×2×=,∴四边形GEHF的面积=2△EFG的面积=.7.如图,边长为6的正方形ABCD中,E,F分别是AD,AB上的点,AP⊥BE,P为垂足.(1)如图1,AF=BF,AE=2,点T是射线PF上的一个动点,当△ABT为直角三角形时,求AT的长;(2)如图2,若AE=AF,连接CP,求证:CP⊥FP.(1)解:在正方形ABCD中,可得∠DAB=90°.∵在Rt△BAE中,tan∠ABE===,∴∠ABE=30°.点T是射线PF上的一个动点,当△ABT为直角三角形时,分三种情况:①当点T在AB的上方,∠ATB=90°,显然此时点T和点P重合,即AT=AP=AB=3;②当点T在AB的下方,∠ATB=90°,如图①所示.在Rt△APB中,由AF=BF,可得:AF=BF=PF=3,∴∠BPF=∠FBP=30°,∴∠BFT=60°.在Rt△ATB中,TF=BF=AF=3,∴△FTB是等边三角形,∴TB=3,AT==3;③当点T在AB的下方,∠ABT=90°时,如图②所示.在Rt△FBT中,∠BFT=60°,BF=3,BT=BF•tan60°=3.在Rt△ATB中:AT==3.综上所述:当△ABT为直角三角形时,AT的长为3或3或3;(2)证明:如图③所示,∵四边形ABCD是正方形,∴AB=AD=BC,AD∥BC,∠DAB=90°,∴∠3=∠4.∵在Rt△EAB中,AP⊥BE,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∴∠1=∠3=∠4,∵tan∠1=,tan∠3=,∴=,∵AE=AF,AB=BC,∴=,∴△PBC∽△P AF,∴∠5=∠6.∵∠6+∠7=90°,∴∠5+∠7=90°,即∠CPF=90°,∴CP⊥FP.8.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:四边形GEHF是平行四边形;(2)已知AB=5,AD=8.求四边形GEHF是矩形时BD的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠GDE=∠FBH,∵G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,∴在Rt△AED和Rt△CFB中,EG=AD=GD,FH=BC=HB,∴EG=FH,∠GED=∠GDE,∠FBH=∠BFH,∴∠GED=∠BFH,∴EG∥FH,∴四边形GEHF是平行四边形;(2)解:连接GH,当四边形GEHF是矩形时,∠EHF=∠BFC=90°,∵∠FBH=∠BFH,∴△EFH∽△CBF,∴=,由(1)可得:GA∥HB,GA=HB,∴四边形GABH是平行四边形,∴GH=AB=5,∵在矩形GEHF中,EF=GH,且AB=5,AD=8,∴=,解得:BF=,∴BE=BF﹣EF=﹣5=,在△ABE和△CDF中∴△ABE≌△CDF(AAS),∴BE=DF=,∴BD=BF+DF=+=.9.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE 的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF ≌△ADH (SAS ).∴AF =AH ,BF =DH .∵Rt △F AH 是等腰直角三角形,∴HF =AF .∵HF =DH +DF =BF +DF ,∴BF +DF =AF .10.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的两条直线分别交边AB 、CD 、AD 、BC 于点E 、F 、G 、H .【感知】如图①,若四边形ABCD 是正方形,且AG =BE =CH =DF ,则S四边形AEOG = S 正方形ABCD ;【拓展】如图②,若四边形ABCD 是矩形,且S 四边形AEOG =S 矩形ABCD ,设AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);【探究】如图③,若四边形ABCD 是平行四边形,且AB =3,AD =5,BE =1,试确定F 、G 、H 的位置,使直线EF 、GH 把四边形ABCD 的面积四等分.解:【感知】如图①,∵四边形ABCD 是正方形,∴∠OAG =∠OBE =45°,OA =OB ,在△AOG 与△BOE 中,,∴△AOG ≌△BOE ,∴S 四边形AEOG =S △AOB =S 正方形ABCD ; 故答案为:;【拓展】如图②,过O 作ON ⊥AD 于N ,OM ⊥AB 于M ,∵S △AOB =S 矩形ABCD ,S 四边形AEOG =S 矩形ABCD ,∴S △AOB =S 四边形AEOG ,∵S △AOB =S △BOE +S △AOE ,S 四边形AEOG =S △AOG +S △AOE ,∴S △BOE =S △AOG ,∵S △BOE =BE •OM =mb =mb ,S △AOG =AG •ON =AG •a =AG •a , ∴mb =AG •a ,∴AG =; 【探究】如图③,过O 作KL ⊥AB ,PQ ⊥AD ,则KL =2OK ,PQ =2OQ ,∵S 平行四边形ABCD =AB •KL =AD •PQ ,∴3×2OK =5×2OQ , ∴=,∵S △AOB =S 平行四边形ABCD ,S 四边形AEOG =S 平行四边形ABCD ,∴S △AOB =S 四边形AEOG ,∴S △BOE =S △AOG ,∵S △BOE =BE •OK =×1×OK ,S △AOG =AG •OQ , ∴×1×OK =AG •OQ ,∴=AG =,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.11.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.12.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAF=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.13.如图,在△ABC中,点O是边AC上一个点,过点O作直线MN∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?证明你的结论.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.14.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.15.如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足什么条件时,四边形ADEG是矩形?②当△ABC满足什么条件时,四边形ADEG是正方形?(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压轴题几何专项训练(三) ——有关旋转、平移、折叠问题
(旋转)1、如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=o ,.将
BOC △绕点C 按顺时针方向旋转60o 得ADC △,连接OD . (1)求证:COD △是等边三角形;
(2)当150α=o 时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?
A B
C
D O
110o
α
(旋转)2、如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,
∠B =∠E =30°. (1)操作发现
如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________;
②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是________.
(2)猜想论证
当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍 然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的 猜想.
(3)拓展探究
已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE 在射线BA 上存在点F ,使BDE DCF S S ∆∆=,请直接写出....
相应的BF 的长.
A (D )
B (E ) C
图1
A 图2
图3
A
图4
(平移)3、如图(1)所示,一张三角形纸片ABC ,ACB =90º,AC =8,BC =6.沿斜边AB 的中线CD 把这张纸片剪成△AC 1D 1和△BC 2D 2两个三角形,如图(2)所示.将纸片△AC 1D 1沿直线D 2B (AB )方向平移(点A 、D 1、D 2、B 始终在同一条直线上),当点D 1与点B 重合时,停止平移.在平移的过程中,C 1D 1与BC 2交于点E ,AC 1与C 2D 2、BC 2分别交于点F 、P .
(1)当△AC 1D 1平移到如图(3)所示的位置时,猜想图中D 1E 与D 2F 的数量关系,并证明你的猜想;
(2)设平移距离D 2D 1为x ,△AC 1D 1和△BC 2D 2重叠部分的面积为y ,请写出y 与x 的函数关系式,以及自变量x 的取值范围;
(3)对于(2)中的结论是否存在这样的x ,使得重叠部分的面积等于原△ABC 纸片面积的1
4
?若存在,请求出x 的值;若不存在,请说明理由.
(折叠)4、如图1,矩形纸片ABCD 中,AD =14cm ,AB =10cm 。
(1)将矩形纸片ABCD 沿折线AE 对折,使AB 边与AD 边重合,B 点落在F 点处,如图2所示;再剪去四边形CEFD ,余下的部分如图3所示。
若将余下的纸片展开,则所得的四边形的ABEF 的形状是____;它的面积为____cm 2。
(2)将图3中的纸片沿折线AG对折,使AF与AE边重合,F点落在H点处,如图4所示;再沿HG将△HGE剪去,余下的部分如图5所示。
把图5的纸片完全展开,请你在图6的矩形ABCD中画出展开后图形的示意图,剪去的部分用阴影表示,折痕用虚线表示;
(3)求图5中的纸片完全展开后的图形面积(结果保留整数)。